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Choosing an appropriate GCM (Global Climate Model, GCM) is of great significance for the
simulation of the hydrological cycle over a basin under future climate scenarios. In this
study, the Rank Score Method (RS) with eight indicators were applied to comprehensively
evaluate the suitability of 19 GCMs issued in the Sixth Global Atmosphere and CoupledModel
Intercomparison Project (CMIP6) to the Yellow River Basin (YRB). The results indicated that: 1)
The GCMs perform differently in simulating precipitation over the YRB with the top six GCMs
ranking from MRI-ESM2-0, ACCESS-CM2, CNRM-CM6-1, CNRM-ESM2-1, FGOALS-f3-L,
to MPI-ESM1-2-HR. 2) Most GCMs overestimated the precipitation, and poorly simulated the
phase distribution of extremes mainly due to overstimulation of wet season span and
precipitation amount in the season, although all GCMs could capture decadal feature of
annual precipitation. Meanwhile, it is also found that most GCMs underestimated summer
precipitation and overestimated spring precipitation. 3) The GCMs well simulated the spatial
distribution of annual precipitation, with an overestimation in the source area, and an
underestimation in the northern part of the middle reaches of YRB.
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INTRODUCTION

With the further intensification of global climate change, the hydrological cycle processes have
been significantly affected. The Sixth Intergovernmental Panel on Climate Change (IPCC)
Assessment Report of group 1 showed that in 2015–2100, the global warming trend will be
even more significant, climate change will intensify in all regions, and extremely high temperature
and precipitation events will become more frequent (Masson-Delmotte et al., 2021). Therefore,
analyzing the changes in the hydrological process of the basin, and simulating the change of
hydrological elements under future climate scenarios are of great significance for the management
and planning of water resources in the basin (Reboita et al., 2019). The Global Climate Models
(GCMs) in a series of Global Atmosphere and Coupled Model Intercomparison Projects (CMIPs)
developed by the World Climate Change Research Program (WCRP) are effective tools for
predicting future climate change, and have been widely used to study the impact of climate change
on the processes of the hydrological cycle (Stouffer et al., 2017; Zhang and Chen, 2021). Some
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studies have noted that the models in the CMIP could well
simulate the variation of various climate elements on a large
scale (Fu et al., 2021; Zhu et al., 2021). However, due to the
differences in simulation mechanisms, initial condition setting,
parameterization scheme setting, spatial resolution and so on of
each model, the performance of GCMs in various regions is
quite different (Song Y. H. et al., 2021; You et al., 2021).
Therefore, assessing the regional applicability of GCMs is of
great importance for further research on the impact of climate
change on the regional hydrological cycle.

A growing body of research has evaluated the applicability of
the GCMs in the CMIPs to various regions. Chen et al. (2020)
compared the ability of CMIP6 and CMIP5 models to simulate
the global extreme climates, and found that the simulated results
of CMIP6 models were usually closer to the observations than
that of the CMIP5 for most regions, especially for temperature
simulations. Iqbal et al. (2021) evaluated the precipitation
simulation capability of 35 GCMs in the CMIP6 in Southeast
Asia, and the results indicated that most GCMs could well
simulate the precipitation change in the region. Khan et al.
(2021) used Bayesian models to averagely evaluate the
applicability of the 13 GCMs in the CMIP5 over the Indus
River Basin, and the results showed that the optimal models for
simulating temperature and precipitation were not consistent.
Therefore, due to the good applicability of the GCMs in the
CMIP6 and the uncertainty of the models, it is necessary to
conduct a regional climate model evaluation. Zhu et al. (2021)
analyzed the extreme climate predictions of China when global
warming was 1.5°C, 2°C, and 3°C higher than the
industrialization (1861–1900) period based on the latest
(CMIP6) simulations, and compared them with the
simulation results of the CMIP5. The evaluation showed that
the GCMs in the CMIP6 performed better than those in the
CMIP5, especially in simulating extreme precipitation. Yang
et al. (2021) assessed the performance of 20 coupled GCMs in
the CMIP6 in simulating temperature and precipitation in
China, and found that the GCMs in the CMIP6 could
reproduce the spatial distributions of temperature and
precipitation. Dabang et al. (2020) compared the simulation
ability of GCMs in the CMIP5 and CMIP6 in terms of
temperature and precipitation in China from 1961 to 2005,
and the results indicated that the current GCMs in the CMIP6
simulated lower temperatures and higher precipitation across
the country compared with the CMIP5 models, but with little
improvement in interannual temperature and winter monsoon.
Overall, the CMIP models could well simulate the regional
precipitation in China, despite some overestimations.

The Yellow River is the mother river of China. The river basin
suffers from frequent droughts, floods and has been severely
affected by climate change. Exploring the changes in the
hydrological processes of the Yellow River Basin under future
climate scenarios could promote the sustainable development of
the basin (Niu et al., 2021). At present, most studies evaluating
the performance of GCMs have been conducted for large
research areas, such as China or the world, but relatively few
studies have been conducted over basin-scales, such as the
Yellow River Basin, where the simulation capabilities of

GCMs in spatial and temporal have not been
comprehensively considered (Yang et al., 2018; Zhou and
Han, 2018). The CMIP6 is the latest global atmospheric and
coupled model intercomparison plan proposed by the WCRP
and has the largest number of participating models, the most
complete design of scientific experiments, and the largest
simulated data in more than 20 years of the CMIP (Song Z.
et al., 2021). The urgent problem is how to choose a suitable
model for the study area from a large number of model data. The
objective of this work is to evaluate the abilities of the 19 GCMs
in the CMIP6 to simulate precipitation in the Yellow River
Basin, and select suitable GCMs with better simulation abilities
to provide a basis and reference for the hydrological cycle
process in response to the future climate change, water
resources planning and management in the basin.

STUDY AREA AND DATA DESCRIPTION

Study Area
The Yellow River is the second-longest river in China, is located
between 96°25′—118°75′E and 32°75′—41°75′N, has a drainage
area of 79.5 × 104 km2 and with a total river length of 5,464 km.
The terrain of the Yellow River Basin is high in the west and low
in the east, which is dominated by mountains in the middle and
upper reaches of the Yellow River, and the middle and lower
reaches are dominated by plains and hills, forming the three-level
ladder from upper down to lower down (Figure 1). The annual
precipitation in most parts of the basin is between 200 and
650 mm, with more than 650 mm in the southern and lower
reaches of the middle and upper reaches. In particular, the
northern slope of the southern Qinling Mountains generally
has 700–1,000 mm in precipitation, while the inland areas of
northwest Ningxia and Inner Mongolia have less than 150 mm.
Those elements significantly affect the climate of different regions
in the basin, with large annual and seasonal variations in the
climatic elements, hence the frequent droughts and floods (Song
S. et al., 2021; Xu et al., 2021).

Data Description
The observed data of precipitation over the Yellow River
Basin applied in this paper comes from the CN05.1 data set,
which was provided by the National Meteorological Center
in China. The data set covers the years 1961–2018 with a
spatial resolution of 0.25° × 0.25°, with good consistency and
applicability (Pang et al., 2021; Shu et al., 2021). Considering the
integrity of stimulated data, we chose the data to form the 19
GCMs in the CMIP6, which were obtained from the official
website of CMIP6 (https://esgfnode.llnl.gov/projects/cmip6). The
specific model information is shown in Table 1, and all the
models are at daily resolution. Because the resolution of each
model and the observed data is different, the bilinear
interpolation method was used to interpolate to the resolution
of 0.5° × 0.5° to facilitate comparison. After the interception, there
are 317 grids in the Yellow River Basin, as shown in Table 1. The
data series from 1961 to 2014 were selected for evaluation and
analysis.
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METHODOLOGY

The ability of the different GCMs to reproduce the properties of
those observed at the study area was assessed using eight statistical
indices. The evaluated indices andmethods were shown inTable 2.

For the simulation ability on the temporal scale, the average
annual precipitation and the coefficient of variation were used to
evaluate the mean state and the inter-annual variability. In
addition, the Modified Mann-Kendall (MMK) method was
used to test the long-term change trend of the series, then
the correlation coefficient method was used to calculate the
temporal correlation coefficient, and evaluate the correlation
between the observations and the simulated series (Hamed and
Rao, 1998). In addition to using the spatial correlation
coefficient to judge the spatial correlation between the
observations and the simulations, the Empirical Orthogonal
Function modal decomposition (EOF) method was applied to
comprehensively evaluate the spatial modal simulation ability of
the GCMs (Sang et al., 2021). Finally, combining the above eight
indicators, the Rank Scoring (RS) method was used to evaluate
the ability of the 19 GCMs to simulate the precipitation in the
Yellow River Basin.

1) The method for calculating the Mean Absolute Error
(MAE) is:

MAE � |Xs −Xo| (1)

WhereXsis the simulated value of the climatic characteristic
quantity, and Xois the observed value of the climatic
characteristic quantity. The closer the MAE value is to zero,
the more accurate the model is.

2) Correlation coefficient (COR) is calculated as:

COR �
∑n
i�1
(Xo,i −Xo)(Xs,i −Xs)������������∑n

i�1
(Xo,i −Xo)2

√
·

������������∑n
i�1
(Xs,i −Xs)2

√ (2)

When calculating the temporal correlation coefficient,Xs,i and
Xo,iare the simulated and observed values at the i-th time point
respectively, and n is the total length of the sequence. When
calculating the spatial correlation coefficient between the
simulated value of each climate characteristic quantity and the
observed value in the Yellow River Basin, Xs,i and Xo,i are the
simulated value and observed value of the climate characteristic

TABLE 1 | Basic information of the GCMs of the CMIP6 used in this study. The “lon”means longitude, the “lat”means latitude, the “lon × lat”means the spatial resolution of
each model.

Number Model Country Atmospheric resolution
(lon × lat)

1 ACCESS-CM2 Australia 1.875° × 1.25°

2 ACCESS-ESM1-5 Australia 1.875° × 1.25°

3 BCC-CSM2-MR China 1.125° × 1.125°

4 CMCC-CM2-SR5 Italy 1.25° × 0.9375°

5 CNRM-CM6-1 France 1.40625° × 1.40625°

6 CNRM-ESM2-1 France 1.40625° × 1.40625°

7 FGOALS-f3-L China 1.25° × 1°

8 FGOALS-g3 China 2° × 2.25°

9 GFDL-CM4 the United States 1.25° × 1°

10 GFDL-ESM4 the United States 1.25° × 1°

11 IITM-ESM Russia 1.875° × 1.904°

12 INM-CM4-8 Russia 2° × 1.5°

13 MIROC-ES2L Japan 2.8125° × 2.7893°

14 MIROC6 Japan 1.40625° × 1.40625°

15 MPI-ESM1-2-HR Germany 0.9375° × 0.935°

16 MPI-ESM1-2-LR Germany 1.875° × 1.8652°

17 MRI-ESM2-0 Japan 1.125° × 1.125°

18 NESM3 China 1.875° × 1.865°

19 NorESM2-LM Norway 2.5° × 1.89474°

TABLE 2 | Statistical indices and evaluation methods applied in this study.

Scale Climatic characteristics Method Index

Temporal Climate average Multi-year average precipitation MAE
Inter-year variability Coefficient of Variation MAE
Trend Modified Mann-Kendall test Z MAE
Trend slope Modified Mann-Kendall test β MAE
Correlation Temporal correlation coefficient Rt COR

Spatial Correlation Spatial correlation coefficient Rs COR
Inter-year change mode-1 The first modal from the Empirical Orthogonal Function (EOF1) COR
Inter-year change mode-2 The second modal from the Empirical Orthogonal Function (EOF2) COR

MAE means the Mean Absolute Error, the COR means the Correlation coefficient.
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quantity of the i-th grid point in the basin respectively, and n is
the number of grids (Alves et al., 2018). The model performance
is better the closer the COR values are to 1.

3) The advantage of the RS method is that it gives a unified
evaluation result for different evaluation indicators, and can also
analyze a single feature value, which makes the evaluation result
more intuitive and objective, so it is more conducive to
comprehensive evaluation. This method first calculates the
degree of fitness between the simulated sequence and the
observed sequence of various statistical feature values, then
assigns a score of 0–10 to each model according to the degree
of fitness, which can be effectively applied to different regions
(Shiru and Chung, 2021). The calculation method is as follows:

RSk(T) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 − Tk − Tmin

Tmax − Tmin
) × 10; T � MAE

( Tk − Tmin

Tmax − Tmin
) × 10; T � COR

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (3)

Where RSk(T) is the score value of the climate characteristic
quantity T of the k-th model. Tk, Tmin and Tmax are the calculated
values of the climatic characteristic quantity T of the k-th model,
and the minimum and maximum values of the climatic
characteristic quantity of all models. The range of RS is 0–10.
The higher the score, the better the simulation ability of the
climate model in this region.

RESULTS AND DISCUSSION

Comprehensive Evaluation for the
Stimulated Ability of GCMs
The RS scores of each index and total scores of 19 GCMs were
shown in Table 3.

It can be seen that the simulation capabilities of the 19 GCMs
were quite different. The highest RS score was 7.83 (MRI-ESM2-

0) and the lowest was 4.52 (CMCC-CMA-SR5). The models with
relatively higher scores were MRI-ESM2-0 (7.83), ACCESS-CM2
(7.79), CNRM-CM6-1 (7.63), CNRM-ESM2-1 (7.09), MPI-
ESM1-2-HR (6.99) and FGOALS-f3-L (6.81) (Figure 2). The
results showed that no model performs well for each indicator.
Each GCM had better or poorer performance indicators than
others, which indicated the necessity of a comprehensive
evaluation of indicators.

The average annual precipitation of observation in the Yellow
River Basin was 466.1 mm, while those of the 19 GCMs ranged
from 483.8 to 1,083.1 mm. Therefore, all models overestimated
the average annual precipitation. The closest simulated value was
from FGOALS-f3-L (483.8 mm), while the greatest
overestimation was from model CMCC-CM2-SR5 at
1,083.1 mm. Previous studies noted that most climate models
overstimulated the precipitation in the basin, a factor related to
that was the more convective precipitation simulated by the
GCMs (Zhou and Han, 2018). For the inter-annual variability,
there was little difference between the models. It showed that the
spatial variation of the simulated annual precipitation in most
GCMs was close to the observation in terms of the coefficient of
variation. In addition, the precipitation of the basin from 1961 to
2014 showed an insignificant increase trend (Z<±1.96), and nine
models that could simulate the increasing trend. However, the Z
value of the best scored MRI-ESM2-0 was −0.18, which failed to
simulate the increasing trend of the observation. But the better
performance of other climatic characteristics made up for the lack
of trend simulation, which showed that quantitative assessment
of the sensitivity of climate characteristics is a problem that needs
further research (Yazdandoost et al., 2020). Finally, in terms of
spatial and temporal correlation, though almost all of the GCMs
showed highly spatial correlation, they performed badly on
temporal correlation, with 8 GCMs showing negative
correlation, implying a large deviation between the simulated
value and the observation (Figure 3). For example, the

TABLE 3 | Statistical indices values and RS total scores of precipitation simulated by 19 GCMs. The models and indicators in bold were the relatively better ones in the table,
and the indicators in bold were performed best in each category.

Model Mean cv z B rt Rs EOF1 EOF2 RS

Observed 466.1 0.12 0.22 1.29 — — — — —

ACCESS-CM2 646.7 0.12 0.15 0.39 0.01 0.77 0.16 0.13 7.79
ACCESSES-M1-5 721.6 0.10 −0.28 −0.51 −0.05 0.77 −0.18 −0.05 6.38
BCC-CSM2-MR 683.4 0.11 0.46 0.93 0.14 0.64 −0.08 −0.15 6.16
CMCC-CM2-SR5 1,083.1 0.10 −1.17 −0.99 0.01 0.69 −0.09 0.08 4.52
CNRM-CM6-1 509.2 0.11 0.29 0.47 -0.02 0.77 0.06 0.11 7.63
CNRM-ESM2-1 502.1 0.13 0.37 0.73 −0.05 0.76 0.16 0.03 7.09
FGOALS-f3-L 483.8 0.13 0.08 0.15 0.03 0.57 0.09 0.03 6.81
FGOALS-g3 586.0 0.10 0.00 0.01 −0.19 0.73 −0.15 −0.26 6.49
GFDL-CM4 574.3 0.13 −0.29 −0.63 0.01 0.74 −0.23 −0.16 6.54
GFDL-ESM4 578.5 0.12 −0.96 −1.90 0.16 0.78 0.00 0.07 6.08
IITM-ESM 791.6 0.09 −0.01 −0.01 −0.02 0.69 −0.04 −0.09 5.41
INM-CM4-8 1,068.7 0.10 −0.39 −1.49 0.12 0.66 0.10 0.10 4.49
MIROC-ES2L 957.7 0.06 −0.22 −0.38 0.02 0.68 −0.05 −0.14 4.43
MIROC6 832.2 0.09 −0.19 −0.27 −0.03 0.66 0.17 0.22 5.22
MPI-ESM1-2-HR 603.9 0.12 0.71 1.55 −0.06 0.80 0.11 0.07 6.99
MPI-ESM1-2-LR 785.1 0.11 0.28 0.74 0.08 0.67 0.03 0.11 5.90
MRI-ESM2-0 503.6 0.14 −0.18 −0.29 0.18 0.80 0.23 0.17 7.83
NESM3 879.3 0.09 −0.19 −0.55 0.08 0.65 −0.16 −0.10 4.78
NorESM2-LM 982.6 0.11 0.39 1.29 −0.08 0.72 −0.04 0.06 5.03
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precipitation stimulated by MRI-ESM2 0 at 32.75°N 102.75°E was
1,418.1 mm, while the observed precipitation over this grid was
848.37 mm, so there is a significant deviation between the
simulation and the observation.

Simulation of Temporal Characteristic
Simulation of Annual Precipitation
The ability of the different GCMs to reproduce the properties of
those observed at the study area was assessed using eight
statistical indices. The evaluated indices and methods were
shown in Table.

Table indicated that the annual precipitation in the Yellow
River Basin showed an insignificant increase from 1961 to 2014.
The maximum precipitation occurred in 1964 (597.7 mm), and
the minimum precipitation was in 1965 (342.2 mm). Figure 4
showed the annual precipitation change of the six models with
higher scores. Almost all of the models could simulate the inter-
annual change of precipitation in the basin. However, not only
the annual precipitation in the Yellow River Basin was
overestimated, but the simulation value of peak and valley also
lagged. Moreover, the peak value was obviously overestimated,
and the valley value was underestimated, which is related to the

FIGURE 1 | Meteorological grid and river system of the Yellow River Basin.

FIGURE 2 | RS scores of the 19 GCMs in CMIP6.
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uncertainty of the climate model and the resolution of the data
(Orlowsky and Seneviratne, 2013). For example, the highest
scored MRI-ESM2-0’s simulated annual precipitation in
1964 was 669.3 mm, and the simulated annual precipitation in
1965 appeared to be 470.1 mm (Table 4), which was the closest to
the observed data among the six optimal models. It also had the
least hysteresis impact, so the GCMs ranked high by the RS
method were seen to have better abilities in replicating the
historical variation of inter-year precipitation in the Yellow
River Basin.

In order to compare the uncertainty of the simulated annual
precipitation in the Yellow River Basin between the GCMs, the
uncertainty interval of the annual precipitation stimulated by 19
GCMs and six higher-scoring models were calculated with
absolute deviations (Figure 5). Among them, the range of the
simulated annual precipitation of the 19 models was
313.2–1,391.5 mm, while that of the six higher-scoring models
was 313.2–818.4 mm, which indicated that the higher-scoring
GCMs significantly reduced the uncertainty of simulated
precipitation in the Yellow River Basin.

Simulation of the Seasonal Pattern
The maximum monthly precipitation of observed data in the
basin from 1961 to 2014 occurred in July (102.2 mm), but it
occurred in August in the six models. The maximum monthly
precipitation in the basin was overestimated by 113.2 mm by
ACCESS-CM2, 110.4 mm by CNRM-CM6-1, and 107.43 mm by
CNRM-ESM2-1. However, the other three models
underestimated it: FGOALS-f3-L by 91.3 mm, MPI-ESM1-2-
HR by 91.4 mm, and MRI-ESM2-0 by 82.5 mm (Figure 6).
On the other hand, the minimum monthly precipitation of
observation occurred in December with 3.2 mm, but the six
models all predicted it to occur in January with higher
precipitation than observation. Therefore, the GCMs offer
poor simulations of the phase distribution of the monthly
extreme precipitation. Furthermore, the wet season in the
Yellow River Basin is from May to September, and the dry
season is from October to April, the monthly average
precipitation was 38.8mm, which was consistent with previous
research conclusions (Cui, 2008). Although most GCMs in the
CMIP6 could simulate the intra-year variation of wet and dry

FIGURE 3 | Comparison of the RS scores of the eight indicators over the 19 GCMs, 1–19 are the 19 CMIP6 models listed in Table 1: ACCESS-CM2, ACCESS-
ESM1-5, BCC-CSM2-MR, CMCC-CM2-SR5, CNRM-CM6-1, CNRM-ESM2-1, FGOALS-f3-L, FGOALS-g3, GFDL-CM4, GFDL-ESM4, IITM-ESM, INM-CM4-8,
MIROC-ES2L, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2 0, NESM3, NorESM2-LM.

FIGURE 4 | Annual precipitation of the six higher-scoring GCMs and the
observed data. The red line denotes the GCM with the highest score in the
comprehensive evaluation.
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seasons in the Yellow River Basin, the wet season simulated by the
six models except FGOALS-f3-L was April to September, and the
monthly average precipitation was higher than the observed data,
so the wet season simulated by most GCMs was too long and the
precipitation during the period was overestimated.

The observed precipitation indicated that the summer
precipitation in the Yellow River Basin was the most
abundant, which could reach 259.1 mm, accounting for 55%

TABLE 4 | Annual precipitation of six higher-scoring GCMs and observed precipitation from 1964 to 1965.

Model
P (mm)

Observed ACCESS-CM2 CNRM-CM6-1 CNRM-ESM2-1 FGOALS-f3-L MPI-ESM1-2-HR MRI-ESM2-0

1964 597.7 726.0 462.7 573.0 399.2 551.4 669.3
1965 342.2 726.2 437.2 519.2 478.2 569.4 470.1

FIGURE 5 | Uncertainty interval of stimulated annual precipitation from the 19 GCMs and the six higher-scoring models. The black line is the annual precipitation
change of the observed precipitation, and the red line is the annual precipitation change simulated by the GCM with the highest score.

FIGURE 6 | Distribution of the intra-year precipitation from the simulated
data of six higher-scoring GCMs and observed data. FIGURE 7 | Seasonal precipitation of the observation and simulation

from the six higher-scoring GCMs, spring is from March to May, summer is
from June to August, autumn is from September to November, and winter is
from December to February.
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of the annual precipitation. The winter precipitation was
insufficient, only 12.9 mm, accounting for 3% of the
annual precipitation. In general, the six higher-scoring
GCMs could simulate the seasonal characteristics of the
basin with abundant summer precipitation and less
precipitation in winter. However, except for the summer
precipitation simulated by the ACCESS-CM2 l (261.9 mm),
which was slightly higher than the observed data, that
simulated by the other five models were lower than
observed. Among them, the summer precipitation
simulated by the MRI-ESM2-0 model was the lowest of
218.7 mm, indicating that most GCMs in the CMIP6
underestimated the summer precipitation in the basin
(Figure 7).

The observed autumn precipitation (111.42 mm) was also
higher than the spring precipitation (82.6 mm) in the Yellow
River Basin. While the CNRM-ESM2-1 model could simulate
the changes of the spring and autumn precipitation, the
precipitation in spring simulated by the other five models
was higher than that in autumn. Some studies concluded that
the wet season was from May to September in the Yellow River
Basin, with the highest precipitation in summer, and the
precipitation in autumn was significantly higher than that in
spring (Li et al., 2016; Yuan et al., 2016). Therefore, the GCMs
could not well simulate the changes of precipitation in the basin
in spring and autumn, and obviously overestimated the
precipitation in spring and underestimated it in summer.

Simulation of Spatial Characteristic
Spatial Distribution Characteristics of Precipitation
The average annual precipitation in the Yellow River Basin
decreases from south to north, the maximum grid average
annual precipitation is 831.4 mm while the minimum is
157.8 mm (Table 5). Figure 8 indicated that the GCMs could
well simulate the spatial distribution characteristics of the annual
precipitation in the Yellow River Basin. However, they all
overestimated the maximum precipitation, and underestimated
the minimum precipitation, especially overestimated the
precipitation in the source area of the Yellow River.

In order to further analyze the ability of the 6 GCMs to
replicate the spatial distribution of average annual precipitation
in the Yellow River Basin, this paper calculated the relative
deviation of the average annual precipitation from the six
higher-scoring GCMs and observed data (Figure 9). The
results indicated that except for the CNRM-ESM2-1, which
underestimated the average annual precipitation in the source
area of the Yellow River, the other five models significantly
overestimated it. Besides that, the six models all
underestimated the precipitation in the northern part of the
middle reaches of the Yellow River Basin, and there was also a
significant underestimation in the lower reaches of the basin.
Therefore, the GCMs had large uncertainties in the simulation of
the spatial distribution of the precipitation in the Yellow River
Basin. Xu et al. (2010) assessed the uncertainty in the impacts of
climate change on river discharge in the Yangtze and Yellow

TABLE 5 | Maximum and minimum average annual precipitation of the grids simulated by the observed and the six higher-scoring GCMs over the Yellow River Basin.

Model Observed ACCESS-CM2 CNRM-CM6-1 CNRM-ESM2-1 FGOALS-f3-L MPI-ESM1-2-HR MRI-ESM2-0

Pmax (mm) 831.3 1859.0 1,611.6 1,580.4 921.2 1,697.3 703.4
Pmin (mm) 157.8 135.2 76.7 71.6 114.9 111.3 389.5

FIGURE 8 | Spatial distribution of average annual precipitation from the observation and six higher-scoring GCMs. Panels (A–G) are the observed data, ACCESS-
CM2, CNRM-CM6 -1, CNRM-ESM2-1, FGOALS-f3-L, MPI-ESM1-2-HR, MRI-ESM2-0, respectively.
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River Basins, and found that the precipitation in the Yellow River
Basin simulated by the GCMs was obviously affected by regional
climate characteristics. The climatic conditions of the basin from
the source region to the lower reaches are very complex, which
increases the uncertainty of climate model simulations (Bao and
Feng, 2014).

Spatial Distribution Characteristics of Precipitation
Modalities
The spatial distribution of the first mode and the second mode
was obtained by the EOF decomposition of the observed average
annual precipitation in the Yellow River Basin (Figures 10A,
11A). The cumulative explained variance of the first and second
modes of the average annual precipitation in the Yellow River
Basin was 98.48%, which could almost explain the spatial and
temporal variability of the basin. On the one hand, the explained
variance of the first mode was 97.89% and the mode over the
whole basin showed a consistent trend. The EOF1 of the whole
basin was a positive signal, the maximum variability was located
in the northern part of the middle reaches, which decreases from
the north to the south over the Yellow River Basin. The explained
variance of the second mode of the average annual precipitation
in the Yellow River Basin was 0.52%, which was represented by
the characteristic of east-west antiphase bounded by the middle
part of the Yellow River. Among them, the negative signal was
from the source of the Yellow River to the middle reaches, and the
positive signal was from the middle reaches to the lower reaches
of the basin. Liu and Zheng (2002) and Hao et al. (2010) used the
EOF method to study the spatial pattern of precipitation in the
Yellow River Basin under the impact of climate change, and the
results noted that the spatial structure of precipitation in the
Yellow River Basin could be divided into four types: “total
consistency”, “north-south”, “west-east” and “complex” due to
the particularity of geographical location and climatic conditions.
Therefore, the spatial modal distribution characteristics of the
average annual precipitation in the Yellow River Basin obtained
in this paper were reasonable. The GCMs could well simulate the
spatial variation of the EOF mode of the average annual
precipitation in the Yellow River Basin, and the explained
variance was higher than the observed data, so there was an

over-fitting phenomenon (Figure 10). In addition, the six higher-
scoring GCMs could simulate the spatial characteristics of the
first mode and the second mode in the basin (Figure 11).
However, most GCMs overestimated the simulated variability
of the first mode in the northern part of the basin and the second
mode in the source region of the Yellow River. Of the GCMs, the
CNRM-CM6-1 had the best simulation effect on the spatial
characteristics of the first and second modes of the average
annual precipitation in the basin. The explained variance, in
this case, was closest to the observed data, and the phenomenon
of overestimating the modal variability was not very significant.

DISCUSSION AND CONCLUSIONS

Discussion
This study comprehensively evaluated the ability of 19 GCMs from
the CMIP6 to simulate the properties of precipitation in the Yellow
River Basin, and provided a basis ofmodel selection for research on
the hydrological cycle under future climate scenarios in the Yellow
River Basin. Woldemeskel et al. (2014) found that different models
have great differences in the precipitation simulation capabilities
over basin scales, and choosing the better model helps reduce the
uncertainty of model simulation. Therefore, this research is of great
significance to the prediction of future flood disasters and
sustainable development of the Yellow River Basin. In this
study, we found that the GCMs in the CMIP6 showed an
obvious zoning phenomenon when simulating the spatial
distribution of precipitation in the basin. The average annual
precipitation in the source area of the Yellow River was
overestimated, and underestimated in the middle reaches of the
river. This is related to the sophisticated topographical
characteristics of the Yellow River Basin. The basin spans the
Qinghai-Tibet Plateau, the Loess Plateau, theGuanzhong Plain, the
Hetao and the Yinchuan Plain, so the underlying surface and
topography of the basin are complex. Such complicated
topographical conditions significantly affect the climatic
characteristics of the Yellow River Basin.

At present, it is difficult for GCMs to accurately simulate the
climate characteristics of the Yellow River Basin, and the

FIGURE 9 |Deviation of the spatial distribution of the average annual precipitation in the Yellow River Basin simulated by six higher-scoring GCMs. Panels (A–F) are
ACCESS-CM2, CNRM-CM6 -1, CNRM-ESM2-1, FGOALS-f3-L, MPI-ESM1-2-HR, MRI-ESM2-0.
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resolution of most GCMs in the CMIP6 is still relatively coarse
(Hui et al., 2015). Therefore, one urgent problem is how to
improve the simulation capabilities of GCMs. In order to better
simulate and predict future climate changes in the Yellow River
Basin, dynamic or statistical downscaling methods could be used
for the GCMs selected in this paper. Besides that, the downscale
data could be corrected by the bias correction technology, then it
could drive the hydrological models, and explore the impact of
future climate changes on the hydrological processes in the Yellow
River Basin (Zhao et al., 2019). For hydrological models, it is
necessary to use meteorological data with a high resolution, so the
multiple models could be considered to drive the hydrological

models separately and then aggregated to improve simulation
accuracy. Hamlet et al. (2020) found that the multi-model
ensemble average enables the simulation errors of different
climate models (including the simulation errors of spatial
distribution) to offset each other, with a better simulation
effect. The simulation capacity will increase as the set of
samples increases, but it will gradually stabilize after reaching a
certain number of samples. And due to the frequent occurrence of
droughts and floods in the Yellow River Basin, combining
different climate and land-use scenarios to predict the changes
of future extreme drought and flood disasters in the Yellow River
Basin is a direction worth studying.

FIGURE 10 | Spatial distribution of the first EOF mode (EOF1) of the average annual precipitation from observation and six higher-scoring GCMs. Panels (A–G) are
the observed data, ACCESS-CM2, CNRM-CM6 -1, CNRM-ESM2-1, FGOALS-f3-L, MPI-ESM1-2-HR, MRI-ESM2-0.

FIGURE 11 | Spatial distribution of the second EOFmode (EOF2) of the average annual precipitation from observation and six higher-scoring GCMs. Panels (A–G)
are the observed data, ACCESS-CM2, CNRM-CM6 -1, CNRM-ESM2-1, FGOALS-f3-L, MPI-ESM1-2-HR, MRI-ESM2-0.
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Conclusion
Based on the simulated precipitation data of 19 GCMs in the
CMIP6 and the observed data of the Yellow River Basin from
1961 to 2014, this paper selected eight indicators and combined
them with the RS method. The ability of the GCMs in the CMIP6
to simulate the temporal and spatial variations of precipitation in
the Yellow River Basin was comprehensively evaluated, the
conclusions are as follow:

1) The GCMs differed greatly in their ability to simulate
precipitation in the Yellow River Basin. The top six GCMs
ranking are: MRI-ESM2-0, ACCESS-CM2, CNRM-CM6-1,
CNRM-ESM2-1, FGOALS- f3-L, MPI-ESM1-2-HR.

2) Most GCMs overestimated the annual precipitation and
poorly simulate the phase distribution of the extremes,
although they could simulate the variation of intra-year
precipitation. Meanwhile, it also found that the wet season
simulated by most GCMs was too long, the precipitation was
also overestimated during this period. Most GCMs in the
CMIP6 could simulate the variation of precipitation in
summer and winter, but they underestimated the summer
precipitation and overestimated the spring precipitation in the
Yellow River Basin.

3) All GCMs could well simulate the spatial distribution of the
annual precipitation over the basin, but there was a
significant overestimation phenomenon in the source area,
and an underestimation in the northern part of the middle
reaches.

4) The GCMs in the CMIP6 performed well in simulating the
spatial variation of modal in the Yellow River Basin, the
simulation ability of CNRM-CM6-1 was the best. But most
models overestimated the simulation variability of the first
mode in the northern part of the basin and the secondmode in
the source area of the Yellow River.
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