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The roles of tectonics and climate in the global increased erosion rates during the
Quaternary have been the subject of active debate. The Three Rivers Region, strongly
influenced by continental convergence between India and Eurasia and change in Asian
monsoon climate, is an ideal place to study the interactions between tectonics and
surface processes. Here we report new apatite (U-Th)/He data from an elevation
transect that reveal a phase of rapid exhumation since ∼2.6 Ma in the Dulong batholith
in the central Three Rivers Region, southeastern Tibetan Plateau. Based on stream
profile analysis and compiled thermochronological data in the region, we demonstrate
that the tectonic uplift caused by the high-strain at the corner of Indian-Eurasia
convergence is responsible for the enhanced exhumation in the central Three
Rivers Region in the Quaternary. Our new results highlight that the continuous
plate convergence towards the plateau interior has dominated the uplift and
deformation in the southeastern Tibet in the Quaternary.
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INTRODUCTION

The Earth’s surface was shaped through interaction between erosion, tectonics and climate (Molnar
and England, 1990; Raymo and Ruddiman, 1992) and this coupling has implications for the influence
of silicate weathering and organic-carbon burial on climate and for the landscape evolution (Berner
et al., 1983; France-Lanord and Derry, 1997; Kump et al., 2000). In particular, the roles of tectonics
and climate in the global increased erosion rates during the Quaternary have been the subject of
active debate (Zhang et al., 2001; Herman et al., 2013; Schildgen et al., 2018). A key area for
understanding these processes is the Three Rivers Region, in the southeastern Tibet, where three
large rivers (the Salween, Mekong, and Yangtze) run closely in parallel to form deep gorges that
connect the high-elevation plateau surface to the surrounding lowlands (Figure 1). The central Three
Rivers Region, at the corner of Indian-Eurasia convergence, exhibits high-strain state, high relief,
rapid exhumation, and active tectonics (Henck et al., 2011; Yang et al., 2016). Meanwhile, this region
is influenced by Asian Monsoon precipitation and glaciation (Fu et al., 2013) (Figure 2). These
unique features make the Three Rivers Region an ideal area for investigating the interactions between
tectonics and surface processes (Liu-Zeng et al., 2009).
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A number of studies using thermochronometers and
cosmogenic nuclides have revealed that there were multiple
phases of rapid exhumation since the late Mesozoic in the
Three Rivers Region (Shen et al., 2016; Yang et al., 2016; Liu-
Zeng et al., 2018; Nie et al., 2018; Ge et al., 2020; Replumaz et al.,
2020). It is worth noting that sparse (U-Th)/He ages in the
Quaternary have appeared in the existing data along the valley
bottom of the Salween and Mekong (Yang et al., 2016; Replumaz
et al., 2020) (Figure 1B). It is unclear whether the Quaternary
phase of rock exhumation is widespread in the Three Rivers
Region or only locally affected, and what are the relative roles of
tectonics and climate in driving enhanced exhumation. Thus,
high resolution low-temperature thermochronological data are
needed to reconstruct the exhumation history of this region,
which will help us to decipher the mechanisms responsible for
landscape evolution and plateau growth and, more generally,
climate change.

In this study, we report 34 apatite (U-Th)/He (AHe) age data
from six granite samples along an altitude transect that spans
1,760 m of relief in the Mesozoic Dulong batholith in the gorge of
the Dulong River, central Three Rivers Region (Figure 3). We
also compiled the available low-temperature
thermochronological data in the southeastern Tibetan Plateau.
Combined with stream profile analysis, our results indicate that
rock uplift caused by high-strain at the corner of indenting Indian
plate is responsible for the enhanced Quaternary exhumation in
the central Three Rivers Region.

TOPOGRAPHIC AND GEOLOGICAL
SETTING

In the Three Rivers Region, three of the largest Asian rivers
traverse the southeast margin of the Tibetan Plateau, flowing

FIGURE 1 | Tectonics and regional topography of the Three Rivers Region and surrounding areas. (A) Tectonic framework of the Three Rivers Region showing the
major continental blocks and suture zones. Modified from Deng et al. (2014). (B) Digital elevation model (DEM) of the topography and active faults in the Three Rivers
Region, showing the study area (white rectangle) and sample locations in this study (green circles). DEM data is based on ∼90 m Shuttle Radar Topography Mission
(SRTM). Previous thermochronological ages (≤2.6 Ma) marked by red are also shown (Xu and Kamp, 2000; Godard et al., 2009; Ouimet et al., 2010; Wilson and
Fowler, 2011; Wang et al., 2012; Zeitler et al., 2014; Tu et al., 2015; Yang et al., 2016; Tan et al., 2017; Zhang et al., 2017; Yang et al., 2018; Shen et al., 2019; Replumaz
et al., 2020; Yang et al., 2021). GLGSZ, Gaoligong shear zone; CSSZ, Chongshan shear zone.
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roughly parallel to each other for hundreds of kilometers and
carving gorges up to 3 km deep. In the central Three Rivers
Region, near the Gongshan, the three rivers are tightly spaced
with the closest distance <70 km. Although low-relief and high-
elevation landscapes are well preserved in most regions of the
southeastern Tibetan Plateau, they are absent in the central Three
Rivers Region (Clark et al., 2006). Moreover, large-scale
knickzones, defined by very high steepness along the
longitudinal river profiles of the Salween and Mekong also
occur in the central Three Rivers Region (Yang et al., 2016).

The Three Rivers Region lies adjacent to the eastern
Himalayan syntaxis in the west and the South China block
and Songpan-Ganzi terrane in the east (Figure 1A). During
the Cenozoic, the Three Rivers Region has been subjected to
oblique collision between India and Eurasia, and experienced
large-scale shortening, transpressional deformation, strike-slip
faulting, tectonic extrusion, and reorientation (Tapponnier
et al., 2001; Ding and Zhong, 2013; Deng et al., 2014).
Quaternary tectonic activity in the region is mainly strike-slip
in the north and transtensional in the south (Tapponnier et al.,
2001; Liu-Zeng et al., 2018). Three large-scale shear zones, from
west to east, the Gaoligong, the Chongshan and the Ailaoshan-
Red River shear zones separate the Three Rivers Region into NS-
oriented narrow lithospheric fragments (Deng et al., 2014). The
Gaoligong and Chongshan shear zones are gradually merged
northward and become tectonically amalgamated from Fugong to
Gongshan area (Huang et al., 2015) (Figure 1B). These two shear
zones might have initiated in the early Oligocene and the main
phase of shearing occurred during ∼19–11 Ma (Wang et al., 2006;
Zhang et al., 2012). The Ailaoshan-Red River shear zone extends

from the Three Rivers Region to the South China Sea. During
Miocene-Pliocene, this shear zone switched from left-lateral slip
to right-lateral slip (Schoenbohm et al., 2006; Leloup et al., 2007).

Two dextral strike-slip faults, the Gaoligong fault and the
Dulongjiang fault, define the eastern and western boundary of the
Dulong batholith, respectively (Figure 3A). Limited studies show
that the Dulongjiang fault extends north into Tibet and south into
Myanmar. Field investigation in the shear zone found hornblende
granulites in the Kongdang area and plagioclase amphibolite in
the western Bapo area and its further south, indicating that the
fault zone had reached amphibolite metamorphic facies. The
tensile lineation of the minerals indicates compressive shearing
during ductile strike-slip deformation. In addition, there are
normal faults along the main fault zone and tributaries of the
Dulong River, showing extension deformation (Lei et al., 2006).
Dulong batholith is nearly parallel to the strike-slip structure and
mainly composed of granodiorite and monzonitic granite. Zircon
U-Pb dating of Dulong granitoids indicated that they were
formed in multiple phases during the Jurassic to Cretaceous
(172-71 Ma) (Yan et al., 2002).

PREVIOUS THERMOCHRONOLOGICAL
STUDIES IN SOUTHEAST TIBET

Previous thermochronological studies reported in southeast Tibet
generally show two phases of rapid exhumation in the Oligocene
(∼30–20Ma) and since late Miocene (∼10–0Ma), but exhibit
diachroneity depending on the locality (Wang et al., 2012; Shen
et al., 2016; Zhang et al., 2016). The lateMiocene rapid exhumation

FIGURE 2 | (A)Mean annual precipitation from TRMM in the Three Rivers Region and surrounding areas. Thermochronological data shown are ≤2.6 Ma including
the same published dataset in Figure 1B and the new data in this study. Black rectangle shows the extent of (C). (B) West-east topography swath (A-A′) of the study
area with maximum, minimum and mean elevations, showing the relative flat plateau surface probably formed by glacial erosion. Location of topography swath A-A′ is
indicated by yellow line in (C). Topographic features were extracted using a 10-km circle window based on ∼90 m SRTM digital elevation model data. (C) Google
Earth image showing the glacial landform of the study area.
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was suggested to reflect the regional-scale plateau uplift, intensified
monsoon precipitation or fault related movement (Clark et al.,
2005; Nie et al., 2018;Wang et al., 2018; Shen et al., 2019). Recently,
the Quaternary increased exhumation in the region was
documented by thermochronometric and cosmogenic nuclide
data. In the eastern Himalayan syntaxis, enhanced Quaternary
exhumation was revealed by multidisciplinary approaches (Yang
et al., 2021) and themechanism of the exhumation was proposed to
relate positive feedback effect between surface processes and
tectonic uplift (Zeitler et al., 2014), tectonic uplift (Wang et al.,

2014) and/or river capture events (Govin et al., 2020; Yang et al.,
2021). In the central Longmen Shan, the fast Quaternary
exhumation was suggested to be induced by the thrust faulting
(Shen et al., 2019). In the upstream of theDaduRiver from Shimian
County, the rapid exhumation at ∼2Ma has been interpreted as a
response to the Dadu-Anning capture (Yang et al., 2020). In the
catchment of the Anninghe River, detrital apatite fission track
(AFT) thermochronology recorded a phase of regional exhumation
during Pleistocene which also explained by drainage network
reorganization (Wang et al., 2021).

FIGURE 3 | Simplified geological map superimposed on shaded relief (A) and a geological cross section (B) of the Dulong area. Locations of sample collected for
this study and from Lei et al. (2006) are shown. Location of the geological cross section is indicated by yellow line in (A).
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SAMPLING AND METHOD

Sampling
To constrain the exhumation of the Three Rivers Region,
especially the section of the knickzone, sampling from a
vertical transect was performed from the western margin of
the central Three Rivers Region (Figures 1B, 3). Six rock
samples were collected from Mesozoic granitic intrusions
from the near peak of the Heipushan to the deeply incised
valley bottom of the Dulong River (Kongdang Village)
(Figure 3). Sample’s elevations range from 3,326 to
1,562 m, forming a vertical profile spanning ∼1,760 m relief
over a lateral extent of ∼18 km (Figure 3B). The intrusions,
where the samples were collected, are undeformed Mesozoic
plutons with intrusive contact, in which no faulting has been
observed during field investigations. Previous AFT (closure
temperature, ∼110 ± 20°C; Reiners and Brandon, 2006) ages
reported by Lei et al. (2006) for the same transect (Figure 3)
are between 4 and 6.8 Ma (Figure 4). To gain more detailed
information for the cooling history since the Pliocene and new
insights into surface processes, we report new AHe (closure
temperature, ∼60 ± 20°C; Farley et al., 1996) data for the
Dulong batholith.

Analytical Method
Apatite (U-Th)/He analyses for the Dulong transect were
conducted at the National Institute of Natural Hazards,
Ministry of Emergency Management of China (NINH-
MEMC). Apatite concentrates were extracted using standard
crushing, sieving, electromagnetic, and heavy liquid mineral
separation techniques. Apatite grains with euhedral
morphology and no visible inclusions were selected under a
microscope and only grains >70 μm in both length and width
were considered suitable for (U-Th)/He dating. Grain
dimensions were measured from digital photographs for the
calculation of the equivalent spherical grain radius and the
α-ejection correction factor. Each grain was then wrapped in

a 1 mm × 1 mm platinum capsule and loaded into the laser
chamber. Each grain was thermally outgassed under vacuum at
∼900°C for 5 min, using a diode laser (970 nm wavelength) with
8 A current. Then, spiked with 3He, gas volumes were
determined using a PrismaPLus QME 220 quadrupole mass
analyzer at NINH-MEMC. We checked that gas released during
replicate heating yielded approximately the same as hot blanks
to ensure total extraction for each grain. After degassing, molar
abundances of U and Th were determined by isotope dilution
using a mixed 235U-230Th spike. U-Th analyses were carried out
on an inductively coupled plasma quadrupole
massspectrometer at NINH-MEMC. The age calculation was
processed by applying the α-ejection correction factor (FT)
(Farley et al., 1996) to each crystal to derive a corrected
(U-Th)/He age (Table 1). The age error was derived from
the analytical uncertainties in U and Th measurements, and
the variance of the single grain ages. Six fragments of Durango
apatite were run as reference standards together with and
identically to our samples to verify analytical accuracy. A
weighted mean average age of 31.7 ± 0.5 Ma (Table 1) was
obtained for these fragments, which is in consistent with the
nominal age of the Durango apatite (McDowell et al., 2005).

Thermal History Modeling
To investigate the thermal evolution of the Dulong vertical
transect, we modeled the thermal history using the program
QTQt, which has been developed to invert
thermochronological ages for multiple samples with a known
altitudinal relationship implementing a Markov chain Monte
Carlo method (Gallagher, 2012) Figure 5. The modeling
approach employs an alpha-damage-dependent kinetic model
of helium diffusion in apatite (Flowers et al., 2009) and a
multikinetic AFT annealing model (Ketcham et al., 2007). The
AHe data in this study and AFT data from Lei et al. (2006) are
modeled jointly. The input parameters used to model the thermal
history for individual samples are as follows: (1) present-day
mean surface temperature of 10 ± 10°C; (2) the prior for the
paleotemperature offsets, or temperature difference between the
uppermost and lowermost samples in a vertical profile, were
defined as ∼53 ± 53°C equivalent to temperature gradient prior of
30 ± 30°C/km (Clark et al., 2005) and the temperature offsets were
also allowed to vary over time; (3) an initial time-temperature
constraint is set at 100–200°C at a time span slightly older than
the oldest AFT age. These prior settings were always included
with a large uncertainty so as to give the modeling enough
freedom to search for a wide range of data-constrained
thermal histories. The final thermal history models were
sampled 400,000 iterations: 200,000 used to stabilize or burn-
in the inversion, and the second 200,000 used to form the
posterior ensemble (Gallagher, 2012). Exploratory runs using
larger numbers did not appreciably change model outcomes.

River Profile Analysis
Bedrock river profiles are often described using the stream
power incision model (Whipple and Tucker, 1999), which
expresses the erosion rate in terms of channel slope and
drainage area

FIGURE 4 | Age-elevation relationship for the Dulong transect. Filled
small circles denote grain replicates included in the mean age determination.
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zz(x, t)
zt

� U(x, t) − K(x)A(x, t)mSn (1)

where (zz(x,t)zt ) is the change in elevation of the channel bed with
respect to time, U is rock uplift rate relative to the base level, K is
rock erodibility, A is drainage area, S is channel slope, m and n are
constants. Under the assumption of a topographic steady state

(zz(x,t)zt � 0) and U and K are spatially and temporally uniform, the

equilibrium slope is then a function of

S � (U
K
)1

n

A−mn (2)

where m
n is the concavity of the equilibrium profile and (UK)

1
n

is the
channel steepness which can be determined by scaling the slope
and area relationship.

Deriving the channel slope data directly from the digital
elevation model (DEM) can be problematic due to the noise of
the DEM data. To avoid the scatter of noise during the estimation
of slope, we used an alternative method (Perron and Royden,

TABLE 1 | Single-grain apatite (U-Th)/He results from Dulong batholith, southeast Tibet.

Sample no GPS location
and elevation

4He (mol) 238U (mol) 232Th (mol) Raw age
(Ma)

Error
(±1σ)

Rs (μm) FT Corrected
age (Ma)

Error
(±1σ)

Mean
age (±1σ)

(Ma)

eU (ppm)

G18-1-1 98.4622°E 3.72E-15 5.99E-13 1.82E-13 4.5 0.1 59.9 0.752 6.0 0.1 6.18 ± 0.90 38.7

G18-1-2 27.7801°N 2.32E-15 1.47E-13 4.38E-14 11.5 0.4 55.7 0.739 15.5 0.5 11.4

G18-1-3 3,326 m 6.52E-15 3.00E-13 3.26E-13 13.4 0.3 51.4 0.724 18.6 0.4 32.3

G18-1-4 5.32E-15 7.65E-13 3.41E-13 4.9 0.1 53.3 0.721 6.8 0.2 73.6
G18-1-5 1.83E-15 2.91E-13 1.36E-13 4.4 0.1 48.5 0.696 6.3 0.2 36.8

G17-4-1 98.4609°E 2.93E-15 3.97E-13 1.60E-12 3.0 0.1 64.9 0.705 4.2 0.1 4.12 ± 0.83 36.3
G17-4-2 27.8474°N 4.73E-15 6.90E-13 2.60E-12 2.8 0.1 83.1 0.770 3.7 0.1 26.2
G17-4-3 2,774 m 4.51E-15 5.54E-13 1.87E-12 3.6 0.1 69.6 0.727 4.9 0.1 31.7
G17-4-4 1.19E-15 1.60E-13 6.36E-13 3.0 0.1 54.9 0.712 4.2 0.1 18.9
G17-4-5 8.19E-16 2.00E-13 5.12E-13 2.0 0.1 54.4 0.713 2.8 0.1 19.7
G17-4-6 4.55E-15 5.02E-13 2.10E-12 3.6 0.1 57.7 0.726 4.9 0.1 51.9

G17-5-1 98.4204°E 4.99E-15 9.10E-13 4.41E-12 2.0 0.0 80.0 0.760 2.6 0.0 2.66 ± 0.23 39.6
G17-5-2 27.8786°N 1.66E-15 3.62E-13 1.41E-12 1.9 0.0 73.3 0.739 2.5 0.1 19.7
G17-5-3 2,472 m 2.52E-15 4.66E-13 2.08E-12 2.1 0.0 71.2 0.731 2.8 0.0 28.9
G17-5-4 2.50E-15 5.09E-13 2.37E-12 1.8 0.0 72.5 0.735 2.5 0.0 33.2
G17-5-5 9.55E-16 1.84E-13 8.08E-13 2.0 0.0 61.6 0.689 2.9 0.1 20.0

G17-6-1 98.4109°E 1.24E-15 4.09E-13 1.43E-12 1.3 0.0 54.7 0.652 2.0 0.1 2.36 ± 0.43 55.2
G17-6-2 27.9103°N 4.26E-15 7.29E-13 2.78E-12 2.4 0.1 63.2 0.698 3.5 0.1 67.7
G17-6-3 2,152 m 1.73E-15 5.57E-13 1.85E-12 1.4 0.0 53.3 0.644 2.1 0.0 78.0
G17-6-4 2.68E-15 8.32E-13 2.88E-12 1.4 0.0 56.6 0.664 2.1 0.0 91.3
G17-6-5 1.31E-15 3.95E-13 1.18E-12 1.5 0.0 50.4 0.624 2.4 0.0 66.2
G17-6-6 1.03E-15 3.34E-13 1.16E-12 1.3 0.0 45.7 0.656 2.0 0.0 61.6
G17-6-7 2.11E-15 4.44E-13 1.75E-12 1.9 0.0 57.5 0.725 2.7 0.1 47.5
G17-6-8 1.13E-15 3.81E-13 8.37E-13 1.5 0.0 55.6 0.721 2.1 0.1 36.7

G17-7-1 98.3625°E 3.90E-15 8.29E-13 3.10E-12 2.0 0.0 63.1 0.698 2.8 0.0 2.72 ± 0.11 71.8
G17-7-2 27.9012°N 4.84E-15 9.52E-13 3.72E-12 2.1 0.0 67.3 0.716 2.9 0.0 74.1
G17-7-3 1,875 m 2.15E-15 5.55E-13 1.81E-12 1.7 0.0 53.8 0.647 2.7 0.0 79.4
G17-7-4 2.79E-15 7.03E-13 2.63E-12 1.7 0.0 49.8 0.617 2.7 0.0 131.9
G17-7-5 2.58E-15 6.55E-13 1.95E-12 1.8 0.0 57.7 0.672 2.7 0.0 67.2
G17-7-6 2.08E-15 5.73E-13 1.89E-12 1.6 0.0 51.4 0.630 2.5 0.0 93.9

G17-8-1 98.3508°E 5.54E-15 1.74E-12 1.94E-12 2.0 0.0 119.2 0.845 2.3 0.0 2.40 ± 0.16 16.1
G17-8-2 27.8989°N 2.28E-15 6.71E-13 9.72E-13 2.0 0.0 96.8 0.808 2.4 0.0 13.4
G17-8-3 1,562 m 2.97E-15 8.63E-13 1.07E-12 2.1 0.1 101.1 0.817 2.5 0.1 13.0
G17-8-4 3.42E-15 1.04E-12 1.43E-12 1.9 0.0 95.8 0.806 2.4 0.0 18.6

DUR076 7.51E-14 3.41E-13 6.99E-12 29.8 0.5 31.74 ± 0.48
DUR077 8.85E-14 3.71E-13 7.70E-12 32.0 0.6
DUR078 7.32E-14 3.14E-13 6.43E-12 31.6 0.6
DUR079 5.69E-14 2.55E-13 4.99E-12 31.4 0.5
DUR080 6.98E-14 2.96E-13 6.08E-12 31.9 0.6
DUR081 7.76E-14 3.28E-13 6.75E-12 31.9 0.5

Rs: Radius of a sphere with the equivalent surface area-to-volume ratio as cylindrical crystals (Meesters and Dunai, 2002).
Ft: α-ejection correction factor (Farley et al., 1996).
Mean age: Weighted means calculated using IsoplotR (Vermeesch, 2018). Evidently older age outliers are highlighted in bold and are excluded from calculation of the weighted mean age.
eU: Effective uranium content, [eU] � [U] + 0.235 × [Th] (Flowers et al., 2009).
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2013) for the equilibrium river profiles by substituting the
channel slope with elevation, which leads to

z(x) � z(xb) + ( U
KAm

0

)1
n

χ (3)

and

χ � ∫x
xb

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ A0

A(x′)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
m
n

dx′ (4)

where xb is the reference of local base level, andA0 is an arbitrary scaling
factor. Then channel steepness Ksn is the slope of the χ-elevation plot

Ksn � ( U
KAm

0

)1
n

(5)

which is proportional to the rock uplift rate.
We used the SRTM DEM, which has a resolution of ∼90 m, to

extract the longitudinal profiles and steepness index of the
Dulong and Salween rivers (Figure 6). A threshold drainage
area of 5 km2 was used to exclude regions that are potentially
dominated by debris flows or hillslope processes. We selected a
concavity, m/n , of 0.45 and a scaling area, A0, of 1m

2 (Wobus
et al., 2006). The channel steepnesswas then estimated from the slope of
the χ-plot with the linear regression method by using a χ interval of 1.

RESULTS

New Apatite (U-Th)/He Data
Four to eight single-grain AHe age analyses were performed for
each of the six Dulong samples, as summarized in Table 1. The
samples yield mostly consistent AHe ages except the uppermost
sample (G18-1) has two abnormally old ages. The two AHe
outliers of sample G18-1 do not show clear relationships with eU
and grain size (Table 1), indicating radiation damage and grain
size variation do not appear to be controlling the distribution of
ages (Gautheron et al., 2012). U-zoning in the core leads to
overestimate of the alpha-ejection correction, but cannot explain
the abnormally old ages in our study, because even the
uncorrected ages (11.5 and 13.4 Ma) of the two grains are
older than the AFT age (6.8 ± 0.5 Ma) at the same elevation.
Additional sources of 4He other than the analyzed apatite, such as
U-rich mineral inclusions in apatite, U-rich neighbouring
minerals (Spiegel et al., 2009) may be possible explanations for
the outliners. Excluding outliers, all remaining AHe data show a
strong positive relationship with elevation (Figure 4). The age-
elevation relationship has an inflection point at the elevation of
∼2,500 m, and the AHe ages below this point are generally less
than 3 Ma, while the AHe age above are significantly older
(3–7 Ma). Excluding outliers, the calculated weighted mean
AHe ages range from 6.18 ± 0.9 to 2.36 ± 0.43 Ma and show a
positive correlation with elevation. The regression of the age-
elevation relationship suggests a significant increase in erosion
rate from ∼0.18–0.3 km/Myr to ∼1.3–3.0 km/Myr after ∼2.6 Ma
(see below for the timing from the thermal history modeling).

Thermal History
The modeling results show a thermal history with two phases
of rapid cooling since the late Miocene (Figure 5A). The first
episode commenced at ∼7–8 Ma; all the samples passed
through the AFT partial annealing zone (PAZ) rapidly and
some upper samples might have reached the AHe partial
retention zone (PRZ) during this cooling event. This phase
of fast cooling also revealed by the overlap of the AHe and AFT
ages (∼6–7 Ma) in the uppermost elevation (Figure 4).
However, the current available data cannot provide a
precise constraint on the timing of onset. The duration of
this episode of rapid cooling, the induced mechanism and the
potential links to tectonics or climate change need further
work that are well beyond the scope of this study. After the first
phase of fast cooling, a period of slow cooling or isothermal
holding lasted for ∼5 Myr; then the cooling rate increased at
∼2.6 Ma, and all the samples exhumed to the near Earth’s
surface (Figure 5A). Such a thermal history is generally
consistent with our thermochronological observations
(Figure 5B). Note that the AHe observations are very well
fitted by the modeled values, supporting the validity of the
Quaternary enhanced cooling and exhumation (Figure 5A). In
summary, the inverse modeling results from the vertical
transect suggest that it experienced two episodes of rapid
cooling commenced before Pliocene and at the beginning of
the Quaternary, which are in accordance with the age-
elevation profile (Figure 4). In the sections below, we focus
on the Quaternary enhanced cooling and expand its
implications to regional exhumation and tectonics.

FIGURE 5 | Thermal modeling results (A) for the Dulong transect using
QTQt (Gallagher, 2012) and comparison of observed and predicted
thermochronological data (B). The thermal history of the uppermost sample is
plotted in thick blue, the lowermost sample in thick red, and the
intermediate samples in dashed grey. For the uppermost thermal history, the
thin blue lines depict the 95% confidence intervals, reflecting the uncertainty in
the inferred thermal history alone. For the lowermost thermal history, the thin
red lines show the 95% confidence intervals, reflecting combined
uncertainties in the inferred thermal history and temperature offset. For
comparison of observed and predicted data, the AHe ages are uncorrected
ones.
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DISCUSSION

Enhanced Quaternary Exhumation in the
Central Three Rivers Region
Our new AHe data and thermal modeling suggest increased
exhumation rates in the upper reach of the Dulong River,
central Three Rivers Region, at the beginning of the
Quaternary (∼2.6 Ma) (Figure 5). Although our data cannot
provide detailed information for the exhumation processes
after 2.4 Ma (Figure 4), the mean exhumation rate of
∼0.83 mm/year since ∼2.4 Ma can be estimated given the
∼2 km magnitude of erosion derived from the closure
temperature of AHe (∼60 ± 20°C; Farley et al., 1996) and the
recommended geothermal gradient (∼30°C/km; Clark et al., 2005)
in the region. Thus, we conclude that the study area should have
experienced faster exhumation during the Quaternary than
before (Figures 4, 5). This is similar with previous findings
from thermochronological studies at about the same latitude in
the gorges of the Salween and Mekong (Figure 1B). Pre-existing
thermochronological data from the valley bottoms of the Salween
and Mekong have suggested enhanced exhumation (>0.75 mm/
year) near 28°N in the past 2Myr (Yang et al., 2016). A recently

reported set of AHe and AFT data from Kawagebo massif have also
revealed rapid Quaternary exhumation (>1mm/year) at the valley
bottom of the Mekong (Replumaz et al., 2020). Our results suggest
that this increase in exhumation rate has also occurred in the upper
Dulong River, the western margin of the central Three Rivers
Region. Together with previous studies, we infer that an
enhanced Quaternary exhumation with significant magnitude
may exist in the central Three Rivers Region. This conclusion is
supported by the increase in sedimentary flux to the marginal sea
basins in the past 2Myr (Métivier et al., 1999; Clift, 2006).

Tectonic Control on Rapid Quaternary
Exhumation in the Three Rivers Region
It is worth noting that all the young thermochronological ages
younger than 2.6 Ma in the Three Rivers Region are located
between 26 and 30°N (Figure 6A), implying that the central part
of the Three Rivers Region may have experienced fast erosion
during the Quaternary. The locus of rapid erosion was focused at
the same area in different river gorges may suggest that the same
mechanism may underline this phase of fast exhumation in the
central Three Rivers Region. Asmentioned above, the Quaternary

FIGURE 6 | (A) Spatial relationship of channel steepness and all the thermochronological data in the Three Rivers Region. Computed channel steepness shown
along Salween, Mekong, Yangtze and Dulong rivers. Channel steepness is calculated using m/n � 0.45. River profile for the (B) Dulong and (C) Salween rivers with
maximum topography (grey line) and annual rainfall (blue line). River profile is extracted from ∼90 m SRTM digital elevation model data with black line showing smoothed
elevation using a moving window of 1 km. The knickpoint is identified as a sudden change in channel slope on the river profile. Maximum topography profiles were
extracted using a 15-km circle window. Annual rainfall profiles were obtained from the Tropical Rainfall Measuring Mission (TRMM) data and are shown by blue curves.
Thermochronological data are from Li et al. (2019) and references therein and the references in Figure 1B. Thermochronometric ages in the drainage areas of Salween
and Mekong are projected along the Salween.
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enhanced exhumation could be induced by tectonic uplift,
climate change, river reorganization or fault activity. Based on
several lines of evidence, the rapid Quaternary exhumation in the
central Three Rivers Region was most likely controlled by
localized tectonic uplift. First, the locus of rapid erosion
coincides with the conspicuous large-scale knickzone in the
Three Rivers Region (Figure 6). In this region, the Three
Rivers and the Dulong River are most closely spaced, have the
highest steepness index in river long profiles, coinciding with the
steepest reach in plateau edge as suggested by the maximum
elevation envelop (Figures 6B,C). The pattern of the knickzones,
with high steepness values limited to the knickzone region and
similar lower values above and below the knickzones (Figures
6B,C), identifies they as “vertical-step” knickpoints (Kirby and
Whipple, 2012), suggesting that they are related to spatially
focused rock uplift given that there is no obvious variation in
lithology associated with the knickzones (Replumaz et al., 2020).
Second, in the central Three Rivers Region, the low-relief and
high-elevation landscapes are absent (Clark et al., 2006) due to the
intense dissection and high relief, which may be caused by the
local uplift. Third, short-term (millennial) erosion pattern in the
Three Rivers Region revealed by detrital cosmogenic nuclide was
used to infer that tectonics is the primary control and the east-
west enhanced erosion gradient mirrors a gradient in rock uplift
rates (Henck et al., 2011). Fourth, structural and kinematic analyses
reveal that the amalgamation area of the Gaoligong and Chongshan
shear zones, from Fugong to Gongshan area, is just located at the neck
of the large-scale boudin structure and experienced strongly
partitioned dextral transpression and consequent uplift at the
corner of the eastern Himalayan syntaxis (Huang et al., 2015).
Finally, in nearby region, enhanced rock uplift since ca. 2.5–2Ma
in the easternHimalayan syntaxis has been inferred from the existence
of Quaternary thick alluvium sediments above the Yarlung Tsangpo
gorge (Wang et al., 2014) and multiple thermochronometries and
geomorphology analysis (King et al., 2016; Salvi et al., 2017; Yang et al.,
2021). It is likely that the Quaternary enhanced exhumation in the
Three Rivers Region is synchronous with the eastern Himalayan
syntaxis, and a response to the continuous indentation of the northeast
corner of the Indian plate.

The Role of Climate on Erosion
It is significant that the ages we obtained for the initiation of rapid
exhumation in the central Three Rivers Region (∼2.6 Ma) closely
approximate the estimated timing of global cooling (Herman
et al., 2013). U-shaped valleys are widely distributed above
∼3,000 m in the Dulong area (Figure 2C), indicating the
imprint of glacial erosion. The past extent of glaciers in the
southeast Tibet, reconstructed based on glacial landforms and
sediments, indicates that this was one of the most extensively
glaciated area of the Tibetan Plateau during the Quaternary (Li,
1996; Fu et al., 2013). However, only a few areas exhibit rapid
Quaternary exhumation implied by low-temperature
thermochronology in the vast region of the southeast Tibet
(Figure 1B), suggesting the glacial erosion was not the main
force for the fast exhumation in the Three Rivers Region.

The Three Rivers Region is strongly influenced by the Asian
monsoon precipitation (An et al., 2001) (Figure 2A). The

youngest ages in the Three Rivers Region are in the area
where the precipitation rate decreases abruptly (Figure 6B,C
and 2A). Along the Salween, the modern rainfall increases steadily
from the immediately south of the edge-plateau to the lowland while
erosion rates decrease (Figure 6C). Thus, if during the Quaternary the
climatic gradient was similar to the modern one, the exhumation
pattern is unlikely related to the precipitation.

Drainage area loss or gain will decrease or increase the erosion
rate near the capture point based on the stream power law
(Whipple and Tucker, 1999). Potential capture of the formerly
northwest-to-southeast-flowing paleo-Yarlung Tsangpo-Dulong
River by the Brahmaputra River was proposed as the drainage
reorganization event in the region (Clark et al., 2004), although
the timing of this process is still unclear. However, if this capture
event took place in the headwater of the Dulong River, the loss of
the drainage area would result in the decreased erosion rate in the
downstream of the capture point. This case is not supported by
the observation of our study. Our results cannot preclude the
possibility of the rapid exhumation induced by river capture in
the downstream of the knickzone of the Dulong River, but we
argue that even though the river capture occurred in the
Quaternary and resulted in the consequent rapid exhumation,
it was possible triggered by the enhanced rock uplift.

In summary, although climatic factors or river capture may play
somewhat roles on the enhancedQuaternary exhumation in the central
Three Rivers Region, the localized tectonic uplift may have exerted first-
order control on this exhumation, similar to the eastern Himalayan
syntaxis, the central Longmen Shan and the Gongga Shan where the
tectonics activity was regarded as active during the recent past.

Implications for the Plateau Growth
The geodynamics of the formation of the southeastern Tibetan
Plateau is hotly debated. Various models have been proposed to
explain the plateau growth and the formation of the unique
landscape in this region. They include: indentation and
progressive crustal thickening (England and McKenzie,
1982), tectonic extrusion (Tapponnier et al., 2001), lower
crustal channel flow (Clark and Royden, 2000) or whole
crustal flow (Copley and McKenzie, 2007) driven by the
topographic difference between the plateau and its
surroundings. Although the timing of each model exerted is
still controversy, all existing models have in common that the
southeastern Tibetan Plateau must have grown outwards with
respect to its interior. This outward expansion of the plateau is
also thought to be responsible for the propagation of
topography and thus the focus of erosion. However, our
new results and the available datasets indicate that the locus
of rapid erosion in the recent geological past was confined to
the central part of Three Rivers Region rather than the plateau
margin (Figure 6A), in contrast to previous plateau expansion
models. Our results cannot provide constrains on the
topographic evolution or surface uplift during the
Quaternary. Nevertheless, significant regional rock uplift in
the high-strain zone probably caused by the expansion of the
eastern Himalayan syntaxis is required to explain the previous
and our new thermochronological data in the Three Rivers
Region.
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CONCLUSION

We present new apatite (U-Th)/He data from an elevation
transect of the deep gorge of the Dulong River. Our new
results and thermal modelling reveal a phase of rapid
exhumation since ∼2.6 Ma in the central Three Rivers
Region. Combined with the river profile analysis and the
exiting thermochronological data in the region, we propose
that the localized rock uplift may have exerted first-order
control on this exhumation in the Quaternary rather than the
climate change. Our results also imply that the locus of fast
exhumation in the past ∼2.6 Myr in the Three Rivers Region is
only restricted in the central part of this region, challenging
the proposed models for plateau outward growth of its
margins.
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