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The growth of the southern piedmont of the Himalayan boundary and its depositional
setting has changed since uplift of the Himalaya due to continental Indian-Eurasian
collision, which has resulted in variation in magnetic minerals in marine- and terrestrial-
facies sediments. In this paper, we utilize rock magnetism data from the late Cretaceous to
middle Eocene strata, including the Amile and Bhainskati formations from the Lesser
Himalaya (western Nepal), to understand the mechanism controlling magnetic
susceptibility (χ). The active tectonics strongly influenced saturation isothermal
remanent magnetization (SIRM), HIRM, and hysteresis loops, forming both low-
coercivity minerals in sediments with low χ from the terrestrial facies (zones I, IIIA, and
V) and high-coercivity minerals in the sediments with high χ from the marine facies (zones II,
IIIB and IV). Thermomagnetic κ-T curves and frequency-dependent χ (χfd%) values show
that sediments with low χ and high χ carry magnetite with coarse non-superparamagnetic
(SP) grains and hematite with SP grains, respectively. Comparing the χ data with the
lithologic, sedimentary environments, geomorphic features, and sea level data, we
propose that low χ values were mainly produced by an increase in terrigenous detrital
influx during the regression period of the Tethys Sea, while high χ values formed in marine
sediments, which prompted the appearance of ferromagnetic-antiferromagnetic and
paramagnetic minerals during the transgression of the Tethys Sea.

Keywords: rock magnetism, Cretaceous to Eocene strata, paleoenvironment, transgression and regression, Lesser
Himalaya

INTRODUCTION

The Himalayan orogeny and tectonic stress produced the existing Himalayan arc as a result of the
Indian-Eurasian collision since the late Cretaceous time (Beck et al., 1995). This has attracted the
attention of various scientists to study its effect on geomorphological features (Molnar and
Tapponnier, 1975), provenance (Garzanti, 1999; DeCelles et al., 2004; DeCelles et al., 2014),
climate (Ghosh et al., 1995), environment (Bosboom et al., 2014) and ecology (Smith et al.,
2015). In Nepal, some paleomagnetic studies have been carried out in the Siwalik (Tokuoka
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et al., 1986; Gautam and Appel, 1994; Gautam et al., 1995;
Gautam and Pant, 1996; Gautam and Fujiwara, 2000; Gautam,
2008; Ojha et al., 2009), Lesser, Higher and Tethyan Himalaya
(Yoshida and Sakai, 1984; Appel et al., 1991; Pant et al., 1992;
Crouzet et al., 2001; Gautam et al., 2011). The Tansen area, which
is located at the front of the Lesser Himalaya, incorporates both
marine and terrestrial sediments since the continental collision
and uplift of the Himalaya. It acts as a remarkable area for
reconstructing the tectonic and climatic evolution before and
after the collision. Various studies related to detrital
geochronology and geochemistry, lithological transitions, flora
and faunal fossils have been reported from this region (Sakai,
1983; Sakai, 1984; Kimura et al., 1985; Matsumaru and Sakai,
1989; Sah and Schleich, 1990; DeCelles et al., 2004), showing
diverse opinions on the paleoenvironmental condition.
Generally, four distinctive views can be perceived on the
paleoenvironment changes as 1) the humid climate prevailed
during Cretaceous to Eocene (Neupane and Zhao, 2018; Neupane
et al., 2021), 2) there was a paleoenvironmental transition from
the pteridophytes dominated wet and humid environment during
late Cretaceous (Mohabey et al., 1993; Srivastava, 2011; Prasad
et al., 2018) to more humid environment in the entire Eocene
revealed by evergreen broad-leaved forest forming coal and
carbonaceous shale (Mehrotra, 2003; Srivastava, 2011; Shukla
et al., 2014; Spicer et al., 2014; Samant et al., 2020), 3) the
paleoclimate during Cretaceous to Eocene had been affected
by the Tethys Sea and the Himalayan tectonic uplift rather
than the global climate change (Bosboom et al., 2011; Licht
et al., 2013; Licht et al., 2014), and 4) the Inter-tropical
Convergence Zone (ITCZ) had driven the Eocene monsoon
climate (Boos and Kuang, 2010; Spicer et al., 2016). The poor
preservation of late Cretaceous marine and early Cenozoic
terrestrial sequences in South Asia has been the main factor
causing these debates. The Palpa section in this area consists of a
late Cretaceous-Paleocene (so called Amile Formation) to middle
Eocene (called as Bhainskati Formation) sequence of both marine
and terrestrial sediments. Their respective ages were constrained
by U-Pb detrital zircon ages, Nd isotope analyses and trace
element compositions (Robinson et al., 2001; Neupane et al.,
2017; Bhandari et al., 2019) and fossil records (Sakai, 1983;
Matsumaru and Sakai, 1989). The rock magnetic study has
been rarely reported from this area (Gautam, 1989a, b) and is
expected to effectively diagnose the paleoenvironmental changes
in the Lesser Himalaya, western Nepal.

The uplift of the Himalaya-Tibetan Plateau after the Indian-
Eurasian collision has affected the provenance and environmental
settings in this region. In addition, the transgression and regression
of the Tethys sea within this region also caused the change in
depositional settings (either terrestrial or marine setting). The
depositional processes have been widely investigated through
the rock magnetic properties of sedimentary sequences in the
recent years (Verosub and Roberts, 1995; Liu et al., 2012). The
magnetic parameters have been also applied for obtaining better
discrimination of lithological units such as marine limestone or
mudstone and continental clastic rock (Murdock et al., 2013). The
Palpa section, on the southern piedmont of the Himalaya records
abundant environmental and tectonic information. It provides an

excellent opportunity to explore the paleoenvironment through the
study of rock magnetic analysis. In this paper, we examine detailed
rock magnetic analyses from the Palpa section in the Tansen area
to identify the depositional setting that most likely controlled the
magnetic susceptibility (χ) variation and make an initial attempt to
gain insights into the relationship between the depositional
environment and the tectonic uplift during and after the
Indian-Eurasian collision.

GEOLOGICAL AND GEOGRAPHICAL
SETTING

The Indian-Eurasian collision results in the development of four
different tectonostratigraphic units (Figure 1A). The northern
Tethys Himalayan Sequence (Neoproterozoic through Cenozoic)
is mainly composed of sedimentary rocks with numerous
fossiliferous horizons (Stöcklin, 1980; Garzanti and Frette, 1991;
Yin andHarrison, 2000; Guillot et al., 2008; Najman et al., 2017). In
its south, the high-grade metasedimentary rocks of the Higher or
Greater Himalayan Sequence (Neoproterozoic through Cambrian)
is thrust southward along the Main Central Thrust (MCT) on the
uppermost part of the Lesser Himalayan Sequence
(Paleoproterozoic to Paleozoic) (Parrish and Hodges, 1996;
DeCelles et al., 2000; Martin, 2017). Furthermore, the weakly
metamorphosed Indian continental crust and sedimentary rocks
of the Lesser Himalayan Sequence (Valdiya, 1980; Sakai, 1985;
Parrish and Hodges, 1996; Upreti, 1999; DeCelles et al., 2000;
Martin et al., 2011) are separated by the Main Boundary Thrust
(MBT) in the south. The southernmost part consist of marginal
deposits eroded from the higher mountain belts, deposited in the
foreland basin as the Siwalik (or Churia zone) or Sub-Himalayan
Sequence (Paleogene and Neogene), and now lie above the Main
Frontal Thrust (MFT) with recent alluvial deposits of the Indo-
Gangetic plain (Gansser, 1964; Stöcklin, 1980; DeCelles et al., 1998;
White et al., 2001; Najman et al., 2005; van der Beek et al., 2006;
Yin, 2006; Ojha et al., 2009). In Nepal, the late Permian to Eocene
sediments (called the Gondwana System) typically contains both
marine facies, including fossiliferous argillaceous limestones and
siltstone/sandstone with molluscs, foraminifers, coral and
vertebrate fossils, and terrestrial facies, including ferruginous
quartz arenite, conglomeratic quartz arenite, glacial diamictite,
interbedded sandstone, and shale. These lithostratigraphic units
are sparsely distributed in the Barahachhetra and Katari areas,
Tansen, Tulsipur, and the Birendranagar areas extending from east
to west, indicating the existence of scattered depositional basins
with variable thicknesses. The tectonic stress on the depositional
basins (Gondwana System) in the Lesser Himalaya of Nepal has
resulted in the formation of klippes (such as the Palpa Klippe).

The study area lies within the region 27°42′0″ N to 27°52′0″ N
and 83°27′0″ E to 83°33′0″ E in the Tansen area (Palpa district) in
the northern part of the Siwalik zone and to the north of the MBT
(Figure 1B,C,D). The sampling sites along the so-called Palpa
section are located near Charchare village along the Bhaiskatta
Khola (the local term for the river is Khola) flowing south of the
Tansen city. In the Tansen area, the Kali Gandaki Supergroup
(KGS) comprises bioturbated sediments to low-grade
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FIGURE 1 |Geological framework of Nepal. (A) Simplified geological map of the Nepal Himalaya showing the location of the study area (Palpa section) in the Tansen
area, modified after Khatri et al. (2017). (B) Detailed geological map of the western Nepal. The black rectangular box indicates the Palpa section, modified after Sakai
(1983), Sakai (1984), Dhital (2015). (C) Google map (http://earth.google.com/) showing the sampling route in the Bhaiskatta Khola from 27°47′40.74″ 83°32′39.38″ to
27°47′45.62″ 83°32′40.94”. (D) Detailed geological map of the study area and the cross-section for the samples profile showing the late Cretaceous to Oligocene-
early Miocene strata.
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metamorphic rock, argillaceous, carbonate rocks with
stromatolites of late Precambrian to early Paleozoic age (Sakai,
1984). The Tansen Group, assigned to the late Carboniferous to
early Miocene age by paleontology and stratigraphic position
(Sakai, 1983), disconformably overlies the KGS and forms a large
synclinorium with a klippe (Figure 1B). Lithostratigraphically,
the Tansen Group is divided from bottom to top into the Sisne
Formation with mudstone intercalated sandstone, and
conglomerate; the Taltung Formation with silty shale,
sandstone, and conglomerate; the Amile Formation with
quartz sandstone with thick interlayers of black shale and
limestone; the Bhainskati Formation with shales and
limestone; and the Dumri Formation with sandstone and
conglomerate interbedded with shale (Sakai, 1983; Sakai, 1984;
Sakai, 1989). The Amile Formation typically consists of terrestrial
and marine facies. The lower and upper parts of the Amile
Formation are terrestrial facies composed of ferruginous

quartz arenite, conglomeratic quartz arenite, and interbedded
sandstone and shale, whereas the middle part is marine facies
composed of argillaceous limestone and siltstone/sandstone
yielding molluscs, echinoids, corals, and vertebrate fossils. In
contrast, the marine Bhainskati Formation is characterized by the
predominance of fossiliferous black and green shales yielding
molluscs, foraminifers, and vertebrate fossils. It also includes
bioturbation with thin beds of limestone and oolitic hematic
mottles (Sakai, 1983; Sakai, 1984) with hematitic oxisol layers
(DeCelles et al., 1998).

SAMPLING AND LABORATORY
PROCEDURES

The study area covers lateMesozoic to early Paleogene rocks lying
in the southwestern part of the Lesser Himalaya of Nepal,

FIGURE 2 | Lithostratigraphic correlation of the Amile (late Cretaceous-Paleocene) and Bhainskati (middle Eocene) formations between the present and previous
studies. The field photographs from 12 to 62 m represent Amile Formation and from 72 to 114 m represent Bhainskati Formation. The boundary between late
Cretaceous-Paleocene and middle Eocene strata exists nearly at 65–75 m. In addition, the boundary between middle Eocene and middle Miocene to Pleistocene strata
exists nearly at 117 m. These photographs show the distinct lithologies from both formations in the Palpa section.
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including the Amile, Bhainskati, and partly Dumri formations
(Figure 2). In the study area, 120 samples were collected
(Figure 1C) with a portable petrol-powered drill at an interval
of 1 m. Later, these core samples were cut into standard-size of
2.2 cm diameter and 2.5 cm in length. The Amile Formation in
the study area is approximately 72 m thick and is composed
mainly of shale, fine-grained to medium-grained siliceous
sandstone, and pebble conglomerate, and occasionally contains
iron nodules and asymmetrical ripple marks. The Bhainskati
Formation is approximately 41 m thick and composed of light
gray, dark gray, green shale, and siltstone with no fossiliferous
horizons. The Dumri Formation is composed of gray sandstone,
gray-red intraformational conglomerate, and gray siliceous
sandstone and is approximately 7 m thick (Figure 2).

All the sampled specimens of the Palpa section were measured
by the AGICO MFK1-FA multifunction Kappabridge to
determine low- and high-frequency magnetic susceptibility
ranging from 976 to 1,561 Hz. The mass-specific susceptibility
(χ) was measured at these frequencies and the χfd% was
calculated as χfd% � (χ976Hz–χ1561Hz)/χ976Hz × 100%. The
anhysteretic remanent magnetization (ARM) process was
carried out in a 100 mT peak alternating field and a
superimposed 0.05 mT direct current biasing field with a D-
2000 alternating demagnetizer, and later the susceptibility of
ARM (χARM) was calculated as ARM/0.05 mT. The saturation
isothermal remanent magnetization (SIRM) process was
performed in an IM-10-30 pulse magnetizer with a 1,000 mT
field. In addition, the “hard” isothermal remanent magnetization
(HIRM) was calculated using the formula HIRM � (SIRM + IRM-
300mT)/2 (Thompson and Oldfield, 1986).

Altogether, 46 samples of shales, siltstones, and sandstones
were measured for diffuse reflectance spectroscopy (DRS). As it
shows a high sensitivity to the concentration of iron oxides
(Scheinost et al., 1998; Torrent and Barrón, 2002). The data
obtained from a Purkinje General TU1901 UV-Vis
spectrophotometer with a reflectance sphere from 360 to
850 nm at 1 nm intervals were processed by the first derivative
to reveal the hematite content (Zan et al., 2018). The
determination of redness (percent reflectance in the red color
band) offers an additional quantitative view of one aspect of
sediment color (Ji et al., 2005). Redness percent was calculated as
red area (630–700 nm)/peak area (400–700 nm) × 100. Similarly,
eight representative samples in powdered form with a mass of
∼0.2 g were chosen for thermomagnetic analysis of magnetic
susceptibility, each measured by using a CS-4 apparatus in an
argon atmosphere coupled to a AGICO MFK1-FA multifunction
Kappabridge, to prevent oxidation during heating from room
temperature to ∼700°C and later cooled to room temperature. The
temperature rate was used as 12°C/min (medium-type), with an
approximate duration of 2 h. These representative samples were
further measured by a Lakeshore Model 8,600 vibrating sample
magnetometer (VSM) to determine the magnetic parameters,
such as induced magnetizations [hysteresis parameters-hysteresis
loops, saturation magnetization (Ms), saturation remanent
magnetization (Mrs), and coercivity (Hc)] and remanent
magnetizations in variable magnetizing fields. An alternating
gradient force of a magnetometer was used for hysteresis loops

analysis and pulse magnetizer for Isothermal Remanent
Magnetizations (IRMs), with a maximum field of 1,000 mT.
Magnetic coercivity components acquired from IRM
acquisition measurements were achieved using the MAX
Unmix application (Maxbauer et al., 2016). These experiments
were carried out in the Key Laboratory at the Institute of Tibetan
Plateau Research, Chinese Academy of Sciences, Beijing, China.

RESULTS

χ, χfd%, χARM, Saturation Isothermal
Remanent Magnetization, High Field
Isothermal Remanent Magnetization and
Diffuse Reflectance Spectroscopy Results
On the basis of χ, frequency-dependent χ (χfd%), χARM, SIRM,
high field isothermal remanent magnetization (HIRM), redness,
hematite content, and lithology, the Palpa section can be divided
into five-rock magnetic zones (Figure 3). These magnetic
zonations cover both terrestrial and marine deposits. The zone
I (0–30 m), zone IIIA (47–72 m), and zone V (114–120 m) are
defined as terrestrial deposits, and zone II (31–46 m), zone IIIB
(73–98 m), and zone IV (99–113 m), as marine deposits (Figures
2, 3). The χ values for zone I, IIIA and V range from -0.10 ×
10−8 m3kg−1 to 15.41 × 10−8 m3kg−1, from -0.12 × 10−8 m3kg−1 to
18.05 × 10−8 m3kg−1, and from 3.17 × 10−8 m3kg−1 to 8.53 ×
10−8 m3kg−1, respectively and their respective mean are 3.25 ×
10−8 m3kg−1, 6.29 × 10−8 m3kg−1, 6.29 × 10−8 m3kg−1 and 5.73 ×
10−8 m3kg−1. The sandwich of some nonferromagnetic phases,
such as coal-bearing shale and thin carbonaceous layers cause a
sudden drop in χ in the siltstone and/or sandstone layers. In
contrast, χfd% is always lower in samples with high χ, SIRM, and
HIRM values. The χARM values are almost 1 or 2 times higher in
the terrestrial facies than in the marine facies. In addition, the χ
values for zone II, IIIB and IV range from 20.08 × 10−8 m3kg−1 to
65.81 × 10−8 m3kg−1, from 0.08 × 10−8 m3kg−1 to 23.87 ×
10−8 m3kg−1 and from 7.72 × 10−8 m3kg−1 to 77.94 ×
10−8 m3kg−1, respectively, and their respective mean are
38.26 × 10−8 m3kg−1, 8.99 × 10−8 m3kg−1 and 26.26 ×
10−8 m3kg−1. A small χ peak in the zone I occur due to the
presence of ferruginous matter in the sandstone.

Noticeable sharp changes in χ, SIRM, and HIRM occur in the
fine sediments of the marine facies, and low values usually occur
in the coarser sediments of the terrestrial facies. The SIRM and
HIRM are consistent with the χ, and the highest peaks are 21.01 ×
10−8 m3kg−1 and 26.42 × 10−8 m3kg−1, respectively, at 41 m. The
redness and hematite content show trends similar to those of the
rockmagnetic parameters (Figure 3), which are almost consistent
with the magnetization and hysteresis parameters of Figure 4. As
χ, χfd%, χARM, and SIRM were investigated for identifying
variable magnetic mineral concentrations, further investigation
such as temperature magnetic susceptibility (κ-T), induced
magnetizations (hysteresis loops), and IRM curves from rock
samples in variable magnetizing fields are also discussed below for
detailed magnetic mineralogy of the sediments that enhance
paleoenvironmental study.
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High-Temperature Magnetic Susceptibility
(κ-T Curves)
Figure 5 displays each of the κ-T curves with a noticeable
decrease near 580°C, which suggests the ample occurrence of
magnetite in the sediments. A subsequent drop in heating curves
(Figures 5A–C) until around 700°C in siliceous and silty
sandstone samples, indicates magnetite as the dominant
magnetic carrier. But, the heating curve of the sample at 2 m
(Figure 5A), possibly implies a maghemite-like phase (drop at
about 350°C). There is evidence of the neoformation of magnetite
in most samples (Figures 5B–F,H), either by reduction due

to burning of organic matter and/or neoformation of
minor ferromagnetic phase from iron-bearing silicates or
possibly Fe-bearing paramagnetic minerals (most likely iron
sulfides such as pyrite and greigite). In these samples, the
heating curve firstly decreases steadily to 300°C and then
increases between 350°C and 520°C. Meanwhile, the heating
curve progressively decreases nearly to zero at 690°C in the
siltstone and shale (Figures 5D–H), inferring some hematite
as a magnetic carrier (Shouyun et al., 2002; Kruiver et al., 2003;
Ao et al., 2010). Thus, both magnetite and hematite act as a major
magnetic carrier in these samples.

FIGURE 3 | (A-G) Lithology, χ, χfd%, χARM, SIRM, HIRM, redness (%) and diffuse reflectance spectroscopy-determined hematite content (FDV568 nm), and (H)
Their comparison with global sea level (Müller et al., 2008) and correlation for the Palpa section, modified after Sakai (1983). The zones I (0–30 m), IIIA (47–72 m), and V
(114–120 m) are defined as terrestrial deposits and zones II (31–46 m), IIIB (73–98 m) and IV (99–113 m) as marine deposits. Note that the orange color represents
marine and white represents the terrestrial environment.

FIGURE 4 | Lithology and hysteresis parameters (Ms, Mrs, Hc and Mrs/Ms) variations of the late Cretaceous to middle Eocene strata in the Palpa section. The
samples within the marine regime show greater peaks of hysteresis parameters as compared to the terrestrial regime. The change in sea level condition may have
affected the development of these peaks.
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Hysteresis Loops
The hysteresis loops show that the intrinsic coercivities for all
representative samples range from 5.51 to 193.76 mT. The very
low Hc ranges from 5.5 to 10.6 mT, revealing ferromagnetic
minerals as the major contributor. The hysteresis loops are
either sigmoid-shaped slightly open to thin straight lines
(closed type) at low fields (Figures 6A–C) and sometimes
noisy (Figure 6D) but one with negative χ (at 65 m),

suggesting the predominance of low-coercivity ferromagnetic
minerals (e.g., magnetite) masked by para- and/or diamagnetic
contributions. However, the wasp-waisted (Figures 6E–G) and
flat and wide shapes (Figure 6H) indicate high coercivity,
indicating a hard magnetic component (i.e., hematite).
Generally, the wasp-waisted shapes are observed (Figures
6E–G) in samples with less than 10% of hematite or more
than 50% hematite (Da Silva et al., 2012). It is thus worth

FIGURE 5 | Representative temperature-dependent susceptibility curves from selected samples at various horizons of the Palpa section. The samples with a low χ
value are shown in (A–D) and a high χ value in (E–H). Note: Heating and cooling cycles are indicated by red and blue lines, respectively.

FIGURE 6 | Representative hysteresis loops of the samples at various horizons of the Palpa section. The loops from samples with a low χ value are shown in (A–D)
and a high χ value in (E–H). Note: Black and red lines indicate the curves before and after paramagnetism correction.
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pointing out that these samples are typical for mixtures of low-
and high-coercivity components and/or magnetic grain sizes
(Roberts et al., 1995; Tauxe et al., 1996).

Isothermal Remanent Magnetization
Typical IRM acquisition curves (Figures 7A–C) show a sharp rise
below 200mT and display weakmagnetic intensities with very noisy
intensities, representing the low-coercivity ferromagnetic minerals

or soft magnetic minerals (e.g., magnetite and/or maghemite) as the
major magnetic carrier. In contrast, the higher intensities of
magnetization are represented by the gradual growth of IRM
curves beyond 200mT and the fact that the curves do not
saturate completely in a 1,000mT field, signifying the occurrence
of some hard magnetic minerals of high coercivity, most likely
hematite, contributing to the remanence (Figures 7A,D–H). A slow
increase in IRM can be observed after the applied magnetic field

FIGURE 7 | (I) Representative IRM acquisition curves and (II) IRM component analyses of typical samples at various horizons of the Palpa section. The curves from
samples with a low χ value are shown in (A–D) and a high χ value in (E–H). Note that the coercivity distribution (gray circles) is used from IRM acquisition measurements.
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reaches 300mT, indicating less hard magnetic minerals with a
relatively high coercive force exist, which is consistent with the
thermomagnetic curves of magnetic susceptibility (Figure 5).

Similarly, the methods for demagnetization curves or
decomposing IRM acquisition provide insights into the low- and
high-coercivity mineral assemblages (Heslop et al., 2002; Egli, 2004;
Maxbauer et al., 2016). After decomposing the IRM acquisition data,
the representative samples (Figure 7B) reveal three- and two-
component model fits. The three distinct components were
obtained from the IRM component analyses (Figures 7A–C,E,F)
(Maxbauer et al., 2016). The parameter that shows themean coercivity
of an individual grain population from an assemblages of grains of a
single magnetic grain is defined by the parameter Bh. Dispersion
parameter (DP) is another parameter used as a measure of the
variability of the physical and chemical processes that affect the
grain microcoercivity. In order to calculate the relative contribution
of each component to the total measured magnetization for each
model component, the integrated area under individual component
distributions are determined by the magnetic mineral contribution
factor called as observed (OC) and extrapolated (EC) contribution
(Egli, 2004; Maxbauer et al., 2016). The major contributor to the
curves (Figures 7A–C) (component 1) have a mean coercivity of an
individual grain population (Bh) of 1.31, 1.26, and 1.49, respectively,
and a dispersion parameter (DP) of 0.30, 0.69 and 0.49, respectively,
indicating distinctive pedogenic or detrital soft components close to
magnetite-like or phase. However, component 1 varies from 1.53 to
1.88, and theDPhas values of 0.33 and 0.42 (Figures 7B,E,F), typically
indicating partially oxidized pedogenic magnetite (or hematite).
Intermediate component 2 (Figures 7A–C) is characterized by a
Bh of 0.5, 0.74, and 0.91 and a DP of 0.34, 0.58, and 0.74, respectively,
comparable to the partially oxidized pedogenic or detrital soft
component, but Bh varied from 1.17 to 1.35 and DP varies from
0.32 to 0.52 in Figures 7B,E,F, which are typical of detrital soft
components. The final component 3 (Figures 7A–C) features a Bh of
2.24, 2.32, and 2.15 and a DP of 0.78, 0.53, and 0.47, respectively,
indicating detrital soft components, but (Figures 7B,E,F) has a Bh of
0.62 and 2.23 and a DP of 0.21 and 0.34, indicating partially oxidized
pedogenic magnetite (or hematite). The decomposition of the IRM
acquisition data reveals two primary magnetic components:
component 1, characterized by a Bh of 2.06, 2.91, and 3.29 and a
DP of 0.66, 0.4, and 0.81, respectively, and component 2, characterized
by a Bh of 1.37, 1.43, and 1.71 and a DP 0.52, 0.44 and 0.27,
respectively (Figures 7B,D,G,H). These components reveal fine-
grained hematite (component 1) and partially oxidized pedogenic
magnetite (component 2) with either some detrital magnetite or a rare
biogenic soft component (Egli, 2004; Lascu and Plank, 2013;
Maxbauer et al., 2016).

DISCUSSION

Magnetic Concentration-dependent
Parameters From Different Magnetic
Minerals in Relation to Tectonics
The magnetic concentration-dependent parameters such as χ,
χARM, SIRM, and HIRM are shown in Figure 3. In Figure 3, the

low values of magnetic parameters in the terrestrial facies suggest
low contents for the total magnetic mineral assemblage and
antiferromagnetic components. These cases could be caused by
the dissolution of fine-grained magnetite and the dissolution of
antiferromagnetic minerals through microbial activities. The
other possible driving factor could be the irregular deposition
of sediments with low heavy mineral concentrations (Snowball
and Thompson, 1990). In Figure 4C, the maximum Hc was
observed in between 31–46 m and 99–113 m (marine facies). In
addition, 2–29 m and 49–73 m (terrestrial facies) and also in
74–97 m (marine facies) display relatively lower Ms values, Hc,
and Mrs/Ms ratios (Figures 4A,B,D). When very strong linear
relationships exist between Mrs and χ, it suggests that the source
of the magnetic minerals remains unaffected (Caitcheon, 1993;
Eriksson and Sandgren, 1999; Meena et al., 2011). However, in
Figures 8A,B, Mrs and χ show a very poor linear relation (R2 �
0.0006) for 31–46 m and R2 � 0.1321 for 73–113 m, inferring
more possible sources for these existing magnetic inclusions
(Figure 3) in the marine realm in the study area. In addition,
a positive linear relationship (R2 � 0.8251 and 0.883) exists
between Ms and Mrs (Figures 8C,D) that denotes the
magnetic concentration is controlled by magnetic mineralogy.

Figures 3, 4 show two distinct breaks in the curves respective
to the significant change in the depositional setting (Figure 2),
showing higher concentrations of primary magnetic grains with
higher coercivity mineral assemblages, especially
antiferromagnetic minerals or harder minerals, such as
hematite. The presence of paramagnetic minerals (e.g., Fe-
silicates and Fe-oxyhydroxides) or weak magnetic oxides in
the study area show low χ values (Figure 3A), probably
associated with the allochthonous type and migrated through
different fluvial channels or in situ environments. A gradual
increase in χfd% (Figure 3B) occurs in the siltstone, siliceous
sandstone, and conglomerate beds of terrestrial facies, while the
shale and siltstone beds bear less-weathered mineral grains
resulting in higher χ and lower χfd% spikes in the marine
facies. In contrast, the marine facies exhibit higher SIRM,
HIRM, and χ values but lower χARM values than the
terrestrial facies (Figure 3A,C–E). The greater values of these
magnetic concentration-dependent parameters (Figure 3A,D,E)
are probably induced by the drying phase of soil wetting/drying
cycles through magnetite and Fe3+ oxide dissolution and/or
drying by Fe3+ oxide during neoformed ultrafine magnetites
(Fischer, 1988; Maher, 1998). Meanwhile, the χARM shows
higher values (Figure 3C) formed by weak early diagenesis.
Generally, the weak early diagenesis is affected by the local
climatic environment during intense moist and sporadically
reduced conditions, exhibiting wet and/or wet and warm
conditions (Maher, 1998; Maher and Thompson, 1999; Maher
et al., 2003). During this time, minor fluctuations in sea level have
occurred (Müller et al., 2008), which in turn enhanced
precipitation-induced erosional rate and deposits influx of
magnetite- and hematite-bearing channel siltstone and shale
(Figures 3G,H) into the existing basin or the continental shelf.
Importantly, there was a constant collision-induced uplift of the
Himalayan-Tibetan Plateau in this region. This leads to change in
the sedimentary depositional environment (terrestrial and/or
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marine environments) with soft and hard magnetic minerals
(Figures 8A,B) and provenance, which altered the channel
inflows, continental weathering, erosion rate, and production
of organic material within the depositional basin and modified
the magnetic mineralogy to higher coercivity mineral
assemblages (Figures 8C,D and Figure 9). The active tectonics
highly influenced the concentrations of ferromagnetic minerals,
such as magnetite, and hard minerals (e.g., hematite), which
govern the magnetic signal within deposits forming in
depositional environments that can be affected by changes in
the regional climate (Figure 9).

Prevailing Tectonic Control on the
Depositional Basin
The dynamic geomorphological features formed as a result of
collision and uplift of the Himalaya, inducing cycles of
transgression and regression, precipitation, and weathering
causing rapid denudation. During the course of northward
advancement of the Indian Plate, the basin plains might have
had low areas with relatively constant deposition, in which
changes in subsidence caused shifts between terrestrial and
marine environments, adjusting the basin framework (e.g., the
basins of Barahakshetra in the east, Tansen in the center, Tulsipur
in the west and Birendranagar in the far west of Nepal). A simpler

model can be postulated for the paleodepositional environment
assessment of the late Cretaceous to middle Eocene strata
(Figure 9). Zone I starts with a basal fluvial detritus in the
form of siliceous sandstone followed by a pebbly conglomerate
(Figures 2, 3), through local high-energy ephemeral channel
systems derived from the adjacent highlands (not highly-
elevated mountains), as a result of erosional processes, in
response to active tectonics. These sediments are enriched in
Fe-silicates and Fe-oxyhydroxides and some ferruginous nodules,
probably showed earlier diagenetic processes under anoxic
conditions (reducing conditions) developed by bacterial
activities in the organic materials, and the high sulfate content
possibly under brackish conditions, and occasionally under
nonmarine conditions (Figure 2 and Figure 9A) (Harder,
1989; Yoshida et al., 1998; Shouyun et al., 2002). In addition,
the multiple thin coal layers in zones I, II, and IIIA, with some ash
and sulfur, sandwiched between greenish-gray sandstone and
siltstone in zone I (Figure 2), originated from a peat swamp in a
thick forest moor in a humid and marshy environment. These
deposits probably formed within a reducing environment during
the still-stand phase of marine transgression (Potter et al., 1980;
Riegel, 1991; Sarkar and Prasad, 2000; Singh et al., 2010). Besides,
the zones I, IIIA, and V consist of sandstones, conglomerates, and
interbedded shales and sandstone which exhibit comparatively
lower rock magnetic parameters values (χ, SIRM, and HIRM

FIGURE 8 | (A-B) Bivariate plot of χ versus Mrs, a very low linear relation among both the concentration dependent. (C-D) Linear relation between Ms and Mrs
display the magnetic mineral concentration for marine environment (31–46 m and 73–113 m).
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values) (Figure 3), than zones II and IV and characterizes soft
magnetic mineral assemblages. The repeated interbedding of
carbonaceous sandstone and shale in zones I and IIIA
(Figures 2, 3) by prograding low-energy fluvial systems can be
linked with marginal marine influences, such as delta front
environments (Figure 9B) (Mazumder et al., 2017).
Meanwhile, the asymmetrical ripple marks in light gray
siliceous sandstone (e.g., zone IIIA) also indicate deposition
under fluvial conditions (Debenay and Guillou, 2002). These
fluvial cycle changes after the transgression caused thick gray-
green sandstone and occasional gray-red sandstone deposits in
zone IIIA (Figures 2, 3).

Besides, the red-yellow weathering in the carbonaceous
siltstone (e.g., zone II) and the gray-green silty shale followed
by dark carbonaceous shale (e.g., from zone IIIB to IV)
(Figure 2), formed due to higher organic production and
relative oxygen-deficient bottom water caused by dysoxic or
anoxic conditions, probably in a warm climate (Figure 9A)
(Wignall, 1991; Lash and Blood, 2014). They show relatively
high values of χ, SIRM, and HIRM, though not χARM, and
relatively low values of χfd% (Figure 3). These high values are due
to higher coercivity mineral assemblages such as the
predominance of hematite over magnetite. The formation of a
black shale to the upper part of green-red shale (e.g., zone IV)
(Figure 2), indicates erosion from surrounding highlands and a
eustatic sea level rise leading to marine invasion (Figure 3H).

This condition usually occurs in calm water with low flow
velocities associated with a weakened flooding phase (Allen,
1980; Sahni et al., 2004; Sisodia and Singh, 2000), and signifies
the gradual regression of the Tethys Sea (Valdiya, 1980;Wells and
Gingerich, 1987; Mathur, 1990; Srivastava and Kumar, 1996) (in
Nepal, we termed it the Bhainskati Sea) with a hiatus in the
deposition. This type of sedimentation in a euxinic environment
might have been developed in a shallow sea with some tidal
influence, such as in a protected lagoon with mud zones and tidal
flats (Figure 9B) (Wallace-Dudley and Leckie, 1993; Willis et al.,
1999; Bhatia and Bhargava, 2006; Singh et al., 2010; Krim et al.,
2017). The fine sediments (e.g., zone II) are thought to have been
derived from the Indian cratonic succession and the
remobilization of previously deposited arenaceous sequences
(Garzanti, 1999), originally by a northward-flowing drainage
system in the late Cretaceous time (Gansser, 1964; Sakai, 1983;
DeCelles et al., 1998; DeCelles et al., 2004; DeCelles et al., 2014).
However, the sediments of zone IIIB and IV include mixed
recycled Indian craton concealed basement rocks (probably
from the northeastern volcanic rocks of India) and the
Himalayan units (probably the Tethyan sedimentary rock
sequences) (DeCelles et al., 2004; Gehrels et al., 2011). The
iron ore deposits in high-grade metasedimentary and low-
grade volcano-sedimentary rocks in the Singhbhum and
Bundelkhand Cratons of greenstone belt successions (from the
Indian subcontinent) (Saha, 1994; Mukhopadhyay et al., 2008;

FIGURE 9 | (A) The plausible process for varied magnetic mineral composition in a depocenter in an active tectonic system: uplift slowly decreases in the southern
part but increases rapidly in the northern part, in the Nepal Himalaya. (I) and (II) illustrates the depositional setting of how continental block detritus and magnetic minerals
accumulate in a basin, in response to the tectonically active and inactive conditions. This type of depositional setting most likely controlled χ variation. (B) Schematic
representation of the changes in the potential paleodepositional environments of the Amile and Bhainskati formations in the Lesser Himalaya, Nepal. It shows the
probable accumulation of terrestrial and marine deposits (e.g., fine sediments or in the form of molasse deposits) during the marine transgression/regression process,
with respect to the tectonic uplift during and after the Indian-Eurasian collision, ultimately affecting the magnetic enrichment within the basin.
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Chattopadhyay et al., 2015; Mukhopadhyay, 2020) might have
been transported to the Amile and Bhainskati formations. Also,
the metasediments from the Bastar Craton (Dora et al., 2020) and
other metamorphosed rocks from the Aravalli Craton (Crawford,
1970) are thought to be present occasionally in the late
Cretaceous to middle Eocene strata.

It is interesting to point out that the relative rise in sea level
drowned the southern highlands, and a shallow marine
environment developed briefly in the late Cretaceous strata
and ceased with a progressive shift to continental
sedimentation. Some larger foraminifera, oysters, sharks,
pelecypods (bivalves), gastropods, echinoids, screleactinean
corals, and vertebrate fossils are reported from the argillaceous
limestone of the Amile Formation (middle part) (e.g., zone II)
(Sakai, 1983), acted as barriers (Figure 9B) (Wright and
Burchette, 1996). Furthermore, the larger foraminifers (Sakai,
1983; Matsumaru and Sakai, 1989), bivalves, gastropods,
Teleostei, Asteracantus sp., Chelonia and Trionichidae
carapaces (Sakai, 1983), and pristichampsinae (Sah and
Schleich, 1990) in the Bhainskati Formation (e.g., zone IV)
have been interpreted as indications of an aquatic
environment, allowing productive shallow sea level conditions
(Reineck and Singh, 1980). As the reflooding caused the
deposition of basal intraformational conglomerate (mud-
pebble conglomerate) beds (e.g., zone v) (Dumri Formation)
(Figure 2) eroded from the northern uplifted mountain ranges
during the late Oligocene to early Miocene. It represents the final
regression uplift caused by the tectonic stress in the Himalayan
belt. The cessation of deposition could correspond to the timing
of the India-Asia collision and the disappearance of the
Bhainskati seaway in the Nepal region as a result of
Himalayan uplift. Furthermore, the lack of mud cracks in the
study area indicates that the basin was not completely in the
shallowing stage and that exposure of the sediments did not occur
under totally dry conditions. We also argue that the local
geomorphology played a significant role in the development of
magnetic mineralogy in this section and that the nature of
sediment influx (of either autochthonous or allochthonous
origin) was influenced by local drainage patterns and seawater
conditions in the depositional basin, with enhancement by active
tectonics.

CONCLUSION

The results suggest the complex mechanisms operating during
the collision between the Indian and Eurasian plates and the early
stages of uplift of the Himalayan orogen. Firstly, the major change
inferred from abrupt breaks in the χ, SIRM and HIRM, and
lithological differences, which are concluded to have developed
due to the modification of the depositional environment during
the deposition of the late Cretaceous to middle Eocene strata.

Secondly, the active tectonics influenced SIRM, HIRM, and
hysteresis loops with the concentrations of ferromagnetic
minerals, such as magnetite, and hard minerals (e.g., hematite)
formed in the terrestrial (zones I, IIIA, and V) and marine (zones
II, IIIB and IV) facies respectively. We suggest that the
forementioned rock magnetic changes from the sediments
during the late Cretaceous to middle Eocene had been affected
by the alternating warm-dry and warm-humid regional climate
associated with the regression and transgression of the Tethys Sea
as a result of the Indian-Eurasian collision.
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