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A gradient preconditioning approach based on transmitted wave energy for least-squares
reverse time migration (LSRTM) is proposed in this study. The gradient is preconditioned
by using the energy of “approximate transmission wavefield,”which is calculated based on
the non-reflecting acoustic equation. The proposed method can effectively avoid a huge
amount of calculation and storage required by the Hessian matrix or approximated
Hessian matrix and can overcome the influence of reflected waves, multiples, and
other wavefields on the gradient in gradient preconditioning based on seismic wave
energy (GPSWE). The numerical experiments, compared with that using GPSWE, show
that LSRTM using the gradient preconditioning based on transmitted wave energy
(GPTWE) can significantly improve the imaging accuracy of deep target and accelerate
the convergence rate without trivial increased calculation.

Keywords: least-squares reverse time migration, gradient preconditioning, transmitted wave, non-reflecting
acoustic wave equation, disproportioned illumination

INTRODUCTION

Compared with traditional migration techniques such as Kirchhoff integral migration, reverse time
migration (RTM) based on the two-way wave equation is widely favored by researchers (Baysal et al.,
1983; McMechan, 1983; Yoon and Marfurt, 2006; Symes, 2007; Fletcher et al., 2009; Liu et al., 2011;
Sun et al., 2016) because of its obvious advantages in accurate imaging of complex media (especially
high-steep structure and subsalt structure). However, RTM still belongs to the category of
conventional migration, and its migration operator is the conjugate transposition of the
forward-modeling operator, rather than the exact inverse operator (Claerbout, 1992). Therefore,
conventional RTM produces blurring imaging of underground media under the influence of factors
such as a complex structure, limited bandwidth, and under-sampled acquisition system, which is
difficult to satisfy the current needs of oil and gas exploration and development (Nemeth et al., 1999).

Dai et al. (2010) regarded the conventional RTM as an inversion problem under the framework of
least squares, used the iterative method to obtain the reflection coefficient model, and developed a
least-squares reverse time migration (LSRTM) method. Since the LSRTM can obtain the imaging
results with high precision, high-amplitude preservation, and high resolution, it has become a
research hotspot in the field of geophysics (Dai et al., 2012; Guo and Li, 2014; Huang et al., 2014; Yao
and Jakubowicz, 2016; Ren et al., 2017; Rocha and Sava, 2018; Gong et al., 2019; Yang et al., 2019;
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Yang and Zhu, 2019; Li et al., 2020). Dai et al. (2012) proposed
multisource LSRTM based on phase encoding, which improved
the computational efficiency of the algorithm. Guo and Li
(2014) implemented the true-amplitude imaging based on
LSRTM and obtained the imaging with high resolution and
true amplitude. Huang et al. (2014) achieved high-precision
imaging of near surfaces based on LSRTM. Wong et al. (2015)
proposed a joint LSRTM method by using primary and free-
surface multiples and attenuated crosstalk artifacts in the image.
Yao and Jakubowicz (2016) developed the LSRTM in a matrix-
based formulation, which could obtain the high-precision
section on the basis of effectively suppressing artifacts. Ren
et al. (2017) developed elastic LSRTM, which provided more
abundant and effective information for accurate imaging of
complex media. Rocha and Sava (2018) proposed elastic LSRTM
using the energy norm to improve imaging accuracy and speed
up the convergence. Gong et al. (2019) applied a sparsity-
promoting constraint to the LSRTM and obtained better
imaging, especially for the metallogenetic geological model
containing small-scale scatters. Yang et al. (2019) used a
high-order Born approximation algorithm to supplement the
information of prismatic waves in conventional LSRTM and
further enhanced the ability to finely characterize the steeply
dipping structure. Yang and Zhu (2019) implemented a
viscoacoustic LSRTM based on a time-domain complex-
valued wave equation, which could improve imaging
resolution and compensate attenuation effects effectively.
Moreover, there were also some researchers focusing on
computational efficiency (Dai and Schuster, 2013; Huang
et al., 2015; Zhang et al., 2015; Hu et al., 2016; Liu et al.,
2016; Li et al., 2018; Zhao and Sen, 2018; Gao et al., 2020)
and extended applications (Wu et al., 2016; Zhang et al., 2016;
Gu et al., 2017; Guo and McMechan, 2018; Fang et al., 2019; Liu
and Liu, 2019; Qu et al., 2019; Yang et al., 2020).

As the gradient of traditional LSRTM is affected by
geometric spreading and disproportioned illumination, the
update of reflection coefficient model in the shallow depth has
always been dominant, resulting in low imaging accuracy and
slow convergence rate. At present, the gradient
preconditioning algorithms such as the methods on the
Hessian matrix (Hessian matrix, approximated Hessian
matrix, and pseudo-Hessian) and gradient preconditioning
based on seismic wave energy (GPSWE) are usually applied to
improve the imaging accuracy of deep part. The algorithms
based on the Hessian matrix (Pratt et al., 1998) usually
require explicit calculation and storage of the Hessian
matrix, which will inevitably bring huge computation and
memory consumption. The algorithms based on the
approximated Hessian matrix are also necessary to
approximate the diagonal Hessian matrix to correct the
energy of amplitude, which are still difficult to be applied
to field data processing. The algorithms based on the pseudo-
Hessian matrix (Shin et al., 2001; Choi et al., 2008) are
popular preconditioning methods, and they are less
computationally expensive, but these approaches only
account for the geometrical spreading effect from the
sources. GPSWE had been first proposed by Zhang et al.

(2012) in full waveform inversion, which takes seismic wave
energy as the correction factor and effectively eliminates the
impact on gradient caused by geometric spreading and
disproportioned illumination. Tan and Huang (2014),
Zhang et al. (2016), and Gao et al. (2017) have applied this
method to the LSRTM, which have significantly improved the
imaging accuracy and convergence efficiency, especially for
deep strata. However, GPSWE used in LSRTM still has the
following problem. Seismic wavefield is divided into
“transmitted wavefield” and “reflected wavefield.”
Theoretically, it is more accurate to characterize the
geometric spreading and illumination effects of the
gradient by the information of “transmitted wavefield.”
However, when adopting the operator of gradient
preconditioning based on seismic wave energy (GPSWE),
we discovered that the wavefield used to calculate the
operator is simulated by the acoustic wave equation, which
contains a lot of reflected waves besides transmitted waves.
Therefore, the operator of GPSWE will be considerably
influenced by the strong reflected wave energy and not
accurate enough to estimate geometric spreading or
illumination distribution (Song et al., 2019).

To solve the previous problem, we developed an LSRTM
algorithm using the gradient preconditioning based on
transmitted wave energy (GPTWE), which obtains the forward-
and back-propagated “approximate transmission wavefield” based
on the non-reflecting acoustic equation and applies the energy of
“approximate transmission wavefield” to precondition the original
gradient. This method requires neither the calculation nor storage
of the Hessian matrix or the approximated Hessian matrix but can
effectively improve the imaging accuracy without significantly
increasing the amount of calculation.

In Principles of LSRTM, we introduce the principles and
processing steps of LSRTM. In LSRTM Using the GPTWE, we
expound the principles and procedures of LSRTM using GPTWE.
InMarmousi Model Test and Pluto Data Example, we display the
results of numerical simulation of the complex model. Finally, in
Conclusion and Prospect, we present a summary of conclusions
and the future research.

PRINCIPLES OF LSRTM

The two-dimensional scalar constant density acoustic wave
equation is expressed as follows:

( 1
v2

z2

zt2
− ∇2)P � S, (1)

where v represents the velocity model, P signifies the stress, S
represents the source, t denotes the time, and ∇2 stands for the
Laplacian operator. According to the perturbation theory and
principle of Born approximation, we can obtain the following
equation:

( 1
v20

z2

zt2
− ∇2)Ps � 2vs

v30

z2P0

zt2
, (2)

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7324252

Xie et al. LSRTM Using Gradient Preconditioning

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


where v0 is a background velocity model, vs is the perturbation in
the velocity model, P0 represents the background wavefield, and
Ps represents the perturbed wavefield. Here, reflection coefficient
model can be defined as follows (Dai and Schuster, 2013):

m � 2vs
v0

, (3)

where m is the reflection coefficient model. Therefore, the Born
modeling of acoustic LSRTM can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( 1

v20

z2

zt2
− ∇2)P0 � S

( 1

v20

z2

zt2
− ∇2)Ps � m

v20

z2P0

zt2

. (4)

It can be seen from Eq. 4 that Born modeling can be calculated in
two steps. At the background velocity, the background wavefield is

calculated by using the seismic wavelet as the source first and then
the perturbed wavefield is calculated by using the background
wavefield and the reflection coefficient model as the perturbed
term. Eq. 4 is also written as the matrix form as follows:

d � Lm, (5)

where d refers to the matrix form of seismic record (P0+Ps)
obtained by Born modeling, m denotes the matrix form of the
reflection coefficient model, and L represents the Born modeling
operator. Since the Born modeling operator L is independent of
the reflection coefficient modelm, the Born modeling can also be
described as linearized modeling.

The L2 norm is used to construct the objective function of
LSRTM, which can be defined as follows:

J(m) � 1
2
||Lm − dobs||22, (6)

FIGURE 1 | Flowchart of the LSRTM using GPTWE.
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where dobs is the matrix form of observation seismic record. We
usually apply the gradient algorithms to implement the iterative
of the reflection coefficient model.

Here, we used the adjoint state method (Plessix, 2006) to
calculate the gradient and can obtain the following equation:

g � ∫
t

λ

v20

z2P0

zt2
dt, (7)

where g represents the gradient, and λ represents the adjoint
wavefield, which satisfies the adjoint equation as follows:

( 1
v20

z2

zt2
− ∇2)λ � d, (8)

where d refers to the difference between the simulated seismic
records obtained by Bornmodeling and observed seismic records.
Similarly, Eq. 7 can be described in the matrix form, which is
simplified as follows:

g � LT(Lm − dobs), (9)

where g denotes the matrix form of the gradient and the
superscript “T” represents the transpose of a matrix. The
conjugate gradient algorithm based on gradient
preconditioning is used to update the reflection coefficient
model; the model update process can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βk �
(Qgk)T(Qgk − Qgk−1)����Qgk−1����2

yk �
⎧⎨⎩ −Qgk k � 1

−Qgk + βkyk−1 k≥ 2

αk � (Lyk)T(Lmk − dobs)
(Lyk)T(Lyk)

mk+1 � mk + αkyk

, (10)

where k represents the number of iterations, β is the correction
factor of conjugate gradient, y is the matrix form of conjugate
gradient, α denotes the step length, and Q stands for the gradient

preconditioning operator. And as we all know, an accurate and
easy-to-calculate gradient preconditioning operator can
significantly improve the imaging accuracy and accelerate the
convergence rate of LSRTM.

LSRTM USING THE GPTWE

The Hessian matrix can accurately reflect the geometric
spreading of wavefield and the degree of illumination
(Pratt et al., 1998). Theoretically, applying the Hessian
matrix to precondition, the original gradient is able to
eliminate the impact caused by geometric spreading and
disproportioned illumination on gradient. Therefore, the
imaging accuracy and convergence rate of LSRTM are
greatly improved. However, the storage and calculation
required by the method of conventional gradient
preconditioning based on the Hessian matrix are usually
unbearable for the LSRTM of massive data. GPSWE
(Zhang et al., 2012) can directly avoid the calculation and
storage of the Hessian matrix or approximated Hessian
matrix, which has received extensive attention from

FIGURE 2 | Marmousi velocity model.

FIGURE 3 | Wavefront snapshots of numeric modeling at 1.05 s: (A)
based on the acoustic wave equation; (B) based on the non-reflecting
acoustic wave equation.
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scholars.Ws(x) is the energy of forward-propagated wavefield
and is represented as follows:

Ws(x) � ∑
(s,t)

P2
s(x, t, xs), (11)

where Ps(x, t, xs) is the forward-propagated wavefield value at x,
which is obtained by the forward modeling based on the acoustic
wave equation (as shown in Eq. 1) with the source disturbance at
xs. x represents the one-dimensional space vector. Analogously,
Wr(x) is the energy of back-propagated wavefield and is defined
as follows:

Wr(x) � ∑
(s,r,t)

P2
r(x, t, xr), (12)

where Pr (x, t, xr) stands for the back-propagated wavefield value
at x, which is obtained by the reverse time extrapolation based on
the acoustic wave equation (inverse process of Eq. 1) with the
impulse disturbance at xr. Then we used the energy of forward-
and back-propagated wavefields to precondition the original
gradient and obtain the following equation:

FIGURE 4 | Background velocity model.

FIGURE 5 | Schematic description of the gradient preconditioning
operator: (A) GPSWE; (B) GPTWE.

FIGURE 6 | Imaging results of LSRTM after 60 iterations: (A) without
gradient preconditioning; (B) using GPSWE; and (C) using GPTWE.
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gp(x) �
g(x)

Ws(x)Wr(x)
√ , (13)

where gp is the operator of GPSWE.
In essence, this method is not a direct approximation of the

Hessian matrix but uses the distribution of the energy of
seismic wavefield to correct the geometric spreading and
proportioned illumination, which avoids the storage and
calculation of large matrix. The research of Song et al.
(2019) in full waveform inversion shows that only the
transmission wavefield contains accurate information of
geometric spreading and illumination. However, the
conventional seismic wavefield also contains a large number
of reflected waves, multiples, and other wavefields in addition
to the transmission wavefield, which makes the operator of
GPSWE not accurate enough. For this reason, this study
develops a highly efficient LSRTM algorithm using GPTWE.
The implementation steps of this method are described in detail
later, which are similar to the one of GPSWE.

First, the forward modeling based on the non-reflecting
acoustic wave equation (Baysal et al., 1984) (as shown in Eq.
14) is used to obtain the forward-propagated “approximate
transmission wavefield” with the seismic wavelet as the source.

( 1
v2

z2

zt2
− ∇2)U � 1

v
(zU
zx

zv

zx
+ zU

zz

zv

zz
) + S, (14)

where x and z denote the space coordinates, respectively, and U
stands for the “approximate transmission wavefield.” Es(x) is the
energy of forward-propagated “approximate transmission
wavefield” and is represented as follows:

Es(x) � ∑
(s,t)

U2
s(x, t, xs), (15)

where Us(x, t, xs) is the forward-propagated “approximate
transmission wavefield” value at x, which is obtained by the
forward modeling based on the non-reflecting acoustic wave
equation (as shown in Eq. 14) with the source disturbance at
xs. Similarly, Er(x) is the energy of back-propagated “approximate
transmission wavefield” and is defined as follows:

Er(x) � ∑
(s,r,t)

U2
r(x, t, xr), (16)

whereUr(x, t, xr) stands for the backward-propagated wavefield value
at x, which is obtained by the reverse time extrapolation based on the
non-reflecting acoustic wave equation (inverse process of Eq. 14)
with the impulse disturbance at xr. Then we used the energy of
forward- and back-propagated “approximate transmissionwavefield”
to precondition the original gradient and can obtain the following:

gt(x) �
g(x)

Es(x)Er(x)
√ , (17)

where gt is the operator of GPTWE. The flowchart of the LSRTM
using GPTWE is shown in Figure 1.

It should be noted that in the implementation process of
the LSRTM using GPTWE, all the steps are the same as the
LSRTM using GPSWE, except that the acoustic wave equation
in calculating preconditioning operator is replaced with the
non-reflecting acoustic wave equation, so the calculation of
the LSRTM using GPTWE is essentially in agreement with the
one using GPSWE. The LSRTM using GPSWE only needs to
add one additional forward modeling and one additional
reverse time continuation in the first iteration in
comparison with the conventional LSRTM without
gradient preconditioning. And the additional calculation is
negligible compared with the LSRTM itself, which often
needs hundreds of wavefield continuation. Therefore,
theoretically, the computational efficiency of the three

FIGURE 7 | Single-trace display of imaging results after 60 iterations.

FIGURE 8 | Normalized residual curves.

TABLE 1 | Calculation time of LSRTM with 60 iterations.

Without
gradient preconditioning

GPSWE GPTWE

Time/s 24,275 24,335 24,407
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methods including the conventional LSRTM without
gradient preconditioning, the LSRTM using GPSWE, and
the LSRTM using GPTWE are basically equivalent.

To test the suppressing effect of the non-reflecting acoustic wave
equation on reflected waves, the forward modeling experiment was
carried out based on the Marmousi model. The size of model is
4,600 m in length and 3,000 m in depth (as shown in Figure 2). The
grid interval in the x and z directions is 8 m. A Ricker wavelet with a
dominant frequency of 20 Hz is used as the source, which is excited
at (2,300 m, 0 m). The accuracy in finite difference wavefield
modeling is eighth order in space and second order in time. The
time sampling step is 0.5 ms, and themaximum recording time is 3 s.
The hybrid absorbing boundary condition (Xie et al., 2020) is used
for boundary processing. Figure 3 illustrates the wavefront
snapshots at 1.05 s simulated by the acoustic wave equation and
the non-reflecting acoustic wave equation.

From Figure 3, we can observe that the reflected waves in the
wavefield simulated by the non-reflecting acoustic wave equation have
been suppressed effectively, and the simulated wavefield is closer to a
pure transmitted wavefield than that simulated by the acoustic wave
equation. Therefore, in theory, it is more accurate to precondition the
gradient using “approximate transmission wavefield” information
simulated by the non-reflecting acoustic wave equation.

MARMOUSI MODEL TEST

TheMarmousi model in LSRTM Using the GPTWE is used to test
the feasibility and accuracy of the algorithm in complex media

conditions. The background velocity model used for LSRTM
imaging is shown in Figure 4, which is the result of Gaussian
smoothing of the original velocity model in Figure 2. A total of
116 shots are considered for imaging, and the shots are evenly
distributed on the surface with the interval of 40 m. A total of 451
receivers are allotted for each shot, and the receivers are evenly
distributed on both sides of each shot with 8-m interval. The
observation data are generated by the full-waveform modeling
(Eq. 1). The remaining experimental parameters are the same as
those in LSRTM Using the GPTWE.

Figure 5 shows the preconditioners using GPSWE and
GPTWE. In Figures 5A,B, we can observe that the
preconditioning operator of GPTWE is more related to the
model, and the deep illumination compensation is stronger.
Figure 6 illustrates the imaging result of LSRTM after 60
iterations. Through the compassion between Figures 6A–C
(marked by the dashed red circle), it can be seen that the
imaging results of LSRTM based on gradient preconditioning
are better than those without gradient preconditioning.
Specifically, after 60 iterations, the LSRTM using GPTWE has
the best amplitude preservation, the highest spatial resolution,
and the highest imaging accuracy of deep part, followed by the
LSRTM using GPSWE, and the LSRTM without gradient
preconditioning has the worst imaging result.

In order to compare the imaging effects of the previous three
methods more clearly, we extract the imaging curves at
x � 1960 m from the sections in Figure 6 and compare them
with theoretical reflection coefficient curve, which is calculated
using Eq. 3; Figure 7 is the single-trace display of imaging results

FIGURE 9 | Pluto velocity model: (A) real velocity model; (B) background velocity model.
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after 60 iterations, where blue, green, red, and black are the single-
trace curves of LSRTM without gradient preconditioning, using
GPSWE, using GPTWE, and theoretical reflection coefficient,

respectively. As observed from Figure 7, the imaging result of
LSRTM using GPTWE is closest to the theoretical reflection
coefficient curve, while the imaging result of LSRTM without
gradient preconditioning is the different from the theoretical
reflection coefficient curve at different imaging positions.
Therefore, the amplitude preservation of the LSRTM using
GPTWE is the highest, followed by the LSRTM using GPSWE,
and the lowest without gradient preconditioning.

The convergence curves are shown in Figure 8 for this
example, where blue, green, and red are the convergence
curves of LSRTM without gradient preconditioning, using
GPSWE, and using GPTWE, respectively. In Figure 8, it can
be seen that the LSRTM using GPTWE has the fastest
convergence rate and the smallest residual error, followed by
the LSRTM using GPSWE, while the LSRTM without gradient
preconditioning has the slowest convergence rate and converges
to the largest value after 60 iterations.

Furthermore, the computational efficiency of the previous
three methods is analyzed, as shown in Table 1. (The GPU
used in this experiment is GeForce RTX 2080 Ti.) Table 1 shows
that computational efficiency of those methods is basically the

FIGURE 10 | Imaging results of LSRTM after 60 iterations: (A) without gradient preconditioning; (B) using GPSWE; and (C) using GPTWE.

FIGURE 11 | Single-trace display of imaging results after 60 iterations.
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same. It is also consistent with the result of theoretical analysis in
LSRTM Using the GPTWE.

PLUTO DATA EXAMPLE

Due to the poor illumination beneath the salt bodies, the subsalt
imaging problem has always been a challenging issue. So, in the
second example, we performed LSRTM on the Pluto model to
check the ability of LSRTM using GPTWE in recovering the weak
events in the deep part and accelerating the convergence rate.
Figure 9A shows the Pluto model, which is 7.33 km in length and
2.5 km in depth with a 10-m grid interval in the horizontal and
vertical directions. And Figure 9B shows the smoothed
background velocity model. The line involves 147 shots, and a
total of 734 receivers are allotted for each shot. The observation
data are generated by the full-waveform modeling (Eq. 1). The
interval between shots is 50 m, and the interval between receivers
is 10 m. The depth of shots and receivers are both 0 m. A Ricker
wavelet with a 20 Hz dominant frequency is used to generate the
data. The time sampling step is 1 ms, and the maximum
recording time is 6 s. The accuracy in finite difference
wavefield modeling is tenth order in space and second order
in time. The hybrid absorbing boundary condition (Xie et al.,
2020) is used for boundary processing.

The inverted images after 60 iterations with three different
methods for the Pluto model are shown in Figure 10. As
shown in Figure 10 (marked by the dashed red circle), the
LSRTM without gradient preconditioning is difficult to image
the structure below the salt bodies because of the poor
illumination; the LSRTM using GPSWE is helpful for
imaging the subsalt structures, but the event is weak and

the horizontal balance is poor; the LSRTM using GPTWE can
effectively improve the imaging accuracy of deep target, and
the subsalt structures are clearer and more continuous than
those of other images.

Analogously, the imaging curves and theoretical reflection
coefficient curve at x � 3,500 m are displayed in Figure 11. As
observed from Figure 11, the imaging result of LSRTM using
GPTWE is closest to the theoretical reflection coefficient curve,
especially in the deep part.

The convergence curves are plotted in Figure 12. It can be seen
that after 60 iterations, the red curve for LSRTM using GPTWE
has the fastest convergence rate and converges to the
smallest value.

CONCLUSION AND PROSPECT

Based on the calculation characteristics of LSRTM, this study
proposes a gradient preconditioning approach using transmitted
wave energy for LSRTM. In comparison with conventional
methods, the imaging results of theoretical model tests show
that the LSRTM using GPTWE can improve the imaging
accuracy of deep target and speed up the convergence rate
without significantly increasing the amount of calculation. In
addition, this study only implements the two-dimensional
LSRTM using GPTWE, and further extending the algorithm to
three-dimensional migration will be the focus of subsequent
research.
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FIGURE 12 | Normalized residual curves.
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