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Streamflow prediction is one of the most important topics in operational hydrology. The
responses of runoffs are different among watersheds due to the diversity of climatic
conditions as well as watershed characteristics. In this study, a stepwise cluster analysis
hydrological (SCAH) model is developed to reveal the nonlinear and dynamic rainfall-runoff
relationship. The proposed approach is applied to predict the runoffs with regional climatic
conditions in Yichang station, Hankou station, and Datong station over the Yangtze River
Watershed, China. The main conclusions are: 1) the performances of SCAH in both
deterministic and probabilistic modeling are notable.; 2) the SCAH is insensitive to the
parameter p in SCAH with robust cluster-tree structure; 3) in terms of the case study in the
Yangtze River watershed, it can be inferred that the water resource in the lower reaches of
the Yangtze River is seriously affected by incoming water from the upper reaches
according to the strong correlations. This study has indicated that the developed
statistical hydrological model SCAH approach can characterize such hydrological
processes complicated with nonlinear and dynamic relationships, and provide
satisfactory predictions. Flexible data requirements, quick calibration, and reliable
performances make SCAH an appealing tool in revealing rainfall-runoff relationships.

Keywords: stepwise cluster analysis hydrological model, streamflow prediction, statistical hydrological, yangtze
river watershed, climate change

HIGHLIGHTS:

• A stepwise cluster analysis hydrological model (SCAH) was proposed.
• The proposed SCAH is applied in three stations runoff simulation in the Yangtze River watershed.
• Both deterministic and probabilistic predictions are generated in the proposed SCAH.

INTRODUCTION

Streamflow prediction is one of the most important topics in operational hydrology, which can
provide valuable information for water resource allocation, hydropower generation, flood risk
management, irrigation, and agricultural crop forecasting (Fan et al., 2015). A crucial task is to select
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and develop an advanced forecasting model which can effectively
model hydrological processes and provide accurate prediction
(Liu et al., 2016). The task is complicated by the many
complexities in hydrological systems such as extensive
nonlinearities, temporal-spatial variations, interactions, and
uncertainties (Solomatine and Ostfeld, 2008; Cheng et al.,
2016). During the past decades, great effort has been applied
to this issue and a series of hydrological models have been
developed to improve hydrologic prediction (Xie et al., 2020;
Wang et al., 2021c). These hydrological models primarily include
process-based and data-driven models (Li et al., 2015). The
process-based models represent the runoff generating
mechanisms realistically based on the inherent mass and
energy conservation laws in the water cycle system. The main
drawback of such models is that the expression of physical
processes is often oversimplified, and many uncertainties such
as model structure (and/or parameter) uncertainties exist
(Bhadra et al., 2009; Zhang et al., 2016). Another drawback is
that the process-based models mainly rely on the
parameterization process and cannot reflect the mapping
between independent (i.e., explanatory, boundary input) and
dependent (i.e., response, output) variables in the hydrologic
system (Wang et al., 2021a). In comparison, the data-driven
models are able to capture this mapping, which involves the
analysis of boundary input and the corresponding response time
series rather than the physical process (Solomatine and Ostfeld,
2008). Due to the flexible data requirements, quick calibration,
and reliable performance, data-driven models have been proven
to be effective for streamflow forecasting (Fan et al., 2016).
Nonparametric statistical techniques mainly including
statistical regression, artificial intelligence, and machine
learning methods have been commonly used as practical tools
to calculate surface runoff.

However, previous data-driven models still suffer from several
difficulties in reflecting the inherently complicated relationships
within the environmental process (Wang et al., 2021b). A number
of statistic models such as multiple linear regression,
autoregressive, and autoregressive integrated moving average
cannot reflect nonlinear relationships between predictors (e.g.,
climatic factors) and responses (e.g., streamflow) (Solomatine
and Ostfeld, 2008; Ordieres-Meré et al., 2020). Besides, it can
hardly fit the observations very well with nonlinear relationships
in the water cycle (Fan et al., 2020; Li et al., 2020). The artificial
intelligence-based models may suffer from a few deficiencies such
as getting trapped in local optimum, overfitting, subjectivity in
the choice of model parameters, and the components of its
complex structure (Wang et al., 2020). As for machine-
learning models, such as random forest (Sun et al., 2016), the
reliability and development of these models met many obstacles
stemming from a lack of thorough understanding of the
underlying processes (Gaume and Gosset, 2003; Solomatine
and Ostfeld, 2008; Li et al., 2015). To solve the above
problems, one potential approach is to extend innovative and
advanced multivariate statistical methods to reflect the
complicated environmental processes with nonlinear and
dynamic characteristics (Li et al., 2015; Yu et al., 2020).
Stepwise cluster analysis is an improved multivariate analysis

tool, which can handle nonlinear and discrete relationships
between predictors and predictands firstly introduced by
(Huang, 1992). Therefore, as the extension of previous studies,
the objective of this study is to develop a stepwise cluster analysis
hydrological (SCAH) approach to reveal the nonlinear and
dynamic rainfall-runoff relationship. Then the developed
SCAH will be applied at Yichang station, Hankou station, and
Datong station within the Yangtze River Watershed, China, to
demonstrate the applicability of the proposed model.

FRAMEWORK OF STEPWISE CLUSTER
ANALYSIS HYDROLOGICAL MODEL

In this study, the SCAHmodel framework was proposed and used
for runoff prediction. The framework of this study is presented in
Figure 1. Firstly, the correlations between streamflow and
climatic conditions are analyzed to screen out potentially
significant climatic variables. The runoffs with the selected
climatic variables are simulated by the proposed SCAH model
in which multiple dependent variables are taken into account. As
a kind of nonparametric statistical method, stepwise cluster
analysis was firstly proposed by (Huang, 1992). In stepwise
cluster analysis, the sample sets of response variables are
derived into new sets through cutting or merging actions
based on given criteria, and cluster trees are built during the
process (Duan et al., 2021). The structures of cluster trees reflect
the inherent relationships between the explanatory and response
variables. With the advantage of capturing discrete and nonlinear
relationships between explanatory and response variables,

FIGURE 1 | The framework of SCAH.
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stepwise cluster analysis has received much attention for
environmental issues such as air quality prediction (Huang,
1992), process control (Huang et al., 2006), climate projections
(Wang et al., 2013), stream flow prediction (Cheng et al., 2016;
Zhuang et al., 2016), groundwater simulation (Han et al., 2016),
and ecosystem analysis and prediction (Sun et al., 2018). This
previous researcher has indicated that the stepwise cluster
analysis approach can characterize environmental processes
with complicated nonlinear and dynamic relationships and
provide satisfactory predictions.

According to the theory of multivariate analysis of variance,
the sample sets of predictors and predictands are divided into new
sets through a series of cutting and merging processes (Wang
et al., 2013; Li et al., 2015). As shown in Figure 1, several main
steps are included in SCAH: 1) Select predictors and predictands
and prepare the training matrix; 2) Do cutting actions step by step
until all hypotheses of further cuts are rejected; 3) Do merging
actions until all hypotheses of further merges are rejected; 4)
Repeat cutting-merging to the end nodes where hypotheses of
further cutting are accepted; 5) generate the cluster tree of the
training samples; 6) Do prediction according to the generated
cluster tree.

According to (Huang, 1992), the cutting andmerging criterion
is an F test based on the theory ofWilks’ likelihood ratio criterion.
For example, assume a clusterVm×n, which contains m samples of
n dimension predictors. The clusterVm×n can be cut into two sub-
clusters V1

a×n and V2
β×n, where α + β � m. The value of Wilks’

statistic Λ can be calculated as follows:

Λ � |W|
|W + B| (1)

whereW is the within-groups sums of squares and cross products
matrix; B is the between-group sums of squares and cross
products. |W| and |W + B| indicate the determinants of
matrixes. The smaller the Λ value is, the larger the difference
between the sub-clusters of V1

α×n and V2
β×n is.

W�∑p
i�1

(V1
a×n −V1

a×n)T(V1
a×n −V1

a×n)+∑q
i�1
(V2

β×n −V2
β×n)T(V2

β×n −V2
β×n)
(2)

B � αβ

α + β
(V1

α×n − V
2
β×n)T(V1

α×n − V
2
β×n) (3)

V
1
α×n and V

1
β×n are the sample means of sub-clusters V1

α×n and
V2

β×n, respectively:

V
1
α×n �

1
α
∑p
i�1
V1

α×n (4)

V
2
β×n �

1
β
∑p
i�1
V2

β×n (5)

The cutting point is optimal, if and only if the value of Λ is
minimal (Huang, 1992). On the contrary, sub-clusters V1

α×n and
V2

β×n cannot be cut, if theΛ value is very large, but may be merged
into a new cluster. By Rao’s F approximation (Rao et al., 1973), we
have the R-statistic as following:

R � 1 − Λ1/S

Λ1/S

ZS − P(K − 1)/2 + 1
P(K − 1) (6)

where K is the number of groups and P is the number of
predictors. Z and S can be calculated as follows:

Z � m − 1 − (P + K)/2 (7)

S � P2 × (K − 1)2 − 4

P2 + (K − 1)2 − 5
(8)

Here, K � 2 (two sub-clusters V1
α×n andV2

β×n) and the
R-statistic will be an exact F-variate:

F(P,m − P − 1) � 1 − Λ
Λ × m − P − 1

P
(9)

Therefore, the criteria for cutting and merging clusters
becomes to conduct a number of F tests (Rao et al., 1973).
For example, the F test could be used to identify whether sub-
clusters V1

α×n and V2
β×n are significantly different. Cluster Vp×n

can be cut into two sub-clustersV1
α×n andV2

β×n if F(P,m − P − 1)
is larger than Fp−cutting. The p-cutting is the significance level of
cutting, which can be set according to the demand. The default
is 0.05. On the other hand, the F test could also be used to
identify whether any two of the generated sub-clusters are
significantly similar. For two clusters Vi

α′×n and Vj

β′×n with
samples of α′ and β′, if F(P, α′ + β′ − P − 1) is smaller than
Fp−merging, the two clusters can be merged into a new cluster.
The p-merging is the significance level of merging, which can be
set according to the demand. The default is 0.05. Repeat cutting-
merging until no cluster can be further cut and no clusters can
be further merged. After the cutting-merging loop, a cluster tree
with a series of nodes (i.e., intermediate nodes and end nodes) is
built for prediction. For a more detailed description of the SCA
method, refer to the authors’ previous work by (Huang, 1992;
Huang et al., 2006; Cheng et al., 2016; Fan et al., 2016). The main
advantage of SCAH is the capability of modeling variations of
multiple dependent variables ys (e.g., runoffs over multiple
catchments in this study) with independent variables xs. Beyond
that, this method can identify dominant independent variables
for ys, adapt to highly nonlinear xs-ys relationships due to
non-functional assumptions, reveal the equifinality in xs-ys
relationships, and reveal the interactions of xs in impacting ys.

Five statistical coefficients, including Nash–Sutcliffe efficiency
(NSE) (Nash and Sutcliffe, 1970), Pearson correlation coefficient
(COR), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Percent BIAS (PBIAS) (Gupta et al., 1999) are used
to evaluate the performance of the SCAH model in the Yangtze
River watershed. Let N be the total number of observations (or
predictions); Qobs,i the observed value, Qsim,i the estimated value,
Qobs and Qsim the mean of all observed and estimated,
respectively. The NSE, COR, MAE, RMSE, and PBIAS are
presented as:

NSE � 1 −
∑N
i�1
(Qobs,i − Qsim,i)2

∑N
i�1
(Qobs,i − Qobs)2 (10)
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COR �
∑N
i�1
(Qobs,i − Qobs)(Qsim,i − Qsim)���������������

∑N
i�1

(Qobs,i − Qobs)2
√√ ���������������

∑N
i�1

(Qsim,i − Qsim)2
√√ (11)

MAE � 1
N

∑N
i�1

∣∣∣∣Qobs,i − Qsim,i

∣∣∣∣ (12)

RMSE �

�����
1
N

∑N
i�1

√√ (Qobs,i − Qsim,i)2 (13)

PBIAS �
∑N
i�1
(Qobs,i − Qsim,i)
∑N
i�1
(Qobs,i) × 100 (14)

Values of the NSE coefficient can range from negative infinity to 1.
NSE coefficients greater than 0.75 are considered “good,” whereas
values between 0.75 and 0.5 are considered as “satisfactory” (Moriasi
et al., 2007). The COR value is a measure of the linear correlation
between the observed and simulated values. MAE and RMSE are used
to describe averagemodel-performance error (Willmott andMatsuura,
2005). PBIAS indicates whether the simulated value is larger or smaller
compared to the corresponding observed value.Model underestimated
the value with PBIAS larger than 0, and overestimated opposite.

To better evaluate the model performance under uncertainties,
the relative error of the interval solution (REIS) of sample i are
proposed by (Li et al., 2015):

REIS(%) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qmax
i,sim −Qi,obs

Qi,obs
p100, if Qmax

i,sim<Qi,obs

0, if Qmin
i,sim<Qi,obs<Qmax

i,sim

Qmin
i,sim −Qi,obs

Qi,obs
p100, if Qi,obs<Qmin

i,sim

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

where Qmin
i,sim and Qmax

i,sim are the minimum and maximum simulated
flow of the sample i in the corresponding end node, respectively.

Therefore the mean relative error of the interval solution
(MREIS) can be defined as:

MREIS(%) � 1
N

∑N
i�1

|REIS(%)| (16)

The ratio of observations falling into the interval solution (RF)
can be defined as

RF(%) � 1
N

∑N
i�1

nreisi

nreisi �
⎧⎨⎩ 1, ifQmin

i,sim <Qi,obs <Qmax
i,sim

0, otherwise

(17)

OVERVIEW OF THE STUDY AREA

A case study within the Yangtze River watershed (24°30′–35°45′N
and 90°33′–122°25′E) in south China (Figure 2) is applied to
demonstrate the applicability of the proposed model. As the
third-longest river in the world and the longest in China, the
Yangtze is 6,300 km long with a basin area of 1.8 million km2

(Hayashi et al., 2004; Ma et al., 2016). The main section of the
basin is located in a subtropical warm-wet zone heavily affected
by both East and South Asian monsoon activities. The southern
part of the basin is near to tropical climates and the northern part
is close to the temperate zone. The annual mean temperature in
the southern and northern parts are 19 and 15°C, respectively (Xie
et al., 2020). Owing to great topographic variability, annual
precipitation varies greatly in different sections of the Yangtze
River with a range of 300–2,000 mm and appears to increase from
northwest to southeast. Affected by summer southwest monsoon
and southeast monsoon, the precipitation has noticeable seasonal

FIGURE 2 | The Yangtze River watershed.
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and regional variations, withmost of the precipitation reaching its
peak from April to October (Zhang et al., 2019). It is reported that
summer precipitation and rainstorm frequency have increased in
the past few decades (Chaudhuri et al., 2020). By the 2080s, the
annual mean precipitation is expected to increase in the range of
5.33–15.29% under different scenarios (Huang et al., 2011).

The Yangtze River spans nearly one-fifth of mainland China,
traverses three economic zones in eastern, central, and western
China, and crosses nineteen provinces of the country all told. As
one of the most densely populated and economically developed
areas in China, the Yangtze River Basin has experienced a
booming economy over the last decade and constituted over
40% of gross domestic product (GDP) (Chen et al., 2017). In
addition to urbanization, the Yangtze River Basin is a favorable
location for agriculture, which accounts for 25% of the total
cultivated land area in China (Kong et al., 2018). As the primary
water source, the Yangtze River is supporting the ever-growing
socio-economic development in the Yangtze River basin and
northern China. Inevitably, rapid urbanization and global
climatic change are accompanied by many social, economic,
environmental, and resource issues. Many issues such as water
resource allocation, urban flooding risk management, reservoir
operation, soil erosion control, and environmental protection are
associated with precise streamflow predictions. According to the
Development and Planning Outline of the Yangtze River
Economic Belt, issued by the National Development and

Reform Commission (NDRC, 2016), the processes of
urbanization and industrialization will continue to gain
momentum in the next 2 decades. Therefore, precise
streamflow prediction is essential in this region which helps
practitioners and policymakers make more comprehensive
management and targeted policy decision of water resources.

Three streamflow stations, namely Yichang station, Hankou
station, andDatong station in the Yangtze River watershed are here
studied, which represent the upper, middle, and lower reaches
(Zhang et al., 2006). The changes of water level and streamflow of
these three gauging stations represent the fundamental principles
of the whole Yangtze River Catchment. Runoff data came from
https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/stationMaps.
html?nn �201566. Climatic data are obtained from the national
meteorological stations closest to hydrologic stations. The time
periods of all data series are dated from 1965 to 1984. The data has
not been extended beyond 1990 in order to preserve the
stationarity of the data, since rapid economic development and
large-scale land uses have taken place in China since 1990.

RESULT ANALYSES

Correlation Analysis of Predictors
Previous reports have shown that the inclusion of additional
antecedent meteorological variables, such as precipitation and

FIGURE 3 | The correlation between predictors and streamflow. streamflow.[Note: (A), (B), and (C) present the correlation between predictors in different month
ahead and stream. (D–F) present the correlation between predictors and streams between different stations. Predictors are defined in Table 2].
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temperature, in the statistical hydrological model increased
streamflow forecast skill (Fan et al., 2016; Slater and Villarini,
2017). Therefore, in this study, meteorological variables for the
current month, 1 month ahead, and 2 months ahead are used as
predictors. The correlation coefficients between monthly
streamflow and potential predictors are provided in Figure 3
and the corresponding values are supported in Table 1. From
Figures 3A–C, it can be found that there are strong correlations
(ranging from 0.51 to 0.91) between the antecedent
meteorological variables and stream. For example, in station
S1 (Yichang), temperature and vapor pressure 1 month ahead
are the most correlated variables to monthly streamflow, with the
highest correlation coefficient (i.e., 0.88 and 0.90). This result
indicates a delay in the response of streamflow to meteorological
variables. This may be related to the spatial variation of
meteorological variables and the confluence time in the basin.
The correlations between meteorological variables and streams
between different stations are presented in Figures 3D–F, and .
Strong correlations (ranging from 0.37 to 0.90) of monthly
streamflow with the meteorological variables in surrounding
stations are found. It is worth noting that there are strong
correlations (greater than 0.86) between antecedent
meteorological variables in Yichang station and the streamflow
in Hankou and Datong stations. Similar results are thrown up
between antecedent meteorological variables in Hankou station
and the streamflow in Datong station. This may be related to the
geographical location of the three stations. As shown in Figure 1,
Yichang station, Hankou station, and Datong station are located
in the upper, middle, and lower reaches of the Yangtze River

respectively. Depending on the size and the topography of these
basins, it takes days to months for the upstream precipitation to
reach the downstream hydrological station through runoff
generation and river confluence in the basin. Therefore, the
strongest correlation is delayed in time. At the same time,
according to the strong correlations, it can be inferred that the
water resource in the lower reaches of the Yangtze River is
seriously affected by incoming water from the upper reaches.

Deterministic Prediction
The SCAH model is calibrated with the data from 1956 to 1975
and validated with the data from 1976 to 1985 in the Yangtze
River watershed, using the abovementioned predictors. In detail,
SCAH is established for only one predicted variable
(i.e., streamflow for a particular station), calibrated using each
station flow, and applied for the stream prediction of that station.
A default significance level of 0.05 is chosen in SCAH since a 95%
confidence level is acceptable for statistical testing. The generated
cluster trees obtained from SCAH are presented in Figure 4.
According to the generated cluster trees, streamflow of Yichang
station, Hankou station, and Datong station could be predicted
through forcing the predictors into three cluster trees
respectively.

Figure 5 shows the simulated and observed time series of
monthly flow in three streamflow gauge stations during
calibration and validation periods. The results show a good
agreement of the observed and forecast hydrographs for
SCAH, with slight under-prediction on some days (e.g., flood
peak). The performance criteria of SCAH for the three stations
are shown in Table 3. According to the five statistical coefficients,
both the two schemes yielded acceptable simulation in all three
stations. This result is consistent with previous studies (Fan et al.,
2015; Li et al., 2015; Fan et al., 2016; Zhuang et al., 2016) which
indicated that stepwise cluster analysis can provide reliable and
efficient flow prediction. In the calibration period, measured and
simulated monthly stream flows have a good match using the two
schemes. The NSEs are larger than 0.94 and the CORs are larger
than 0.96 with a slight difference between the three stations
(Table 3). The difference between the two schemes is
negligible in the calibration period. However, there are notable

TABLE 1 | The correlation between predictors and streamflow.

Logogram Climate variables Q1 Q2 Q3

v1 P1 0.61 0.69 0.70
v2 T1 0.30 0.44 0.49
v3 VP1 0.21 0.37 0.46
v4 P1(t-1) 0.83 0.86 0.87
v5 T1(t-1) 0.83 0.87 0.87
v6 VP1(t-1) 0.84 0.88 0.87
v7 P1(t-2) 0.85 0.88 0.87
v8 T1(t-2) 0.84 0.87 0.87
v9 VP1(t-2) 0.85 0.88 0.87
v10 P2 0.69 0.71 0.69
v11 T2 0.48 0.59 0.64
v12 VP2 0.44 0.59 0.66
v13 P2(t-1) 0.88 0.85 0.80
v14 T2(t-1) 0.89 0.85 0.81
v15 VP2(t-1) 0.88 0.84 0.79
v16 P2(t-2) 0.90 0.85 0.79
v17 T2(t-2) 0.90 0.85 0.80
v18 VP2(t-2) 0.89 0.84 0.79
v19 P3 0.58 0.54 0.51
v20 T3 0.49 0.50 0.52
v21 VP3 0.61 0.58 0.59
v22 P3(t-1) 0.71 0.61 0.54
v23 T3(t-1) 0.72 0.62 0.55
v24 VP3(t-1) 0.69 0.58 0.51
v25 P3(t-2) 0.71 0.61 0.53
v26 T3(t-2) 0.72 0.62 0.54
v27 VP3(t-2) 0.70 0.60 0.52

TABLE 2 | Abbreviations and descriptions of predictors and predicated factors in
SCAM.

Abbreviations Descriptions

Q Streamflow
P Precipitation
T mean Temperature
VP Vapor Pressure
P(t-1) Precipitation in 1 month ahead
T (t-1) mean Temperature in 1 month ahead
VP (t-1) Vapor Pressure in 1 month ahead
P(t-2) Precipitation in 2 months ahead
T(t-2) mean Temperature in 2 months ahead
VP(t-2) Vapor Pressure in 2 months ahead

Note: Q1, Q2, and Q3 present the stream in Yichang station (S1), Hankou station (S2),
and Datong station (S3) respectively in this research. The other predictors are equally
prescriptive.
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different performances observed between the three stations as
well as the two schemes in the validation period. On the whole,
the SCAH performs “good” (NSE >0.75) in three stations. In
detail, using a single-site calibration approach, SCAH
overestimates verification period runoff on S2 and S3 stations
(Figure 5), with PBAIS<−3. TheNSE ranges from 0.70 to 0.82, and
COR varies from 0.84 to 0.90 across the three stations (Table 3).
The lower average simulation error in SCAH can be observed
through the lower MAE and RMSE values. Even both of the three
stations which overestimated the streamflow during the validation
period had negative PBIAS. The absolute PBIAS increased in the
validation period, especially for station S3 (Datong station) where
the absolute PBIAS increased from 0.14 to 4.78. The high NSE and
COR, as well as the low MAE, RMSE, and PBAIS clearly indicate
the superior hydrologic simulation of SCAH. This means that
SCAH can reflect a comprehensive rainfall-runoff relationship,
which considers the nonlinear and dynamic relationships between
climate information and streamflow.

Table 4 presents the SCAH model performance (NSE, COR,
MAE, RMSE, and PBIAS) for Yichang station, Hankou station,
and Datong station under different p levels for calibration and
validation periods. It can be found that model representation of
SCAH is sensitive to the p level. In the calibration period, as the p
level rises, themodel performance of SCAH tends to increase with
increased NSE and COR values and decreased MAE and RMSE
values; while SCAH has the best model performance when the p
level equals 0.01 in the validation period. In detail, when p � 0.01,
NSE andMAE values in station S1 are 0.90 and 1.61 in calibration
and 0.83 and 2.18 invalidation respectively. When p � 0.10, the
corresponding values are 0.99 and 0.28 in calibration and 0.80
and 2.47 in the validation respectively. This is because the higher
p level means lower threshold values for cutting processes, leads
to more cut actions, and corresponds to more leaf nodes (as
shown inTable 4) and less variation in each leaf node, resulting in
fewer deviations between predictions and observations in the
calibration period. While in the validation period, the

over-segmentation of leaf nodes did not lead to more accurate
prediction results. In contrast, the deviation predictions and
observations actually increased. Results also show that the
sensitivity of different statistical indicators to p level is
different, and PBIAS is the most sensitive indicator. COR and
RMSE share similar trends with NSE and MAE, respectively.
Therefore, the SCAH is suggested for monthly runoff prediction
with a robust structural tree and better validation performance in
terms of the five statistical coefficients with the three p levels
evaluated in this study.

Probabilistic Predictions
In the aforementioned study, the future deterministic prediction
of streamflow was estimated using the mean value of the samples
in the corresponding end node of the derived cluster tree. In fact,
the proposed SCAH approach can also generate more results such
as interval forecasting results (Fan et al., 2015; Li et al., 2015; Fan
et al., 2016) using the maximum and minimum flow values of the
end node, which can reflect uncertainties. The comparison of the
forecasted intervals obtained through SCAH and observed
monthly flow are presented in Figure 6. Through Figure 6, it
can be seen that the forecasted intervals of SCAH can catch the
fluctuations of actual monthly flow during the calibration period.
Nearly all the observations are covered by the forecasting
intervals. Moreover, the predicted intervals of SCAH are
relatively large, especially for some peaks. During the
validation period (Figures 6D–F), the forecasted intervals can
generally cover the main part of observations in this period,
except for some underestimates during high streamflow periods.
This is because the prediction was conducted using a twenty-year
training tree, which might not cover all the possible precipitation-
runoff relationships, especially for the stream peak periods.
Comparatively speaking, more observations are covered by the
forecasting intervals obtained by SCAH with wider forecasted
intervals. Generally, the results show an overall good agreement
between observed data and predicted intervals.

FIGURE 4 | SCAHmodel cluster tree for (A) Station S1, (B) Station S2, and (C) Station S3. (p � 0.05 and yellow boxes indicate end nodes; Stations S1, S2, and S3
represent Yichang station, Hankou station, and Datong station).
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The performance of SCAH (REIS, MREIS, and RF) for the
calibration and validation periods using two calibration strategies
are presented in Figure 7 and Figure 8. In the calibration period,
the proportions of samples with absolute REIS smaller than 5% in
thethree stations are 95.42, 96.25, and 97.92%, respectively for
SCAH in Yichang station, Hankou station, and Datong station.
As presented in Figure 8, theMREIS in the three stations are 1.15,
1.09, and 0.70%, respectively for SCAH during the calibration
period. Moreover, among the 240 samples used for calibration,
there are more than 226 samples where the observation value falls
into its corresponding stream-flow interval estimated by the two
calibration strategy, accounting for more than 94% of the total
samples. On the whole, SCAH shows an insignificant
performance in the calibration period. However, in the

FIGURE 5 |Comparison of streamflow simulated by SCAH (the blue lines) with measurement values (the black circle) in the Yangtze River watershed. (Note: the first
column presents the calibration period and the second column presents the validation period. Station S1, S2, and S3 represent Yichang station, Hankou station, and
Datong station).

TABLE 3 | Model performance of SCAH in Yangtze River watershed. (Note:
Stations S1, S2, and S3 represent Yichang station, Hankou station, and
Datong station).

Station S1 S2 S3

Calibration period NSE 0.99 0.98 0.99
COR 0.99 0.99 0.99
MAE 0.28 0.27 0.29
RMSE 0.84 0.89 0.81
PBIAS 0.46 0.16 0.14

Validation period NSE 0.80 0.74 0.70
COR 0.90 0.88 0.85
MAE 2.48 2.66 2.91
RMSE 3.85 3.77 4.03
PBIAS −2.97 −2.16 −4.78
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TABLE 4 | Model performance of SCAH under different p levels. (Note: S1, S2, and S3 represent Yichang station, Hankou station, and Datong station).

Station S1 S2 S3

p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10 p = 0.01 p = 0.05 p = 0.10

calibration NSE 0.90 0.96 0.99 0.92 0.97 0.98 0.98 0.97 0.99
COR 0.95 0.98 0.99 0.96 0.98 0.99 0.99 0.99 0.99
MAE 1.61 0.89 0.28 1.38 0.66 0.27 0.27 0.64 0.29
RMSE 2.66 1.60 0.84 2.00 1.32 0.89 0.89 1.18 0.81
PBIAS 0.22 0.30 0.46 0.08 0.85 0.16 0.16 0.13 0.14

validation NSE 0.83 0.80 0.80 0.79 0.70 0.74 0.74 0.62 0.70
COR 0.91 0.89 0.90 0.89 0.86 0.88 0.88 0.85 0.85
MAE 2.18 2.53 2.48 2.39 2.84 2.66 2.66 3.36 2.91
RMSE 3.50 3.83 3.85 3.42 4.02 3.77 3.77 4.49 4.03
PBIAS −0.90 −0.69 −2.97 −0.01 −3.32 −2.16 −2.16 −5.65 −4.78

FIGURE 6 |Comparison of forecasted intervals versus observedmonthly flow using SCAH (the red areas) with measurement values (the black circle) in the Yangtze
River watershed. (Note: the first column presents the calibration period and the second column presents the validation period. Station S1, S2, and S3 represent Yichang
station, Hankou station, and Datong station).
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validation period, the proportions of samples with the absolute
REIS smaller than 5% in Yichang station, Hankou station,
and Datong station are 26.67, 20.83, and 28.33%, respectively.
The MREIS in these three stations is 10.24, 11.73, and
21.69%, respectively. Moreover, SCAH can improve the ratio

of observations falling into the interval solution. The RFs in the
three stations are only 14.2, 7.50, and 12.5%, respectively for the
SCAH in the three stations. The above results are sufficient to
illustrate the advantages of SCAH to predict streamflow
probability.

FIGURE 7 | Histograms of REIS for the calibration period [i.e., (A–C)] and validation period [i.e., (D–F)]. (Note: S1, S2, and S3 represent Yichang station, Hankou
station, and Datong station).

FIGURE 8 | The performance (MREIS and RF) of SCAH for the calibration and validation periods. (Note: S1, S2, and S3 represent Yichang station, Hankou station,
and Datong station).
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CONCLUSION

Streamflow prediction is one of the most important topics in
operational hydrology. The responses of runoffs are different
among watersheds due to the diversity of climatic conditions as
well as watershed characteristics. In this study, to characterize the
hydrological process complicated with nonlinear and dynamic
relationships, SCAH was developed and applied to predict the
runoffs with regional climatic conditions over the Yangtze River
watershed, China. The main conclusions are specified as follows:
First, the performances of SCAH in both deterministic and
probabilistic modeling are notable. Flexible data requirements,
quick calibration, and reliable performances make SCAH an
appealing tool in revealing rainfall-runoff relationships.
Second, the SCAH is insensitive to p levels in monthly runoff
prediction with a robust structural tree and good validation
performance in terms of the five statistical coefficients
evaluated in this study. Third, in terms of the case study of
the Yangtze River watershed, it can be inferred that the water
resources in the lower reaches of the Yangtze River are seriously
affected by incoming water from the upper reaches according to
the strong correlations.

The responses of runoffs may be different among watersheds
due to the diversity of climatic conditions as well as watershed
characteristics. This study has indicated that the developed SCAH
approach can characterize such hydrological processes with
complicated nonlinear and dynamic relationships and provide
satisfactory predictions. This study provides a statistical
hydrological model to simulate streamflow considering the
nonlinear and dynamic relationships. On the other hand, a
series of extensions, improvements, or applications can be
conducted in future studies based on this study. For instance,
considering multiple response variables may reflect the complex
interaction and nonlinear relationship between climatic variables
and streamflow in the environmental process. Although the

proposed model has been applied to three watersheds in the
Yangtze River watershed, including upper, middle, and lower
reaches, results presented in this paper may be updated as more
datasets (cases) become available and included. Our analysis can be
strengthened by focusing onmore catchments wheremore data are
available. An obvious future step will also be the inclusion of the
global catchments, rather than just in China where the available
hydrologic data are very limited owing to data licensing issues.
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