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Evident climate change has been observed and projected in observation records and
General Circulation Models (GCMs), respectively. This change is expected to reshape
current seasonal variability; the degree varies between regions. High-resolution climate
projections are thereby necessary to support further regional impact assessment. In this
study, a gated recurrent unit-based recurrent neural network statistical downscalingmodel
is developed to project future temperature change (both daily maximum temperature and
minimum temperature) over Metro Vancouver, Canada. Three indexes (i.e., coefficient of
determinant, root mean square error, and correlation coefficient) are estimated for model
validation, indicating the developed model’s competitive ability to simulate the regional
climatology of Metro Vancouver. Monthly comparisons between simulation and
observation also highlight the effectiveness of the proposed downscaling method. The
projected results (under one model set-up, WRF-MPI-ESM-LR, RCP 8.5) show that both
maximum and minimum temperature will consistently increase between 2,035 and 2,100
over the 12 selected meteorological stations. By the end of this century, the daily maximum
temperature and minimum temperature are expected to increase by an average of 2.91°C
and 2.98°C. Nevertheless, with trivial increases in summer and significant rises in winter
and spring, the seasonal variability will be reduced substantially, which indicates less
energy requirement over Metro Vancouver. This is quite favorable for Metro Vancouver to
switch from fossil fuel-based energy sources to renewable and clean forms of energy.
Further, the cold extremes’ frequency of minimum temperature will be reduced as
expected; however, despite evident warming trend, the hot extremes of maximum
temperature will become less frequent.

Keywords: climate change, statistical downscaling, regional climate model, long-term projection, recurrent neural
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INTRODUCTION

Distinct impacts of climate change on Canada are being observed. The increasing rate of temperature
over Canada is near twice the global rate (Canada in a Changing Climate, 2019). The relevant
mitigation and adaptation measures are thereby required to be updated. The first step is to generate
suitable climate projections over selected study regions. Global climate models (GCMs) have been
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widely used to conduct large-scale climate change impact
assessment through their coarse-scale climate projections
(100–300 km resolution) (Wang et al., 2015; Tian et al., 2020).
However, it is also necessary to evaluate the impacts of climate
change at regional levels to understand their interrelationships
with larger-scale socioeconomic processes and geographical
features (Pérez et al., 2014; Jury et al., 2015; Notaro et al.,
2015). To advance the representation of local climate,
downscaling techniques are critical for obtaining high-
resolution climate projections via handling the spatial
mismatch between GCMs and regional climatology (Hessami
et al., 2008; Roberts et al., 2019; Shrestha and Wang, 2020).

Previous studies have been conducted to develop a wide range
of downscaling algorithms which can be divided into two
categories: dynamic and statistical downscaling (Hewitson and
Crane, 1996; Yu et al., 2020). Regional Climate Models (RCMs),
the representative dynamic downscaling approach, could
downscale the climate data from GCMs or continental
reanalysis data through physical mechanisms. More
importantly, dynamic downscaling can generate out-of-sample
data that previously were not observed for climate projections
(Feser et al., 2011). However, it would become difficult to obtain
high-resolution climate data through RCMs with limited time or
computation resources. By contrast, by building the statistical
relationship between coarse-scale atmospheric variables and
locally observed climate data, statistical downscaling could
quickly generate a great number of possible outcomes under
moderate computation requirements (Wilby et al., 2004; Li et al.,
2020).

Diverse studies aimed at using statistical downscaling
algorithms to support climate change impact assessments.
Wang et al. (2013) developed a statistical downscaling
software, SCADS, for downscaling climate projection based on
stepwise cluster analysis. An application of this software was
presented to generate 10 km-resolution daily temperature and
monthly precipitation projections in Toronto, ON, Canada.
Bechler et al. (2015) proposed a spatial hybrid downscaling
(SHD) algorithm to overcome the defect that statistical
downscaling cannot well capture the extreme behavior and
features of spatial structures. To further display the superiority
of the proposed method, the authors applied it to the French
Mediterranean basin where extreme events occurred frequently.
In addition, Chen et al. (2012) provided a thorough evaluation of
different downscaling methods and hydrological models with two
reanalysis data, suggesting that some widely used evaluation
criteria were not effective to evaluate certain downscaling
approaches. GIS-based statistical downscaling methods were
also common tools for handling the GCM’s poor simulation of
local climatology. Ashiq et al. (2010) utilized various
interpolation models within the GIS environment to
downscale PRECIS precipitation data, which filled the gap in
the lack of credible precipitation data for Pakistan. In detail,
inverse distance weighted, local polynomial interpolation, and
radial basis functions were combined as deterministic methods.
The core of selected geostatistical models was ordinary kriging
and its extension which relies on the spatial autocorrelation in
models. Moreover, multidimensional GCM ensembles were

downscaled statistically with a GIS-based downscaling
environment by Gharbia et al. (2016a). Temperature, rainfall,
wind speed, solar radiation, and relative humidity were projected
at a finer spatial resolution applying the proposed method.
Gharbia et al. (2016b) also provided the performance
assessment for multi-GCM ensemble based on statistically
downscaled fine-scale data through the GIS platform.
Compared to a single GCM, GCMs ensemble in downscaling
climate variables could effectively reflect the uncertainty, and
consequently provide more reliable climate projections for
further impact assessment studies.

Deep learning techniques, especially, recurrent neural network
(RNN), have been widely used in modeling sequence
dependencies that exist in many fields (e.g., image processing,
and language translate) (Le et al., 2020; Westermann et al., 2020).
Nevertheless, few applications could be found in climate
downscaling field. Moreover, since vanishing/exploding
gradient problems are inevitable in naïve RNN, gated
recurrent unit (GRU) technique is also applied in this study.
On the other hand, owing to complex microclimate system of
Metro Vancouver (MV), limited studies can be found regarding
its high-resolution regional climate projections.

Thus, this study will focus on MV, where thirteen of British
Columbia’s thirty most populous municipalities are located. This
area is experiencing evident climate change with increasing
daytime and nighttime temperatures, particularly in winter,
following by consequential fewer winter days with ice or frost.
In addition, motivated by the success of RNN in capturing
complex non-linear relationships between time-dependent data
(LeCun et al., 2015), a GRU-based RNN statistical downscaling
method followed by Tian et al. will be developed to generate
temperature projections (both daily maximum temperature and
minimum temperature) for further impact assessment of MV.
Details of the case study area and developed downscaling method
are given in the next section.

OVERVIEW OF THE STUDY SYSTEM

MV is bordered by fold mountain ridges to the north, the Pacific
Ocean to the west, and the semi-arid Fraser Valley to the east,
which results in a complicated microclimate system with
growing urban heat island effects (Hay and Oke, 1976; Oke,
1976). As one of the most developed regions in the province of
British Columbia (BC), Canada, MV is committed to becoming
a carbon-neutral region by 2050 (Arcand et al., 2018). Switching
from fossil fuel-based energy sources to renewable and clean
forms of energy is consequently essential to decarbonize MV’s
energy system (Zeng et al., 2011). Nevertheless, evident global
warming has been changing the weather patterns. For example,
it may increase the summer hot days of MV. Measures such as
redesign of provincial energy infrastructures are needed for
mitigation and adaptation under climate change (Metro
Vancouver, 2018). Therefore, it is desired that high-
resolution climate projections representing local climate
features of MV be generated to support further impact
assessment under climate change.
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To undertake high-resolution climate projections, 12 high-
quality meteorological stations are selected, as shown in Figure 1.
Daily minimum andmaximum temperature observations at these

stations are obtained from Environment and Climate Change
Canada, representing the realistic climate of MV (Historical
data). Temperature simulation from RCMs displays poor

FIGURE 1 | The spatial distribution of 12 selected meteorological stations.

TABLE 1 | Original performance of RCM outputs and validation results (all monthly data between 1996 and 2005) of the developed downscaling model.

Original data (RCM) Downscaled data

R2 r RMSE (°C) R2 r RMSE (°C)

BURNABY SIMON FRASER U (BSFU) max 0.74 0.93 2.93 0.89 0.95 1.93
min 0.71 0.84 3.86 0.87 0.96 1.56

BURQUITLAM VANCOUVER GOLF COURSE (BVGC) max 0.66 0.93 3.67 0.93 0.96 1.68
min 0.56 0.92 2.96 0.92 0.96 1.28

DELTA TSAWWASSEN BEACH (DTB) max 0.37 0.92 4.29 0.95 0.97 1.26
min 0.84 0.93 1.65 0.9 0.95 1.33

HANEY EAST (HE) max 0.57 0.83 4.21 0.93 0.96 1.75
min 0.55 0.87 3.1 0.85 0.92 1.81

HANEY UBC RF ADMIN (HURA) max 0.57 0.94 4.21 0.92 0.97 1.83
min 0.37 0.89 3.51 0.86 0.93 1.68

N VAN SEYMOUR HATCHERY (NVSH) max 0.63 0.94 4.09 0.97 0.98 1.21
min 0.35 0.92 3.04 0.96 0.98 1.02

PITT POLDER (PP) max 0.4 0.93 5.09 0.91 0.97 1.99
min 0.64 0.98 2.57 0.99 0.99 0.44

PORT MOODY GLENAYRE (PMG) max 0.72 0.93 3.22 0.91 0.96 1.85
min 0.47 0.96 2.82 0.99 0.99 0.06

RICHMOND NATURE PARK (RNP) max 0.13 0.91 5.77 0.92 0.97 1.76
min 0.71 0.92 2.48 0.9 0.95 1.49

SURREY MUNICIPAL HALL (SMH) max 0.75 0.96 3.03 0.98 0.99 0.81
min 0.69 0.97 0.98 0.98 0.99 0.18

VANCOUVER HARBOUR CS (VHC) max 0.23 0.92 4.91 0.9 0.95 1.78
min 0.83 0.94 1.74 0.92 0.96 1.16

VANCOUVER INTL A (VIA) max 0.39 0.93 4.36 0.93 0.97 1.43
min 0.81 0.94 1.99 0.93 0.96 1.25
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performances compared to these observations (Table 1). Thus, to
combine the advantages of dynamical and statistical downscaling,
in this study, RCM outputs (25 km × 25 km), both historical and
projected, are selected to support the developed downscaling
work. The outputs (WRF-MPI-ESM-LR) are acquired from the
NA-CORDEX where climate projections cover most of North
America (Mearns et al., 2017). NA-CORDEX is the North
American component of the international CORDEX
(Coordinated Regional Downscaling Experiment) program
which has been providing global coordination of regional
climate downscaling for improved regional climate change
adaptation and impact assessment. The selected historical
RCM simulations are driven by the ERA-Interim historical
reanalysis; future projections are driven by a GCM (MPI-
ESM-LR) using representative concentration pathways 8.5
(RCP 8.5). With the local-scale observations over MV, the
GRU-based RNN statistical downscaling model (detailed
information is displayed in the next section) will be developed
to correct/downscale gridded simulations (daily maximum/
minimum temperature) from the selected RCM. The time
series is divided into two time slots, i.e., 1986–1995 for
calibration, and 1996–2005 for validation.

GATED RECURRENT UNIT-BASED
RECURRENT NEURAL NETWORK
DOWNSCALING MODEL
Deep learning with multiple hidden layers is employed to
represent complex functions in a series of fields (e.g., image
analysis, language analysis, and runoff prediction) (Ordieres-
Meré et al., 2020). Recurrent neural network (RNN, first
developed by Hopfield (2018)), as a class of deep learning, has
been applied to capture complex non-linear relationships,
especially for time-dependent data as it allows forward and
backward connections among time steps. It is found that with
acceptable correlation, RNN performs better ability to capture the
non-linear relationship than some traditional data-driven
models. Considering the complicated non-linear relationship
that exists between relatively coarse-scale simulation and
realistic temperature observations, RNN statistical downscaling
model followed by Tian et al. (2021) is developed for generating
high-resolution temperature projections for MV. The minimum
and maximum temperature projections from RCM will be
downscaled, respectively.

RNN basically consists of the input layer, multiple hidden
layers, and the output layer, as expressed in Eq. 1. Since the
superiority of back propagation arithmetic (Li et al., 2010), RNN
models can display impressive memory ability to store
information from the last time step, and then decide the
current outputs combined with the current outputs. However,
when the time steps are large, the deeper layer is, the easier would
the error of partial derivative accumulate. Specifically, the
gradient will get quite small, leading to the weight in larger
time steps becoming constant, which is generally known as the
vanishing gradient problem. By contrast, substantial updates of

weights in antecedent time steps, i.e., exploding gradient, will also
significantly impact the accuracy of RNN training.

y � 〈∑
m

i�1
xiWi + b〉 (1)

where angle brackets denote an activation function; xi is the input
variable; Wi is the vector of weight assigned to corresponding
input variable; b is the bias term.

Gated recurrent unit (GRU) technique is developed to handle
the above-mentioned vanishing/exploding gradient problem.
Different from a typical RNN, a reset gate and update gate are
added in the hidden block (as shown in Figure 2), which aimed to
forget the unnecessary state/input from the last/current time step.
Thus, it can effectively avoid the vanishing/exploding gradient
problem, and meanwhile, make the computation simpler. Albeit
the application of GRU-based RNN in statistical downscaling is
still in infancy, it has been demonstrated to perform better
capability to capture time-dependent relationships with limited
correlation between simulation and observation (LeCun et al.,
2015). In detail, the GRU-based RNN can be represented as
follows:

Ugu � 〈Wu · x(t) + Uu · S(t−1) + bu〉 (2)

Rgr � 〈Wr · x(t) + Ur · S(t−1) + br〉 (3)

Ŝ
(t) � tanh〈Ws · x(t) + Us · (Rgr × S(t−1)) + bs〉 (4)

S(t) � UguŜ
(t) + (1 − Ugu)S(t−1) (5)

whereW and U are related weights; Ugu is the update gate aimed
to learn long-term dependency relationship between coarse-scale
RCM simulation and temperature observation, which is
determined by both hidden state from the last time step S(t−1)
and the present input x(t); Rgr is the reset gate applying the
activate function of sigmoid to the linear transformations of x(t)
and S(t−1), which is used to capture short-term dependency
relationship between time-dependent data; Ŝ

(t)
and S(t)are the

candidate state and final cell state, respectively; Ŝ
(t)
is generated by

the current input and the reset gate employing activation function
of tanh; S(t)considers both last final cell state and candidate state.
The parameters in the update/reset gate range from 0 to 1;

FIGURE 2 | Neuron network of GRU.
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estimated values are used to determine whether the last state
should be updated/reset.

In addition, to avoid over-fitting, dropout technique is applied
in this study. Specifically, certain probabilities will be assigned in
k neurons of a certain layer; in this way, relevant parameters will
not be updated within each training iteration. That is, the final cell
state would not be overly reliant on certain neurons of the hidden
layer. The detailed structure and model settings can refer to Tian
et al. (2021). Besides, three model evaluation criteria,
i.e., determinant coefficient (R2), root mean square error
(RMSE), and correlation coefficient (r), are used to evaluate
the GRU-based RNN statistical downscaling.

RESULTS AND DISCUSSION

Validation Results
To validate the calibrated GRU-based RNN downscaling model,
the daily maximum and minimum temperatures in the baseline
period (i.e., 1985–2005) are generated via the proposed
downscaling model. The produced temperature values are then
compared with meteorological observations at 12 selected
stations of MV. The R2, RMSE, and r are calculated as indexes
to characterize the downscaling capability of the developed
approach. The validation results of monthly maximum and
minimum temperature for observation and simulated values at
the 12 weather stations are displayed in Table 1. Also,
temperature observations are compared to the original outputs
from RCM, indicating the necessity of downscaling work.

It is quite clear that for maximum temperature, most of the
R-squared coefficients over the 12 meteorological stations are
higher than 0.88. The highest value could be achieved at 0.98
(SMH station), while the lowest value is obtained at BSFU station
(0.89). The overall performance of the presented downscaling
model for maximum temperature is stabilized with the average
R-square value being 0.93. Compared to the outputs of RCM, the
other two indexes (r and RMSE) also suggest the good
downscaling capability of the developed model. For instance,
the value of RMSE at VHC station could be decreased from
4.91–to 1.78. However, the performance for minimum
temperature varies relatively greatly at the 12 stations, which is
not as satisfactory as that for maximum temperature. Though the
highest value could be reached as high as 0.99 (PP station and
PMG station, corresponding to 0.64 and 0.47 of original RCM
outputs, respectively), the lowest R2 is only 0.85 for HE station.
Moreover, another two stations display relatively poor
performance with the values being lower than 0.88 (0.87 of
BSFU and 0.86 of HURA). Alpine and coastal areas have been
one of the challenges in climate simulation for both GCM and
RCM. Despite a few stations are not quite ideal and competitive
with previous studies of other regions, compared to RCM
outputs, prominent improvements could be found in all the
indexes after employing the developed GRU-based RNN
downscaling model. Therefore, the overall performance of the
calibrated model could still be competitive.

To further investigate the performance of the presented
downscaling model, the monthly means of maximum and

minimum temperature are compared between the simulated
outputs and the observed temperature data. As displayed in
Figures 3, 4, apart from few stations (e.g., HE and PMG
stations) showing evident under- or overestimate compared to
observations, most of the simulated temperature could well fit
with the monthly variation of observations, especially for the
stations with high R2/RMSE values (e.g., PP and SMH stations).
In other words, the proposed downscaling model is able to well
capture the overall seasonal and spatial patterns of MV. This
further affirms its acceptable performance in simulating both
maximum and minimum temperature at 12 selected weather
stations. In addition, to filter out potential effect of annual cycle
on the performance of the developed downscaling model,
seasonal (i.e., spring, summer, autumn, and summer)
validation is undertaken to further indicate the model’s
effectiveness (see Supplementary Tables S1–S4). Despite with
relatively poor performance in winter owing to quite limited
correlation between RCM simulations and observations,
significant improvement could be found for most of the
stations compared to validation results of original RCM
outputs, which suggests that the developed downscaling model
is able to correct RCM seasonal errors. Therefore, albeit complex
microclimate resulting in limited researches regarding the
downscaling work at MV, the developed GRU-based RNN
downscaling model is demonstrated to be effective to
downscale the daily maximum and minimum temperature
of MV.

Projections of Future Daily Temperature
High-resolution temperature projections for MV are obtained
from 2035 to 2100 by downscaling the 25 km outputs from WRF
under RCP 8.5 scenarios with the validated GRU-based RNN
downscaling model. The trend analysis in daily maximum and
minimum temperature is then applied to understand future
changing tendency across the selected 12 stations of MV
under RCP 8.5 scenario. It should be noted that p-value <
0.01 (α � 0.01) suggests that the future temperature performs
a statistically significant tendency during 2035–2100. Figure 5
displays the downscaled projections of daily maximum
temperature, and future tendencies of 12 weather stations
which are estimated by Sen’s slope estimator (Dong et al.,
2021; Song et al., 2021). It can be seen that all stations show
consistent and remarkable warming trends with all of the
probability values being less than 0.0001. The trend at each
station also tells a different story owing to the spatial pattern
of MV. Themost significant increasing trend is projected to warm
by approximately 0.0037°C per month for NVSH station, which
means that NVSH station would increase ∼2.9°C by 2100. Also,
the coastal station (e.g., DTB station) shows a similar warming
trend (0.0036°C per month), taking second place among 12
meteorological stations. One may be easy to ignore is that
both coastal (DTB and SMH stations) and inland stations
(NVSH and PP stations) display significant warming trends in
the next 65 years, which further highlights the complex climate
context of MV. By contrast, the estimated warming trends at
stations in highly urbanized regions such as VIA station (City of
Richmond, 0.0025°C per month) and VHC station (City of
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Vancouver, 0.0019°C per month) are not the most significant as
expected. In addition, the lowest warming tendency is estimated
at BSFU station located in City of Burnaby. Compared to
varying warming trends for maximum temperature, the
degree of daily minimum temperature increasing is more
consistent as shown in Figure 6. Similarly, the hypothesis

testing indicates that 12 meteorological stations will have
significant changes in the next 65 years. Instead of displaying
relatively different warming trends for the maximum
temperature, the trends of minimum temperature ranges at a
comparatively lower level (from 0.0022°C to 0.0031°C per
month). City of Richmond and City of Vancouver remains at

FIGURE 3 | Monthly comparisons between maximum temperature simulation and observation.
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the middle level of the warming trend, with the same trend value
of 0.0024°C per month. On the other hand, a much more
significant warming trend (0.0026°C per month) is displayed
in the minimum temperature over BSFU station, in comparison
with its maximum temperature. Furthermore, similar to the
pattern of maximum temperature, both coastal and inland

stations (DTB and NVSH) display consistently noticeable
warming tendency; the minimum temperature would increase
by 2.34°C to the end of this century. Despite less variability of
trend values, the average value for monthly minimum
temperature could still be as high as 0.0027°C per month for
the whole MV region.

FIGURE 4 | Monthly comparisons between minimum temperature simulation and observation.
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FIGURE 5 | Projected trends of daily maximum temperature between 2035 and 2100.
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FIGURE 6 | Projected trends of daily minimum temperature between 2035 and 2100.
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Further, Figures 7, 8 present projected time series of
maximum and minimum temperature at annual and seasonal
time scales over the 12 weather stations from 2035 to 2100. For
both plots, it is quite clear that all 4 seasonal time series display
increasing temporal patterns from 2035 to the end of this century,
which further confirms mentioned trend analysis. Interestingly,
the increasing tendency in summer is not quite significant as
expected, especially for maximum temperature. This suggests that
even under RCP 8.5 scenario, the frequency of extreme hot events
would not increase substantially, which seems good news for MV.
On the other hand, it can be seen that winter and spring time
scales have more predominant temporal variability. Considering
these two patterns, MV is projected to experience less seasonal
temperature variability under the global warming trend. Besides,
maximum temperature values fluctuate between 2035 and 2060
with a relatively significant peak between 2060 and 2080, and
continuously undulate with an overall increasing tendency
instead of a constantly rising trend. Specifically, the patterns of
HURA and VIA stations are relatively notable. Moreover,
consistent plunges across 12 stations could be found in the
wintertime series around 2065. By contrast, projected mean
values on annual and autumn’s time scales display successive

warming trends with little temporal variability. Accordant with
the results of trend analysis, the maximum temperatures of
NVSH and DTB stations increase consistently with constant
notable crawling. As for the minimum temperature plot
(Figure 8), it displays similar overall patterns with that for
maximum temperature. The difference is, more evident
fluctuations between 2035 and 2060 are shown in winter and
spring. Besides, there are sharper increases between 2060 and
2070 compared to that of maximum temperature. The annual
warming tendency is not as pronounced as that for maximum
temperature but more consistent, which further demonstrates the
comparison in previous trend indexes.

To better explore future changes of projected temperature in
the 12 meteorological stations, the future projections of daily
maximum and minimum temperature are divided into three
periods (the 2030s, 2050s, and 2080s, i.e., 2035–2054,
2055–2074, and 2075–2100). The projected climate changes
are calculated based on the mean temperature of three periods
under RCP 8.5 as well as that of the 20 years baseline,
i.e., historical periods from 1985 to 2005. The projections of
changes in daily maximum and minimum temperature under

FIGURE 7 | Annual and seasonal time series of projected daily maximum
temperature between 2035 and 2100.

FIGURE 8 | Annual and seasonal time series of projected daily minimum
temperature between 2035 and 2100.
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RCP 8.5 scenario could be further analyzed at the 12 selected
weather stations.

Figure 9 depicts the baseline simulated maximum and
minimum temperature, as well as future annual temperature
changes of 12 selected stations for the 2030, 2050, and 2080 s
under RCP 8.5. RNP and SMH stations (located at City of
Richmond and City of Surrey, respectively) show the highest
maximum temperature during the baseline period; while for the
minimum temperature, VHC and DTB (located at City of
Vancouver and District of Delta, respectively) are the top two

stations. As for the future changes, the results suggest that the
simulated annual maximum temperature changes would increase
consistently across the 12 weather stations from the near term to
the end of this century. Instead of RNP and SMH stations, the
changes in the annual maximum temperature for District of Delta
(DTB station) and City of Coquitlam (PMG station) are the most
significant, with change values being 1.76°C and 1.67°C in the
2030s, 2.69°C and 2.40°C in the 2050s, as well as 3.93°C and 3.26°C
to the end of this century. These cities would face more serious
positive changes in maximum temperature, which may increase

FIGURE 9 | Baseline temperature (A) and projected changes over 2030s (B), 2050s (C), and 2080s (D).
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the cooling requirement of buildings within summer. In addition,
NVSH station ranks third and also reveals conspicuous positive
changes. The projected change of its maximum temperature
would be 1.53°C in the near term, 2.48°C in the 2050s, and
3.44°C in the 2080s, respectively. It is interesting that even if some
stations (e.g., VIA and VHC stations) display relatively gentle

increasing rates in previous trend analysis, considerable positive
change will still occur. In particular, to the end of this century,
almost half of the selected stations will increase by ∼3°C in
comparison with the baseline maximum temperature. Potential
impacts from positive changes under the high radiative value of
RCP 8.5 still have to be faced in the future. For the minimum

FIGURE 10 | Monthly baseline and projected changes of 2075–2095 for maximum temperature.
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temperature, similar to patterns of the maximum temperature,
the entire MV region (12 stations) displays an obvious rising
tendency from the 2030s–2080s. Even for the least positive
change of PP station located in District of Pitt Meadows
would increase from 0.29°C in the 2030s to 1.16°C in the
2050s, and then continue to as high as 2.16°C in the 2080s.

The greatest warming in the minimum temperature still occurs in
the PMG station (City of Coquitlam); by the 2080s, the changes
could reach as high as 4.09°C relative to the historical baseline.
Moreover, one of the highly urbanized cities, City of Richmond,
shows quite a bit increase compared to historical climate. The
positive change could reach 3.14°C at the end of this century. This

FIGURE 11 | Monthly baseline and projected changes of 2075–2095 for minimum temperature.
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may cause by the relatively lower minimum temperature in the
historical baseline. Comparatively, it is interesting to note that in
many stations, the rises of minimum temperature are greater than
those of maximum temperature, indicating the daily temperature
range of these stations is projected to become narrow under RCP
8.5 scenario.

Comparatively, the annual minimum temperature shows
more apparent spatial variability especially in the 2030s where
the highest positive change (PMG station) could achieve at more
than 8 times of the least increase relative to the baseline. Albeit
less spatial pattern is found for the annual minimum temperature,
the rising amplitude compared to historical climate is
commensurate with that for annual maximum temperature in
most stations. Overall, such a continuous rising tendency may
raise the temperature of MV by 2.28°C by the end of this century.
Both coastal and inland cities are likely to have a pronounced
climate warming trend. Unexpectedly, under RCP 8.5 scenario,
i.e., scenario for long-term high energy requirement and GHG
emissions without any climate adaptation policies, highly
urbanized cities with developed economy will not experience
more frequent hot extremes. By contrast, evident increases are
displayed in the projected minimum temperature, narrowing the
daily temperature difference in these stations.

To understand temperature projections’ temporal changes
over MV, monthly maximum and minimum temperature
changes are calculated for the specific period, i.e., from 2075
to 2095. Figure 10 displays monthly baseline maximum
temperature and specific changes of 2,075–2,095 at the 12
meteorological. It is clear that positive changes are shown in
almost every month; especially, all the 12 weather stations
consistently have significant increases in January/February/
March (the average change of all stations in these 3 months
could reach as high as 2.99°C). The mere exception to this is
that few changes could be found in July and August for most of
the stations, which further demonstrates the concluded stable
state during the summer period. The results also show that for
most stations, changes of the maximum temperature in spring
and winter are greater than those in autumn and summer. For
instance, in City of Surrey (SMH station), the positive change
values of winter and spring are 2.75°C and 3.52°C, while those for
spring and summer would be only 2.03°C and 1.38°C,
respectively. The highest positive change would be 6.47°C of
NVSH station in March rather than 3.39°C of PMG station. Most
of the increases in maximum temperature for PMG and DTB
stations are contributed by winter and spring. Stations with
relatively moderate warming trends such as VIA station also

FIGURE 12 | Frequency distributions of daily maximum (A) and minimum (B) temperature between 2075 and 2095.
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perform considerable increases in all months with the largest
increase of 5.16°C occurring in October and an average positive
change of 2.91°C. As for the monthly minimum temperature
under RCP 8.5 scenario shown in Figure 11, it can be seen that
compared to the increases in monthly maximum temperature,
more significant rises in winter and spring are displayed in
monthly minimum temperature for most of the selected
stations. More specifically, the average value in winter would
be 4.73°C, while that for maximum temperature in Figure 10 is
only at 2.97°C. In addition, evident increases could also be found
in July and August, which is consistent with previous findings.
PMG stations show the most remarkable positive changes in
nearly every month, causing the highest increases in the
aforementioned annual mean. Overall, as shown in these two
figures, it is quite clear that under RCP 8.5 scenario, the monthly
variability will be substantially reduced across all the weather
stations. The difference between the maximum and minimum
temperature will also be narrowed to the end of this century. The
results are consistent with previous conclusions.

Figure 12 displays the ∼20 years distributions (baseline period
and 2075–2095, respectively) of 12 meteorological stations.
Despite the annual increases of extreme maximum
temperature are not significant at most of the stations as
mentioned before, the frequency of relatively lower
temperature is reduced evidently since “violin” distributions of
all the stations get to top-heavy. Moreover, as shown in this figure,
the hot extreme’s frequency would not increase substantially,
which is consistent with the above-mentioned analysis.
Furthermore, since NVSH station shows the most significant
warming trend from 2035 to 2100, the frequency of higher and
lower temperatures seems to interchange in 2075–2095,
compared to the baseline period, which is different from other
stations. For daily minimum temperature, there are four stations
(i.e., NVSH, PMG, PP, and SMH stations) displaying similar
patterns, which further highlights more notable rises in
comparison with maximum temperature. In addition, top-
heavy “violin” distributions are more common in Figure 12B;
the frequency of cold extreme will experience massive declines.

CONCLUSION

In this study, a GRU-based RNN downscaling approach was
developed to tackle the spatial mismatch between coarse-scale
climate simulation and regional climatology for improving the
representation of local future climate across MV. The complex
microclimate systems under the context of the alpine and coastal
areas are usually difficult to be simulated by GCMs and even
RCMs. The proposed downscaling model was demonstrated (by
three indexes, namely, R2, RMSE, and r) to perform competitive
ability to capture the regional climatology of MV. The
effectiveness was further highlighted by the monthly
comparison, indicating that the GRU-based RNN downscaling
model could well simulate the MV’s overall seasonal and spatial
patterns.

The presented downscaling approach was then applied to
generate regional high-resolution climate projections of the

maximum and minimum temperature from 2,035 to 2,100
under RCP 8.5. Trend analysis in the next 65 years was first
conducted by Sen’s slope algorithm, which disclosed that both
maximum and minimum temperature would consistently
increase over the 12 selected weather stations. Both coastal
and inland regions may experience more significant successive
warming in the future, which revealing the complex microclimate
of MV. These results were accordant with annual and seasonal
analysis for temporal patterns. Furthermore, the future
temperature changes were analyzed to better understand the
potential impacts of climate change on MV under a high RCP
scenario. It was indicated that the entire MV (12 stations)
displayed obvious gradually increasing positive changes from
the 2030s–2080s relative to the baseline climate of each
station. In addition, both annual maximum and minimum
temperature shows apparent spatial variability, especially by
the 2080s. More importantly, it can be also found that with
negligible increases in summer (e.g., RNP and VHC stations) and
notable rises in winter and spring, the seasonal temperature
variability would be reduced substantially. Further,
surprisingly, despite evident warming trends, the hot extremes
of maximum temperature will become less frequent. On the other
hand, the cold extreme’s frequency of minimum temperature will
be reduced as expected.

Overall, the presented GRU-based RNN downscaling
approach could effectively capture the statistical relationship
between RCM outputs and realistic climatology, and
consequently combine advantages of both dynamic and
statistical methods. Thus, maximum and minimum
temperature projections could provide effective support for
further regional impact assessment in MV. However,
notwithstanding it can reflect local climate features based on
dynamical downscaling (RCM outputs), the systematic errors in
the simulated fields hidden within RCMs would be transferred
into the statistical downscaling process, which may cause
relatively poor performance of some station’s validation
(especially in winter) in this study. Besides, a wide range of
factors (e.g., input data, model selection, and parameter setup)
may result in multiple uncertainties, which would impact the
robustness of a single GCM/RCM model. Future research is
thereby desirable to introduce multiple GCM/RCM ensembles
and further investigate the inherent uncertainties to advance the
performance of the proposed downscaling approach.
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