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The Cenozoic tectonic evolution of the North Qaidam-Qilian Shan fold-thrust belt in the
northern Tibetan Plateau is important to understanding the tectonic rejuvenation of
orogeny and growth of the plateau. However, the deformation processes in this region
remain controversial. This study presents new apatite fission track (AFT) data from
Paleogene strata in the northern Qaidam Basin to investigate the time of deformation
in this site. Thermal modeling of these partially annealed detrital AFT ages shows a thermal
history with a noticeable transition from heating to cooling after ∼10Ma. This transition is
attributed to the intensified thrusting and folding of the northern Qaidam Basin since
∼10Ma. Integrated with published tectonics and thermochronology results, we suggest
the North Qaidam-Qilian Shan fold-thrust belt experienced prevailing tectonism since the
late Miocene.

Keywords: Cenozoic, northern Qaidam Basin, Tibetan plateau, fission track, tectonic deformation

INTRODUCTION

Tibetan Plateau is an ideal region for studying the uplift of plateau and deformation of
continents (Molnar et al., 1993; Yin and Harrison, 2000; Tapponnier et al., 2001; Royden et al.,
2008; Wang et al., 2008; Fang et al., 2020). The North Qaidam-Qilian Shan fold-thrust belt
(NQQB) comprises the northern Tibetan Plateau (Figure 1), intensely deformed during the
Cenozoic as a result of the remote response to Indian-Asian plate collision (Fang et al., 2005,
2007; Yin et al., 2008; Zheng et al., 2010; Zhuang et al., 2011, 2018; He et al., 2020, 2021). The
evolution of Cenozoic deformation in the NQQB is thus crucial for understanding the growth
of the Tibetan Plateau and the re-activation of ancient orogenic belts. However, the starting
time and the spatial-temporal migration of deformation in the NQQB in Cenozoic is still
controversial. Many sedimentology and thermochronology records indicate the deformation
in this region commenced at the middle-late Miocene (Zheng et al., 2010, 2017; Wang et al.,
2017, 2020; An et al., 2018; Pang et al., 2019a; Yu et al., 2019a), while evidence for the Eocene
deformation is well accepted (Yin et al., 2008; Zhuang et al., 2011, 2018; Jian et al., 2018; Lin
et al., 2019; Cheng et al., 2019; He et al., 2020, 2021). The development of deformation in the
NQQB is proposed to from the south to north (Zhuang et al., 2011; Qi et al., 2016), from the
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center to the south and north synchronous (Zheng et al.,
2017; Pang et al., 2019a), or out-of-sequence deformation (Li
et al., 2020; He et al., 2021). One of the main reasons for these
controversies is the complicated structure of the NQQB but
current age constraints for deformation limited to sparse

sites. Therefore, more time records of tectonic deformation
at crucial site in the NQQB is imperative.

In this study, we present new apatite fission track (AFT) data
from Paleogene strata in the northern Qaidam Basin. Thermal
modeling of these partially annealed detrital AFT ages indicates

FIGURE 1 | Geologic setting of the study area. (A) Digital elevation model of the North Qaidam-Qilian Shan fold-thrust belt, showing the location, geomorphology,
and tectonic framework. The ages and sites of published Miocene rapid exhumation events that from thermochronological data are present. The sources of these data
are as follows: (1) Meng et al. (2020); (2) Pang et al. (2019a); (3) Wang et al. (2020); (4) Li et al. (2019); (5) Yu et al. (2019b); (6) Li et al. (2020); (7) Zheng et al. (2010); (8)
Zhuang et al. (2018); (9) Zheng et al. (2017); (10) Pang et al. (2019b); (11) Yu et al. (2019a); and (12) this study. (B) Geologic map of the northern Qaidam Basin
(modified from Yin et al., 2008), showing locations of the sampled section (Hongliugou, HLG).
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the northern Qaidam Basin experienced intensified thrusting and
folding since ∼10 Ma, which provide ages constraints for
tectonism in the southernmost NQQB. Combined with
published data, this result permits we discuss the evolution of
deformation in the northern Tibetan Plateau in the Cenozoic.

GEOLOGICAL SETTING

The NQQB is located in the northern Tibetan Plateau. It is an
early Paleozoic collisional orogenic belt and experienced multi-
phase tectonic rejuvenation along the ancient structure boundary
during the Mesozoic-Cenozoic (Yin and Harrison, 2000). Rocks
in the NQQB consist of Proterozoic-Paleozoic plutonic bodies
and arc magmatic rocks, ultrahigh-pressure metamorphic and
low- to high-grade metamorphic rocks, ophiolitic mélange,

oceanic carbonate rocks and flysch sequences, and Mesozoic-
Cenozoic nonmarine sedimentary rocks (Gansu Geologic Bureau,
1989; Gehrels et al., 2003). Many Cenozoic sedimentary basins
(e.g., the Hexi corridor Basin bounded northeast and the Qaidam
Basin bounded southwest) surrounding this fold-thrust belt have
a modern altitude difference in 1,500–3,000 m between the source
and sinks (Zhuang et al., 2011; Li et al., 2014). Two major faults of
the Tibetan Plateau impact the NQQB, the Altyn Tagh Fault that
bounded northwest and the Haiyuan Fault that through east of
the NQQB (Taylor and Yin, 2009) (Figure 1).

The Qaidam Basin connects to the southwest of the NQQB
and have Cenozoic sediments with thickness about 12,000 m in
the depocenter (Meng and Fang, 2008). Cenozoic strata of the
Qaidam Basin consist of nonmarine Lulehe Formation (Fm.),
Xiaganchaigou Fm., Shangganchaigou Fm., Xiayoushashan Fm.,
Shangyoushashan Fm., Shizigou Fm., and Qigequan Fm., from

FIGURE 2 | Stratigraphy, lithology, and geochronology of the sampled section. (A) Geologic map of the HLG section and its vicinity (modified from Zhang, 2006).
Locations of the sampled section (Figure 2C) and the seismic profile (Figure 2B) are labelled. (B) Seismic profile with geological interpretations across the HLG area
(Zhang et al., 2020). (C) Stratigraphic column andmagnetostratigraphy (Fang et al., 2019) of the sampled strata with detailed AFT sample positions. GPTS: geomagnetic
polarity time scale.
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the oldest to the youngest (Meng and Fang, 2008; Yin et al., 2008).
The northern Qaidam Basin have Cenozoic sediments over
5,000 m, probably sourced from the Qilian Shan (Zhuang et al.,
2011; Cheng et al., 2019). In the late Cenozoic, the northern
Qaidam Basin deformed intensely and was involved in the
Qilian Shan fold-thrust belt (Yin et al., 2008). The studied
Hongliugou (HLG) section in the northern Qaidam Basin
exposed strata from the Lulehe Fm. to the Shizigou Fm.
successively (Figure 2). We focus on the older Lulehe Fm. and
Xiaganchaigou Fm., which mainly consist of alluvial fan-fan deltaic
conglomerate and sandstone in the Lulehe Fm. and fluvial-
lacustrine sandstone and mudstone in the Xiaganchaigou Fm.
(Fang et al., 2019; He et al., 2021). The sedimentary source of
these two formations is traced to the NQQB (He et al., 2021).

The precise Cenozoic stratigraphic chronology of the Qaidam
Basin is controversial. There are two standpoints, one suggests an
early Eocene age for the basal Lulehe Fm. (Sun et al., 2005; Meng
and Fang, 2008; Yin et al., 2008; Ji et al., 2017), another suggests a
late Oligocene or early Miocene age (Wang et al., 2017; Nie et al.,
2019). The stratigraphic chronology of the Lulehe Fm. and
Xiaganchaigou Fm. in the HLG section were precisely
measured by magnetostratigraphy of Fang et al. (2019), given
ages of 54–43.5 Ma for the Lulehe Fm. and 43.5–30 Ma for the
Xiaganchaigou Fm. (see details in Fang et al., 2019). We accept
this age assignment to constrain the depositional ages of our
samples because Fang et al. (2019) was sampled in the same
section with this study.

METHODS AND SAMPLING

The AFT thermochronometer records the age of rocks cooling
through its susceptible temperature of about 60–120°C and thus

sensitive to thermal variation in the shallow crust (Gallagher
et al., 1998). A total of 10 AFT samples were collected from
Paleogene strata of the Lulehe Fm. and Xiaganchaigou Fm. in the
lower part of the HLG section. The detailed sampling positions
are shown in Figure 2. The sandstone samples were crushed,
washed, and sieved. Apatite grains were extracted using
conventional magnetic and heavy-liquid separation techniques.
The external detector method and zeta calibration approach were
used for AFT dating (Hurford and Green, 1983). To reveal the
spontaneous tracks, apatite aliquots were mounted in epoxy,
ground, polished, and etched for 20 s in a 5 N HNO3 solution
at 20°C (Barbarand et al., 2003). The experiment use U-poor
micas as external detector and IRMM540R glasses as dosimeter.
The Fish Canyon Tuff, Durango, and Mt. Dromedary apatites
were used as age standards. After samples, age standards, and
dosimeter glasses were packed with external detectors, they
were irradiated at the Thermal Irradiation Center at Oregon
State University. Mica detectors were then unpacked and etched
in 40% HF solution for 40 min at 20°C to reveal the induced
tracks.

Fission-track counting was performed at the Fission Track
Laboratory of the Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, using a fully manual
method on an Autoscan fission-track counting system that
consists of a Zeiss AxioImager Z2m microscope, ES16 stage,
and Fission-Track Studio software. Track density, track length,
and Dpar value were measured on appropriate apatite in each
sample. A personal ξ value of 342.60 ± 7.63 were obtained and
used to determine sample ages. The χ2 test was performed on
single grain ages of each sample to quantify AFT age
homogeneity; a value of P(χ2) < 5% is indicative of a broad
dispersion of single-grain ages that can be decomposed into
different grain-age components (Green, 1981).

TABLE 1 | AFT dating results.

Sample Depositional
age (Ma)

Number
of grains

Age
range (Ma)

Central
age ±

σ (Ma)

P(χ2) Dispersion
(%)

Mixture model peaks ± σ (Ma) Mean track
length

±SE (μm)

Number
of

lengths

Average
Dpar

±SE (μm)
P1 P2 P3

HLG2200 31 61 17.7–122.2 48.3 ± 2.6 0 32 34.1 ± 2.3
49 ± 10%

63.4 ± 3.7
51 ± 10%

- 11.93 ± 0.32 14 1.22 ± 0.02

HLG2025 33.9 81 16.6–109.2 43.7 ± 1.9 0 31 33.6 ± 1.6
61.7 ± 8.2%

62.6 ± 3.5
38.3 ± 8.2%

- 13.24 ± 0.07 122 1.64 ± 0.01

HLG1760 36 82 18.2–115.5 46.3 ± 1.9 0 30 32.9 ± 1.7
40.6 ± 7.8%

52.2 ± 2.4
51.5 ± 8.1%

94.4 ± 9.5
8 ± 11%

13.28 ± 0.08 91 1.62 ± 0.02

HLG1522 38.8 75 16.3–133.8 45 ± 1.9 0 29 21.2 ± 2.9
9.2 ± 4.8%

42.6 ± 1.9
73.5 ± 7.7%

72.4 ± 5.6
17.3 ± 9.1%

13.10 ± 0.09 94 1.51 ± 0.01

HLG1350 40.9 66 20.8–171.4 58.8 ± 2.9 0 32 32.6 ± 3 15.2
± 6.8%

55.5 ± 3.2
65 ± 9.4%

98 ±
10 20 ± 12%

13.11 ± 0.09 73 1.65 ± 0.02

HLG1100 42.3 90 29.3–141.7 60.9 ± 2.5 0 27 - 49.9 ± 2.3
67.3 ± 8.3%

87.7 ± 6.3
32.7 ± 8.3%

13.25 ± 0.08 87 1.54 ± 0.01

HLG970 44.1 80 19.8–102.9 57 ± 1.9 0 21 - 41.8 ± 3.2
32 ± 11%

65.3 ± 2.9
68 ± 11%

13.12 ± 0.08 112 1.65 ± 0.03

HLG800 45.7 91 30.6–180.5 78.0 ± 2.8 0.01 17 - - 77.5 ± 2.8
100 ± 0%

12.94 ± 0.09 91 1.63 ± 0.01

HLG410 49.4 21 26.1–158.4 68.1 ± 6.3 0.18 22 - - 68.2 ± 5.3
100 ± 0%

no data no data no data

HLG100 53 45 14.6–211.2 50.8 ± 3.3 0 28 30.9 ± 5.3
28 ± 14%

- 58.8 ± 4.1
72 ± 14%

12.83 ± 0.13 39 1.60 ± 0.03

Note. Single-grain ages are statistically decomposed into components or populations (P1–P3) using DensityPlotter (Vermeesch 2012). The modeled peak ages (with estimated standard
deviations) and proportions of age components are given. The depositional ages of samples were correlated to themagnetostratigraphic ages by Fang et al. (2019). Mean track lengths are
presented after c-axis correction. A hyphen indicates no data.
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RESULTS AND INTERPRETATION

AFT Ages
Results for AFT dating are presented in Table 1. Most samples
yielded 60–90 single grain ages. Central ages ranged from 43.7 ±
1.9 Ma to 78.0 ± 2.8 Ma. The sample in the bottom of the section
(HLG100) has an AFT age younger than its depositional age
(53 Ma). All other upper samples have central ages older than
corresponding depositional ages. AFT central ages do not show
regular changes with depositional ages (Table 1). Most samples
fail the χ2 test with P(χ2) <5%, indicating heterogeneous age
components (Green, 1981). This can occur if grains in these
samples were not totally reset during post-depositional burial and
still record mixed cooling signals of a variety of source terranes.
For samples with heterogeneous grain ages, the observed age
distributions of each sample were decomposed into grain age
components using RadialPlotter and DensityPlotter programs
(Vermeesch, 2012). The dispersion of single-grain ages are shown
in Figure 3 as radial plots. The single grain age-density
distributions and mixture model peak ages for all samples are
plotted in Figure 4. In total, 21 age components were obtained,
which have peak ages ranging from 21.2 ± 2.9 Ma to 98 ± 10 Ma
(1σ). These decomposed age components were divided into three

age populations (P1, P2, and P3) based on correlation of their
peak ages (Table 1). A lag-time plot shows the relationship
between decomposed AFT component peak ages and
depositional ages of corresponding samples is present in
Figure 5. Notably some components have peak ages younger
than corresponding depositional ages and show negative lag-
time. Both indicate these samples may be partially annealed after
deposition (Figure 5).

AFT Lengths
Most of our samples yielded 80–120 confined track length
measurements. The c-axis corrected mean track lengths range
from 12.83–13.28 μm (with an exception of 14 measurements
giving a length of 11.39 μm). Average Dpar values of these length-
measured grains range between 1.22 and 1.65 μm. Histogram
plots of the track length distribution of each sample are presented
in Figure 6. Integrating the heterogeneity of grain ages and the
relatively long track lengths of our samples, their post-
depositional burial annealing may not intensity.

The mean track lengths of our samples are gradually
shortening with sampling position down in the section
(Figure 7). It is more obvious when integrated with published
track length data in strata overlying the sampled section (He et al.,

FIGURE 3 | Radial plots of the analysed AFT samples constructed using the RadialPlotter programme (Vermeesch, 2012).
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2021). The mean track lengths were nearly constant in the upper
half of the section, but become shortened in the lower half of the
section (Figure 7). The lower sample has shorter length suggests
the shortening of track length in the lower half of the section
should be caused by burial annealing. Analogous to track length
variation, the component ages show younger trend down-section
in the lag-time plot (Figure 5), which conform to the law of burial
annealing. Therefore, AFT ages and length data together illustrate
that samples experienced post-depositional partial annealing.

Thermal History Modeling of AFT Data
Detrital rocks can be complex sedimentary mixtures derived from
a variety of source terranes with variable cooling histories. During
post-deposition burial, grains were reset by partial annealing. The
apparent AFT ages and lengths in our data are the partially reset
cooling signals of mixtures of different sedimentary sources.
Broadly, grains in one detrital sample in this study experienced
the same thermal history after deposition. This coherence permits
the modeling of the post-depositional thermal history of our
samples based on the AFT age and length data. Our samples
experienced deposition, burial, and exhumation, we attempted to
decipher the time constraints of these processes.

We used the HeFTy program (Ketcham, 2005) to model the
thermal history. Our data of AFT ages, lengths, and Dpars are
included in the annealing model of Ketcham et al. (2007). Eight of
ten samples with numerous confined track lengths were modeled.
We defined prior constraints for the thermal modeling as follows:
each sample, using their corresponding depositional age with
±5 Ma error, was included in a 20 ± 20°C palaeo-surface
temperature; each sample experienced the upper AFT partial
annealing zone at 70 ± 10°C after deposition; each sample, an
incipient condition of one to two times the AFT age, was included
in a temperature of partial or full annealing (60–140°C). We give
each constraint large ranges in time and temperature to model
freely depend on the program. All models run with 500,000
iterations.

FIGURE 4 |Grain-age distributions, kernel density estimates, and mixture model peaks (with modelled component ages and proportions) of detrital AFT samples.
Single-grain ages are statistically decomposed into components using the routines in DensityPlotter (Vermeesch, 2012).

FIGURE 5 | Lag time plot of detrital AFT age components. Error bars
are ± 1σ for AFT ages and ±1 Ma for depositional ages. The dashed lines are
lag time contours, and the corresponding lag times are labelled. Rectangles in
yellow indicate the age variation of grouped populations, in which the
AFT peak ages of P1, P2, and P3 all young with increasing depositional age.
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Because thermal evolutions of grains in a detrital sample
are a mixture of pre-depositional conditions and a unity of
post-depositional conditions, only the post-depositional
thermal history is credible. The inversion results show
thermal histories with two stages during post-deposition

with a thermal transition in age ranges from 10–3 Ma
(Figures 8, 9). After deposition, samples experienced a
gradual heating phase in the early Cenozoic up to 10–3 Ma.
By this time, samples reached the upper range of the AFT
partial annealing zone (60–80°C). After 10–3 Ma, samples
experienced a rapid cooling phase and were exhumed to
the surface (Figures 8, 9). Modeled thermal histories are in
accord with the inferred deposition-burial-exhumation
process for the samples, as constrained by geological
framework. The heated phase corresponding to the
gradually buried, and the thermal condition converted to
cooling at ∼10–3 Ma indicated the commenced exhumation.
The exhumation since ∼10 Ma may be caused by intensified
deformation of the sampled strata (Yin et al., 2008), which
finally inclined and exposed the section at the surface by the
present.

Although we adopt the stratigraphic chronology of Fang et al.
(2019) in the HLG section as depositional age constraints,
another rather younger stratigraphic chronology assignment of
Wang et al. (2017) in the Honggou section (see section Geological
Setting for details) is tried for thermal modeling. We changed the
prior constraints of depositional ages to Wang et al. (2017) for
modeling the representative samples (Figure 10). The modeled
post-depositional thermal histories show transition from heating

FIGURE 6 | Track length (c-axis corrected) distribution histograms. M, Mean track length; SE, Standard error; N, Number of tracks.

FIGURE 7 | Variation in mean track length with stratigraphic thickness in
the HLG section. The mean track length (with ± 1SE) shown by the solid circle
(this study) and hollow circle (He et al., 2021).
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FIGURE 8 | Inferred thermal histories for samples in the northern Qaidam Basin modeled by HeFTy program (Ketcham, 2005). Good paths (GOF >0.55) are shown
as magenta envelopes and acceptable paths (GOF >0.05) as green envelopes. The dark blue lines represent the weighted mean thermal paths for all models, and black
lines are the best fit thermal paths. GOF � goodness of fit.
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to cooling after ∼10 Ma (Figure 10), which are nearly the same
with that using constraints of Fang et al. (2019). This result
suggests that the different depositional age constraints of the two
schemes do not affect the post-depositional thermal histories of
our samples significantly.

DISCUSSION

Cenozoic Deformation of the NQQB
The early Cenozoic tectonic deformation of the northern
Qaidam Basin is demonstrated by growth strata in many
seismic profiles (Yin et al., 2008; Yu et al., 2017; Cheng et al.,
2019). This syndepositional and post-depositional tectonic

deformation, which inclined the sampled strata, resulted in
the burial depth much shallower than the strata thickness.
Thus, our AFT samples, even that in the ∼5,000 m thickness,
experienced moderate annealing after deposition. The early
Cenozoic deformation has been observed across the NQQB
(Qi et al., 2016; Jian et al., 2018; Zhuang et al., 2018; Lin et al.,
2019; Li et al., 2020; He et al., 2020, 2021). The AFT thermal
modeling results indicate the northern Qaidam Basin
experienced exhumation since ∼10 Ma. The exhumation
should be caused by intensified thrusting and folding in
this region (Yin et al., 2008; Cheng et al., 2019). Although
the deposition continued through ∼10 Ma across the
northern Qaidam Basin, the strata considered in this study
was gradually exhumed. This exhumation-related tectonic
deformation possibly resulted from the enhanced activity of
thrust faults in the Lulehe anticline (Figure 2B) since ∼10 Ma.
As the HLG section locates between the Saishiteng Shan and
Luliang Shan, which is the outmost thrust belt of the NQQB,
we suggest tectonism transmitted to this structure belt at
∼10 Ma and caused persistent deformation since then.

Published in situ thermochronology data revealed widespread
middle-late Miocene rapid exhumation in the NQQB
(Figure 1A). The intense tectonic deformation of the northern
Qaidam Basin that commenced at ∼10 Ma is also supported by
synchronous tectono-sedimentary records in surrounding basins.
Several tectonic traces at ∼10–8 Ma both recorded in the northern
Qaidam Basin and Jiuquan Basin that surrounding the NQQB,
such as: the beginning accumulation of coarse clasts (Fang et al.,
2005, 2007; Li et al., 2014); the syndepositional deformation
shown in seismic or exposure profiles (Yin et al., 2008; Li
et al., 2014); abruptly increased accumulation rates (Fang
et al., 2005, 2007; Ji et al., 2017); initiation of sedimentary
recycling in basins margin (Wang et al., 2017; Zheng et al.,
2017; Pang et al., 2019a). In addition, the cease of rotation of
the Jiuquan Basin suggests that the domination of shortening and
uplift since then (Yan et al., 2012).

FIGURE 9 | Modeled weighted mean and best fit thermal paths for all
samples derive from Figure 8. The legends are the same with that in Figure 8.

FIGURE 10 | Inferred thermal histories for representative samples under the depositional age constraints of Wang et al. (2017). The legends are the same with that
in Figure 8.
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Thermochronology data together with the tectono-
sedimentary data suggest the sedimentary source uplifted
synchronous with the marginal basin. The southernmost
Qilian Shan (Qaidam Shan), which locates close to the
HLG section, have deformed at 15–10 Ma (Meng et al.,
2020). The appearing of tectonic deformation in the
northern Qaidam Basin since ∼10 Ma delayed the
deformation of the southern Qilian Shan, indicating a
southward extension of deformation in the southernmost
Qilian Shan-northern Qaidam Basin. However, the spatial
and temporal distribution of the Miocene tectonic events in
the NQQB does not shows any regular migration (Figure 1A).
We suggest the NQQB experienced intensified tectonic
deformation since the late Miocene and the basin-ward
migration of intense deformation is limited to the
marginal basin.

CONCLUSION

In this study, we present new AFT thermochronology data from
Paleogene strata in the northern Qaidam Basin to investigate the
time of tectonic deformation of this site. All the AFT samples
experienced partial annealing during sedimentary burial.
Thermal history modeling of these samples show an early
stage of heating before the middle Miocene and a later stage
of cooling since ∼10 Ma. This transition at ∼10 Ma should be
caused by the initiated exhumation of the sampled strata. Thus
indicates intensified tectonic deformation since ∼10 Ma. We
suggest the northern Qaidam Basin experienced intense
tectonism since the late Miocene.
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