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Accurate information about aerosol particle size distribution and its variation under different
meteorological conditions are essential for reducing uncertainties related to aerosol-cloud-
climate interaction processes. New particle formation (NPF) and the coagulation
significantly affect the aerosol size distribution. Here we study the monthly and
seasonal variability of aerosol particle size distribution at Delhi from December 2011 to
January 2013. Analysis of aerosol particle size distribution using WRAS-GRIMM reveals
that aerosol particle number concentration is highest during the post monsoon season
owing to the effect of transported crop residue and biomass burning aerosols. Diurnal
variations in number concentration show a bimodal pattern with two Aitken mode peaks in
all the seasons. Monthly volume size distribution also shows bi-modal distribution with
distinct coarse and fine modes. NPF events are observed less frequently in Delhi. Out of
222 days of WRAS data, only 17 NPF events have been observed, with higher NPF
frequency during summer season. Growth rate of the nucleation mode of NPF events vary
in the range 1.88–21.66 nm/h with a mean value of ∼8.45 ± 5.73 nm/h. It is found that
during NPF events the Aitken and nucleation mode particles contribute more to the
number concentration. Simultaneous measurement of UV flux and particulate matter
(PM10 and PM2.5) have also been done along with particle number size distribution
measurement to understand the possible mechanisms for NPF events over the study
location.
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INTRODUCTION

The size distribution of atmospheric aerosol particles are known to have plausible effects on radiation
budget through direct interaction (Warner and Twomey, 1967; Liou, 1992; Andreae et al., 2004;
Dusek et al., 2006); cloud characteristics by affecting cloud condensation nuclei, CCN (Ramanathan
et al., 2001; Andreae et al., 2004) and droplet number density (Rosenfeld et al., 2008; Zhang et al.,
2011); visibility (Hand et al., 2002; Bäumer et al., 2008; Singh and Beegum, 2013); communication
(Ricklin et al., 2006); human health (Harrison, and Yin, 2000; Valavanidis et al., 2008) and
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agriculture (Chameides et al., 1999). Although, the climatic and
human health implications of aerosol have drawn great attentions
in the last 2 decades (Lighty et al., 2000; Bergin et al., 2001; Singh
and Dey, 2012; Boucher et al., 2013; Gogoi et al., 2021), there are
still scarcity of high-resolution (both spatial and temporal) data
on aerosol particle size distribution at distinct geographic parts of
the world. Geographical and seasonal differences significantly
influence the aerosol particle size distribution (Kompalli et al.,
2014). Especially, over the highly heterogeneous geographic
regions of South Asia, accurate and improved understanding
of aerosol size distribution is highly essential to understand
distinct sources, transformation and growth processes of aerosols.

While primary sources are dominant contributors to the
abundance of atmospheric aerosols, secondary aerosol
production is unique in altering aerosol size distribution
pattern, thus changing their dynamical properties. Depending
on the abundance of precursor gases, solar radiation and pre-
existing particle concentrations (Kulmala et al., 2001; Ueda et al.,
2016), gas to particle conversion (i.e., new particle formation -
NPF) occurs leading to the formation of secondary aerosols
(Kulmala et al., 2004; Dal Maso et al., 2005; Seinfeld and
Pandis, 2016). Meteorology and the boundary layer dynamics
also impact the NPF events frequency and formation mechanism
(Kuang et al., 2010; Wehner et al., 2010). NPF events are mostly
reported during day time, mainly related to the photochemistry
formation theory (Kuang et al., 2008; Metzger et al., 2010).
Sulphuric acid is considered as one of the main contributor to
the NPF events, which in turn is produced by the photooxidation
of sulphur dioxide and OH radicals (Lee et al., 2019). Recent
study by Jokinen et al. (2017) showed the significance of
photochemistry in NPF, by depicting the decrease in UV
radiation followed by the decrease in concentration of H2SO4

and nitrogen containing highly oxidized compounds during a
partial solar eclipse, resulting in the inhibition of NPF events over
the study site.

Delhi has a population of more than 1 million (Statistical
Abstract of Delhi-2014) and has a large number of daily traffic on
the roads. Two coal power plants (Rajghat and Badarpur) in the
vicinity and the heavy industrial activities and high traffic
intrusion account for the increased pollution events in Delhi
(Chowdhury et al., 2017). The city, which comes under the Indo-
Gangetic Plains (IGP), has a unique geographical and
meteorological conditions. The IGP alluvial plains, the Thar
Desert and the Aravalli Hills surround Delhi in north and
west respectively and accounts for this uniqueness. Delhi
encounters dust storm events during April-June and biomass
burning events during the October-November months (Singh
et al., 2005; Singh et al., 2010; Mishra and Shibata, 2012; Lodhi
et al., 2013; Mishra et al., 2014).

Owing to the highly polluted scenario, a number of studies
have been done on aerosol size distribution and NPF in Delhi
(Mönkkönen et al., 2005; Sarangi et al., 2015; Pant et al., 2016).
Increased concentration of PM10 and PM2.5 particles are reported
over Delhi during winter and post monsoon season (Mukherjee
et al., 2018; Bhandari et al., 2020). Apart from particulate matters,
gas species such as nitrates and sulphates are also reported in high
concentration over the study location (Bhandari et al., 2020)

making conducive environment for chemical transformation and
new particle formation events over Delhi. However, a systematic
seasonal analysis of aerosol particle size distribution and NPF
events are scarce over the region. The main aim of this paper is to
recognize the monthly and seasonal variation in the number
concentration and size distribution of the aerosol particles and see
how the particle modes vary over the span of a year. Also, we
present here the analysis on observed nucleation events during
the time period. Important parameters related to NPF events such
as growth rate and condensation sink have also been estimated
during different seasons. This study also tries to enumerate some
of the factors contributing to the observed NPF events during
summer and winter season.

DATA AND METHODOLOGY

Measurement Site and Instrumentation
The aerosol particle size distribution measurements are carried
out using Wide Range Aerosol Spectrometer (WRAS) located at
CSIR-National Physical Laboratory (CSIR-NPL), Delhi (28.64° N,
77.17° E) during December 2011 to January 2013. The system
comprises of a Scanning Mobility Particle (SMPS + C) and an
Optical Particle Counter (OPC). The GRIMM SMPS + C system
consists of a high resolution condensation particle counter (CPC)
attached to the GRIMM “Vienna Type”M-DMA (Monodisperse
Differential Mobility Analyser). DMA classifies the particles
according to its electrical mobility which is then measured
using a CPC. Both components together measure in the
ultrafine size range from 5 to 350 nm. OPC which work on
the light scattering technology for particle counting gives the
particle size distribution in 31 channels ranging from 250 nm to
32 µm (Grimm and Eatough, 2009). Semiconductor laser serves
as the light source for OPC. Thus integrating both, SMPS + C and
OPC data using a GRIMM software, the WRAS system gives the
particle size distribution in 72 channel ranging from 5.5 nm to
32 µm. There is an overlapping region from 250 to 350 nm due to
the integration of SMPS and OPC, here we take the average
number concentration for the analysis. A Nafion dryer is used
inside the sampling probe in order to avoid the loss of volatile
components and dehumidify the sample during the measurement
period. The GRIMM-WRAS data is supposed to have an
uncertainty in total flow rate up to 5% as per manufacturer
specification. SMPS is reported to have an uncertainty of less than
10% for particles in the size range of 20–200 nm, while for
particles above and below this range uncertainty increases
(Wiedensohler et al., 2012). Uncertainty of OPC is estimated
to be about 9.9% (Grimm and Eatough, 2009). The detailed
description and principle of the instrument are discussed
elsewhere (Grimm and Eatough, 2009). The system also has
an integrated meteorological sensor which provides
temperature, relative humidity and wind vector data.

The incoming global (direct + diffused) solar radiation were
measured on a horizontal surface in the UV (280–400 nm) range
using the Kipp & Zonen CUV-4 radiometer respectively. The
radiation flux measurements have an estimated experimental
error of 3% in the shortwave and <10% in the UV range.
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More details about the radiation flux measurements are reported
elsewhere (Bano et al., 2013). Ambient SO2 data is obtained using
the self-calibrated Horiba APSA-370 SO2 analyzer which uses
Ultraviolet Fluorescence (UVF) method as the operating
principle for measurements. The detailed working principle is
reported elsewhere (Suneja et al., 2019).

Continuous sampling was done from December 2011 to
January 2013, however, some data gaps exist on a few
occasions whenever technical errors were encountered during
the observation. A total of 222 days’ data has been studied and
analyzed seasonally, categorized as, winter (DJF), summer
(MAMJ), monsoon (JAS) and post monsoon (ON).
Considering the regional climatic conditions June has been
grouped into summer as south west monsoon hits Delhi by
the end of June or early July. The instrument provides aerosol
particle size distribution at a span of 5 min interval. Percentage
data availability for winter, summer, monsoon and post-
monsoon are ∼36%, ∼49%, ∼35 and ∼63% of the total days
respectively. The solar flux data was obtained in Wm−2 every
2 min, during the observation period and averaged hourly and
seasonally.

Identifying NPF Events
During the preliminary stages of the analyses the data has been
flagged and removed if any discrepancy in the instrument or
measurement is noted. Out of the entire experimental period, a
total of 222 days of data has been found proper and the same has
been used for further analysis. NPF events have been identified
from the collected data sets based on the following criteria, as also
suggested by (Dal Maso et al., 2005): 1) A distinctly new mode of
particles must appear in the size distribution; 2) the mode must
start in the nucleation mode; 3) the mode must prevail over a time
span of few hours; 4) the new mode must show signs of growth.
Further, the NPF events have been identified according to the
following scrutiny techniques. 1) The visual identification of the
contour plots of particle size distribution over the 24 h period. 2)
The variation of mode diameter across 24 h period. 3) Individual
mode analysis of the size distribution at each 5 min interval.

In this study, we have classified the modes into three
categories, Nucleation mode (5–30 nm), Aitken mode
(30–100 nm) and accumulation mode (100–1,000 nm) (Ueda
et al., 2016). The data has been classified into event days, non-
event days, and unidentified event days according to a number of
criteria discussed in various peer reviewed papers (Dal Maso
et al., 2005; Kanawade et al., 2014; Kamra et al., 2015; Tröstl et al.,
2016). Based on this, three categories of events (classifications)
emerge with their distinct features. First, 1) NPF Event days,
which are those days in which there is a sudden outburst of
number concentration in the size range between 5 and 30 nm for
a prolonged time period of 2–3 h (Kanawade et al., 2014).
Another category, 2) Non Event days are those for which no
nucleation and particle growth is observed in these days. The
contour plots show no particular trend or variations in the
number concentration. Finally, third category 3) Unidentified
events days are the ones where we are unable to deduce the
features of the number concentration from the contour plot and
other scrutiny methods due to high level of noises in the data or

the gaps in the data. This can be due to the background pollution
and the haze conditions prevailing in the atmosphere.

Growth Rate Calculations
The rate of change of diameter of the particle (dDp/dt) is termed
as growth rate (GR), where Dp is the diameter of the particle and t
is time (Tröstl et al., 2016). The growth rate can be found out from
the linear regression analysis of the mode diameter (Dp) with time
(Tröstl et al., 2016; Salimi et al., 2017). The slope of the regression
gives the growth rate. The linear regression equation is given by

Dp � a0 + a1t, (1)

where a0 is the intersect at the y axis and a1 is the slope of the line
pointing to the growth rate.

Condensation Sink
Condensation sink (CS) is the scavenging speed of the gaseous
molecule due to the condensation onto particles. It mainly
depends on the particle size and the condensation (Ueda et al.,
2016), and the equation is given by Kulmala et al. (2001) as

CS � 2πDv ∑
i

DP,iβm,iNi, (2)

Dv is the diffusion coefficient of H2SO4 and is assigned as
0.104 cm2 s−1 (Kanawade et al., 2014). DP,i and Ni is the
center particle diameter and number concentration of the size
class i respectively. βm,i denotes the size dependent transition
correction factor given by Fuchs and Sutugin (1971) and is
expressed as

βm,i �
1 +Kn,i

1 + 0.377Kn,i + 4
3α

−1Kn,i + 4
3α

−1K2
n,i

, (3)

whereKn,i is the Knudsen number for the size class i and the mass
accommodation coefficient (α−1) is assumed as unity.

RESULTS AND DISCUSSION

Aerosol Particle Concentrations in Different
Size Regimes
Figure 1 shows the box and whiskers plot of monthly averaged
aerosol particle number concentration for different modes. The
maximum aerosol number concentration for an individual day is
recorded in December with a value of 16.67 × 103 cm−3. The mode
wise analysis of number concentration shows that Aitken mode
(30–100 nm) dominates in the study region throughout the year
with a maximum mean concentration during the post monsoon
season (9.6 × 103 cm−3). Accumulation and nucleation mode
particles are minimal compared to the Aitken mode particles
during the entire study period at the sampling site. However,
seasonal patterns showed variations in both the modes. Nucleation
mode particles are high in number than accumulation mode
particles during summer and monsoon seasons, whereas
accumulation mode particles dominate during the other two
seasons in comparison with nucleation mode. High mean
concentration of nucleation mode particles (4.67 × 103 cm−3)
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are noticed during July, when the minimummean concentration
of accumulation mode particles (1.79 × 103 cm−3) are registered.
Wet deposition of accumulation mode particles could be a
plausible reason for the decreased concentration of
accumulation mode particles and increased concentration of
nucleation mode particles in the monsoon season. Heat map
analysis of aerosol particle size distribution revealed a
considerable shift in the size of particle as it moves from
winter to pre monsoon.

The seasonal mean number concentrations of aerosol particles
in different modes are tabulated in Table 1. Here, N5-30 indicates
number concentration in nucleation mode, N30-100 in Aitken
mode and N100-1000 in accumulation mode. Highest average total
number concentration of 15.80 ± 4.26 × 103 cm−3 is noted during
the post monsoon season, this can be attributed to the biomass
burning events during the post monsoon seasons from nearby
agrarian states like Punjab and Haryana. Mean total number

concentration for the entire experimental period is found to be
14.08 ± 7.60 × 103 cm−3. Fractional share of eachmode to the total
number concentration is shown in Figure 2. The highest
concentration of nucleation mode particles were observed
during monsoon season with the mean number concentration
reaching up to 4.06 ± 0.53 × 103 cm−3 with a fractional share of
0.315. The maximum number concentration of accumulation
mode particle was found to be 5.90 ± 3.17 × 103 cm−3 in post
monsoon season with a fractional share of 0.36. A considerable
increase in the accumulation mode particles is seen during post
monsoon and winter season as the major contributor for
accumulation mode particles come from biomass burning
activity (Chen et al., 2017; Ghosh et al., 2019).

Figure 3 depicts the diurnal variation in mean number
concentration for different seasons. Aitken mode is the
primary peak and follows a bimodal pattern for all the
seasons. Starting from a gradual increase from early morning
Aitken mode reaches a peak value at about 09:00–10:00 AM and
then decreases. Aitken mode again shows an increase in
concentration during the evening hours which later dies out at
late night. This high particle concentration during the morning
and evening hours is associated with the high rush of traffic
during these hours. Among the two Aitken mode peaks observed,
evening peak is seen to be prominent with higher concentration
of Aitken mode particles, which may be due to the boundary layer
dynamics associated with the diurnal meteorology. The decrease
in the concentration of Aitken mode particle after the morning
peak hours can be attributed to the mixing of air due to increased
convection as the temperature increases and the increased
concentration at the evening hours may be attributed to the
stable layer formation during the evening, trapping the pollutants

FIGURE 1 | Box and whiskers plot of monthly averaged number concentration for each mode. Horizontal line on the box shows the median of the data. Lower and
upper end shows the 25th and 75th percentile of the data.

TABLE 1 | Seasonal mean number concentration for different particle modes at Delhi.

Seasons N5-30 (103 cm−3) N30-100 (103 cm−3) N100-1000 (103 cm−3) N5-1000 (103 cm−3)

Winter 1.85 ± 0.65 7.76 ± 1.51 5.35 ± 1.58 15.0 ± 3.53
Pre Monsoon 2.73 ± 1.54 5.17 ± 2.76 2.59 ± 1.57 10.5 ± 5.50
Monsoon 4.06 ± 0.53 6.73 ± 0.26 2.26 ± 0.41 13.0 ± 0.16
Post Monsoon 1.83 ± 0.38 8.09 ± 1.48 5.90 ± 3.17 15.8 ± 4.26

FIGURE 2 | Fractional share of each mode to the total number
concentration for different seasons.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7501114

Jose et al. Aerosol Size Distribution and NPF

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


inside the boundary layer (Mönkkönen et al., 2005). The pattern
shows a similar trend in all seasons except for monsoon season,
where the peak concentration is observed in the midday. The
morning peak Aitken mode is succeeded by a small increase in
nucleation mode particles during midday on few days and some
of it later grows to nucleation events which are discussed in the
following session.

Figure 4 shows the aerosol volume size distribution for
different seasons. Bimodal pattern is observed for volume size
distribution, characterizing fine (<1 µm) and coarse mode
(>1 µm). For volume size distribution fine mode dominates
and peaks at 0.38 and 0.27 µm for winter and post monsoon
respectively. Coarse mode dominates during summer season and
peaks at 2.25 µm. Increase in coarse mode particles during
summer could be due to the high dust episodes (Mishra and
Shibata, 2012) in the study location. Fine mode dominates for
monsoon with a tiny peak at 0.38 µm. High volume concentration
is noticed during the winter and post monsoon seasons with
maximum volume concentration during November. Increased
concentration of accumulation mode particles due to the surge in
biomass burning activities could be the possible reason for the
high volume concentration during post-monsoon season. It has
also been noted that coarse mode particles are less predominant
in these seasons and constitute a very feeble peak in the size
distribution.

There haven’t been many studies on long term measurements
of aerosol number size distribution over Delhi. Hyvärinen et al.
(2010) studied Gual Pahari, a semi urban area near Delhi and
reported increase in nucleation and Aitken mode particles in
summer and monsoon seasons, whereas accumulation mode was
seen dominant during winter season. They also reported high
particle concentration during the winter season. A study by
Kumar et al., 2018 looked at the seasonal variation of size
distribution in size segregated aerosols and found PM0.95 as

FIGURE 3 |Mean diurnal variation of number concentration in different particle modes at Delhi for the year 2012 for Winter (25 days), Summer (68 days), Monsoon
(35 days) and Post Monsoon (41 days). Sample size for each season is mentioned in the bracket.

FIGURE 4 | Seasonal aerosol volume size-distribution at Delhi.
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the dominant fraction in PM10 concentration. Another recent
study by Gani et al. (2020) has reported the long term
measurements of aerosol size distribution over the megacity
Delhi. They suggest that accumulation mode particle
contributes the most to the PM2.5 mass concentration over
Delhi. Our result is in consistent with the above studies with
high concentration of Aitken mode particle during all the four
seasons of the Delhi with increase in accumulation mode particles
during winter season.

NPF Events: Observations and
Characteristics
As discussed in the previous section, diurnal variation of aerosol
particles showed an increase in nucleation mode particles during
midday and warranted for further investigation. Hence, contour
plots of aerosol size distribution have been done. Sudden burst of
nucleation mode particles, revealing a banana type of growth
were noticed from the contour plots. Further analyzing the mode
diameter during the event shows a sudden dip towards the
nucleation mode confirming the initiation of New Particle
Formation (NPF). Contour plots of selected NPF event days of

different seasons are shown in Figure 5 along with their diurnal
variations in the mode diameter and mode wise number
concentration. It shows that NPF events are generally observed
at midday during the winter, summer and monsoon periods. A
clear sudden burst of nucleationmode particles for a period of few
hours is visible at all these days pointing to the NPF events (Dal
Maso et al., 2005). The NPF starts at around 10:00 LT in the
morning and continue to grow till 14:00 LT. Associated increase
in number concentration on nucleation mode can also be seen in
Figure 5. Aitken and nucleation mode are the dominant modes
over the sampling site during the event days except for winter.
The NPF event is preceded by an elevated Aitken mode particle
concentration which drops as the NPF commences. During the
NPF event time, N5-30 shows a peak growth. In the representative
figures for NPF events highest increase in nucleation mode
number concentration events are seen during summer, which
reaches ∼3.1 × 104 cm−3, following which the particle
concentration decreases and continues to grow in Aitken
mode which reaches a maximum concentration of ∼4.5 ×
104 cm−3.

From a total of 222 days of data, 17 (8.4%) NPF event days
have been identified along with 28 (∼12.4%) no NPF events days.

FIGURE 5 | Contour plots of typical NPF events at different seasons, its diurnal variation in mode diameters and mode wise number concentration for winter
(February 13, 2012), (Panel A); summer (June 06, 2012), (Panel B); and monsoon (July 16, 2012), (Panel C). The rectangular box shows the time period of NPF event
and the colour scale of contour plot denotes dN/dlog Dp (particles/cm3).
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177 unidentified events have also been noted which corresponds
to ∼78.2% of the total data. Unidentified events are those days in
which high level of background noise are present making it
difficult to comprehend the features of number-size
distribution in the data. This background noise could be due
to the pollution or haze condition in the atmosphere. Also, the
days on which if there were any doubts regarding the
identification of clear NPF events then such days have been
classified as unidentified days. An important point to be noted
here is that there might be hidden NPF events in this unidentified
event days however, the background noise hinders it from
quantifying the particle growth. Among the 17 NPF events, 13
occurred in summer season, 2 in winter season and 2 during
monsoon season. No events were observed in the post monsoon
season. All the NPF event days showed a banana type of growth
that continued for several hours and matched the previously
reported NPF events in literature (Junninen et al., 2008; Lee et al.,
2008). To understand the characteristics of new particle
formation during all the seasons, the growth rate and
condensation sink parameters have been studied.

Table 2 summarizes the time period of the nucleation event,
growth rate and condensation sink of the particle for different
seasons. Almost all events start at much lower range in nucleation
mode (<20 nm). Growth Rate for nucleation mode (GRnuc)
particle is determined for the event days. In summer it ranges
from 1.8 nm/h to 21.66 nm/h with a mean of 8.77 ± 6.25 nm/h.
On a few occasions, a comparatively high GRnuc values were
observed during the summer. Such high values of GR indicate the
lesser time for the growth of nucleation mode particles. In
monsoon GRnuc is noted to be about 4.8 nm/h and 5.7 nm/h
with a mean of 5.25 ± 0.64 nm/h for the two events. Two daytime

NPF events were observed during winter period whose GRnuc

were 4.4 nm/h and 3.91 nm/h respectively. The mean GRnuc for
summer and monsoon are comparatively higher than winter
nucleation rates. Further, the GRnuc values of the present
study at Delhi are slightly higher when compared with the
regions such as Idaho hill (Weber et al., 1997); Ontario
(Verheggen and Mozurkewich, 2002); Germany (Birmili et al.,
2003) and Hyytiala, Finland (Dal Maso et al., 2007) but it is quite
comparable with the GR values at most of the Indian locations
reported, like Pune (Kamra et al., 2015); Kanpur (Kanawade et al.,
2014) andHanle, (Kompalli et al., 2014). At the coastal location of
Trivandrum, however, the GR values are reported to be high
(Kompalli et al., 2014) than that at Delhi.

Discussion
Being a very polluted environment, the frequency of NPF events
is notably less in Delhi. Out of 222 days, only 17 NPF events have
been observed with maximum events (73.6%) occurring during
the summer months and no NPF events reported during the post
monsoon season. A number of factors influence the occurrence of
NPF events at regional level including the abundance of precursor
gases, pre-existing particle, solar radiation and the local
meteorological conditions (Kerminen et al., 2018).

One of the influential factors for local NPF event is the amount
of ambient gaseous H2SO4 concentration, owing to its inherent
connection to the gas phase chemistry associated with aerosol
nucleation and subsequent growth (Lee et al., 2019). The solar
radiation also acts as a driver for the new particle formation as it
controls the formation of OH radicals and the concentration of
H2SO4 in the air (Pirjola et al., 1998; Dada et al., 2017). A decrease
in the intensity of UV radiation tends to decrease the nucleation
and the NPF events (Hamed et al., 2011; Baranizadeh et al., 2014).
Stanier et al. (2004) used data of UVxSO2 as a proxy to H2SO4 and
correlated it with the condensation sink (CS) data to see the
conditions that favor nucleation. He found that for the same value
of UVxSO2, nucleation took place at higher CS value during
summer.

To analyse the possible mechanism for NPF events over the
study region, we have studied different governing factors
conducive for NPF events at selected dates from June 12, 2012
to June 18, 2012 for summer and February 13, 2012 to February
17, 2012 for winter. The time period is chosen in such a way that
at least two NPF events are present for both the seasons and in
accordance with the availability of SO2 data. Monsoon events are
not studied here, due to the unavailability of SO2 data. As H2SO4

data is unavailable for the study site, product of SO2 and UV is
used as a proxy to understand the chemistry on event and non-
event days. In the present study hourly data of UVxSO2 and
condensation sink (CS) is correlated for event and nearby non-
event days and plotted for the time window of 8:00 LT to 16:00
LT, keeping in view the occurrence of NPF events (Figure 6). It
may be noticed that high CS and high UVxSO2 is observed for
NPF event day in summer and low CS and high UVxSO2 was
favorable for the NPF events in winter. We have also found that
for the similar UVxSO2 value nucleation takes place at higher CS
values during summer as compared to winter. Unlike Stanier et al.
(2004), where nucleation is usually more prominent on the right

TABLE 2 | Summary of the NPF events for different seasons at Delhi.

Date Time period GRnuc CSavg

(nm/h) (10−3 s−1)

Summer
31-03-2012 9:00–17:00 1.8 6.59 ± 2.68
03-04-2012 10:45–18:00 4.7 6.38 ± 3.83
20-04-2012 10:30–13:30 6.8 5.73 ± 7.93
21-04-2012 8:00–12:15 3.7 3.31 ± 1.53
24-04-2012 9:30–14:00 18.46 4.23 ± 3.25
27-04-2012 11:00–16:30 13.6 2.25 ± 1.11
06-06-2012 9:40–12:30 21.66 36.09 ± 20.39
11-06-2012 9:35–12:45 5.4 4.03 ± 6.74
13-06-2012 8:30–11:30 10.2 11.12 ± 4.14
18-06-2012 10:20–12:30 12.9 6.13 ± 4.27
19-06-2012 9:15–15:00 7.8 15.23 ± 6.25
28-06-2012 9:30–14:30 2.3 2.03 ± 1.04
30-06-2012 9:05–10:50 12.06 15.5 ± 33.3

8.77 ± 6.25 9.31 ± 8.82
Monsoon
04-07-2012 7:40–14:35 4.8 4.93 ± 2.60
16-07-2012 10:00–18:00 5.7 6.07 ± 2.29

5.25 ± 0.64 5.5 ± 0.81
Winter
13-02-2012 12:35–16:00 4.39 3.49 ± 1.13
16-02-2012 11:15–13:45 3.91 1.91 ± 0.73

4.15 ± 0.34 2.65 ± 1.04
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side of the diagonal, our study do not show such clear preferences,
possibly due to the presences of other predictive variables such as
relative humidity, concentration of pre-existing particles and
prevailing meteorological conditions.

Over our study site, the amount of incoming solar radiation
(both in shortwave and UV range) varies significantly during the
summer and winter seasons. In summers, the day-time (7 AM–5
PM) shortwave and UV flux increase by 52 and 61% respectively,
from the corresponding winter values. Thus, the abundant solar
insolation during summer season (high UV) makes summer
months more conducive for new particle formation, and this
could be one of the plausible reasons for the increased NPF events
during summer season. We have also looked at the diurnal
variation of UVxSO2 for event days and non-event days as
plotted in Figure 7. It shows the diurnal variation in UVxSO2

for June (summer) and February (winter). Considerable increase
in UVxSO2 is noticed during summer NPF days compared to the
non-event days in summer. A similar result is seen for winter NPF
event days also. However, the difference between NPF event and
non-event days is much less during winter month. This also
suggests that the abundant UV radiation along with high
concentration of SO2 (Figure 8) during the summer months
could be the reason for the increased NPF event over the study
region. A recent study by Jokinen et al. (2017) revealed the
significance of photochemistry in NPF by studying the NPF

event during a partial solar eclipse day. He demonstrated the
decrease in H2SO4 due to decrease in UV during the eclipse time
resulting in decreased nucleation events. Thus, the strong gas
phase chemistry owing to the high UV radiation coupled with
abundant precursor gas concentration (SO2) could be the reason
for the high NPF events reported during the summer period over
the study site.

Some of the previous studies have also shown that RH is
negatively correlated with continental NPF events (Hamed et al.,
2011; Dada et al., 2017). Increase in condensation and
coagulation sink have been observed generally during high RH
days, owing to the hygroscopic growth by pre-existing aerosol
particles due to high intake of water vapor, leading to larger loss of
condensable vapor such as H2SO4 (Hamed et al., 2011). This may
lead to much smaller nucleation rates or nucleation events. In our
study, however, we have found that most of the NPF event
occurred at RH less than 40%. As the number of NPF events
are also less in the present case and mostly observed below 40%
RH, a correlation between NPF event and the RH could not be
established here.

In order to see the distribution of preexisting particles over the
study area we have looked at the PM10, PM2.5 and SO2

concentration over the study region. Figure 8 shows the
distribution of PM10, PM2.5 and SO2 over the selected time
window for the NPF and non-NPF days. Comparatively less

FIGURE 6 | Scatter plot showing the distribution of NPF and non NPF event in accordance to Stanier et al. (2004) method. Hourly averaged data point is shown in
the figure.

FIGURE 7 | Diurnal variation of UV*SO2 (proxy for H2S04) for NPF and non NPF days over the study site.
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PM10 concentration is observed for NPF days than the non NPF
event days for both seasons which is in accordance with previous
literatures. However, high PM10 concentration is noticed for the
summer NPF event on June 13, 2012 reaching up to 900 µg/m3.
SO2 concentration is also seen high on this day reaching to a
concentration of 6 ppb. Delhi experiences high dust activity
during summer months, could be a possible reason for the
high PM10 on the particular day. Compared to non-event days
in summer, high CS and high PM10 concentration have been
noticed for NPF event days. This is a deviation from the usual
NPF mechanism. However high CS along with high preexisting
particle has also been noticed during NPF events in other regions
as well (Yue et al., 2009; Nie et al., 2014). Study by Nie et al. (2014)
suggest a possible mechanism for the dust induced NPF event,
through dust induced heterogeneous photo catalytic reactions
producing OH radicals enhancing the SO2 production. Our study
using proxy data for H2SO4 suggests the strong gas phase
chemistry owing to the high UV radiation coupled with
abundant precursor gas concentration (SO2) could be the
reason for the high NPF events reported during the summer
period over the study site.

CONCLUSION

Monthly and seasonal characteristics of the size distribution and
number concentration of aerosol particles in the size range of
5 nm–32 µm have been studied at Delhi using GRIMM-WRAS
during December 2011 to January 2013 along with the
simultaneous measurements of SO2, RH and solar radiation
flux in the UVrange. The findings of the study may be
summarized as below:

The mean number concentration at Delhi during the entire
experimental period is 14.08 ± 7.60 × 103 cm−3 with highest
concentration during post-monsoon (15.8 ± 4.26 × 103 cm−3)
followed by winter (15.0 ± 3.5 × 103 cm−3), monsoon (13.0 ± 0.2 ×
103 cm−3) and summer (10.5 ± 5.5 × 103 cm−3). Study site is
dominated by Aitken mode particle which follows a bimodal
pattern in diurnal variation having peaks during morning and
evening traffic hours. Accumulation mode particles are scarce
over the study location except during the winter and post-
monsoon days, when it shows a bimodal secondary peak along
with the primary Aitken mode particle. The volume size
distribution is also characterized by two modes, fine and
coarse. Fine mode dominates during all the seasons except
summer, when coarse mode dominates.

From 222 days of WRAS data, a total of 17 NPF events (13 in
summer, 2 in winter and 2 during monsoon) have been observed.
No NPF events were observed during post-monsoon season.
During NPF events the Aitken and nucleation mode particles
contribute more to the number concentration. The nucleation
growth rate during summer and monsoon are more or less
comparable and vary in the range of a few nm/h to ∼20 nm/h,
whereas, during winters it is much smaller in the range.

Our study on selected time period of NPF events show that
high UV, low water vapor and low CS are favorable conditions for
NPF events in winter. However, for summer high CS values are
observed for NPF days, an aberration from previous studies, with
increased PM10 and SO2 concentration in the background. This
could be due to a possible NPF pathway through dust induced
photo catalytic production of SO2. Proxy study using UVxSO2
points to the strong influence of gas phase chemistry during
summer months and hence the high frequency of NPF events.
Myriads of factors contribute to NPF event. A detailed study of

FIGURE 8 | (A) PM10 and PM2.5 concentration for NPF and non NPF events for summer (left) and winter (right) season. The rectangular box represents the NPF
day data points. (B) Temporal variation of SO2 for NPF and non NPF event days for summer (left) and winter (right).
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precursor gases and VOCs are also required to reach conclusion
on different mechanisms for NPF events on both seasons at the
study site.
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