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Least-squares reverse time migration (LSRTM) is powerful for imaging complex geological
structures. Most researches are based on Born modeling operator with the assumption of
small perturbation. However, studies have shown that LSRTM based on Kirchhoff
approximation performs better; in particular, it generates a more explicit reflected
subsurface and fits large offset data well. Moreover, minimizing the difference between
predicted and observed data in a least-squares sense leads to an average solution with
relatively low quality. This study applies L1-norm regularization to LSRTM (L1-LSRTM)
based on Kirchhoff approximation to compensate for the shortcomings of conventional
LSRTM, which obtains a better reflectivity image and gets the residual and resolution in
balance. Several numerical examples demonstrate that our method can effectively mitigate
the deficiencies of conventional LSRTM and provide a higher resolution image profile.

Keywords: least-squares reverse timemigration (LSRTM), kirchhoff approximation, L1-norm regularization, sparsity
constraint, born approximation

INTRODUCTION

Seismic migration is an inverse procedure of forward modeling, which can restore the interior of the
earth mediumwith record data. Specifically, migration attempts to eliminate the effects caused by the
process of physical propagation and obtain an image that clearly depicts the structural information of
interest. Reverse time migration (RTM), a state-of-the-art seismic imaging method (Baysal et al.,
1983; McMechan, 1983), identifies the aforementioned acausal procedure appropriately. Based on
two-way wave equation, RTM is powerful for handling complex geological settings and velocity with
dramatic variation in the lateral direction. Therefore, it can deal with steep dips and salt dome better
than conventional migration (Zhu and Lines, 1998; Yoon et al., 2003; Liu et al., 2010). However, most
migration methods, including RTM, use the adjoint operator to compute the image instead of the
inverse operator (Tarantola, 1984). Practical data suffers from many factors, such as irregular
acquisition geometry and limited aperture of the acquisition system. These deficiencies generate
artifacts and degrade the resolution. To overcome these limitations, least-squares migration (LSM)
was proposed to combine with RTM (Liu et al., 2011; Dai et al., 2012). Therefore, seismic imaging can
be regarded as a linearized inverse problem.With a proper initial velocity model, seismic records can
be inverted to a more accurate profile. LSRTM iteratively reduces the residual between predicted data
and observed data in a least-squares framework; therefore, the adjoint operator can keep
approaching the inverse operator. Many results have indicated that LSRTM has a better
performance than conventional RTM and migration (Zhang et al., 2015; Dutta and Schuster,
2014; Liu et al., 2016).
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The precondition of seismic inversion is forward modeling,
which maps the parameter model to seismic data. There are
two main approaches to build linear approximation between
physical model and wavefield (Yang and Zhang, 2019). One is
the most commonly used Born approximation based on small
perturbation (Beylkin, 1985; Bleistein, 1987). This requires
that high-order scattered wavefields are much weaker than
primary field. The Born operator describes a linear
relationship between model perturbation and primary
reflected wave. It divides the wavefield into two parts:
background wavefield and perturbation wavefield. LSRTM
based on Born approximation can achieve model
perturbation with these two fields. In addition, an
alternative scheme for modeling is Kirchhoff approximation
(Bleistein, 1987). Compared with Born modeling, the
Kirchhoff operator delineates the connection between
primary reflected wave and reflectivity. Different operators
lead to distinctive results under these two physical contexts.
However, neither Born nor Kirchhoff approximation can avoid
the impact on seismic image in a least-squares sense. Because
minimizing the L2 norm only provides an average solution
(Wang, 2016; Wu et al., 2016). It is essential to seek a balance
between the residual and resolution. According to geological
recognition, the earth medium usually presents a layered
spatial distribution. The reflection coefficient that mirrors
strata attributes should be sparsity, that is, the part of
model that does not generate reflected wave ought to be
zero. Therefore, the inverted model needs a sparse limitation.

This study implements a Kirchhoff modeling formula for
LSRTM promoted by sparsity. The reflectivity model should
be regularized with L1 norm while minimizing the residual of
wavefield in the form of the L2 norm. Referring to ‘least absolute
shrinkage and selection operator’ (Lasso) problem (Tibshirani,
1996), this reformed LSRTM can be solved by the algorithm of
spectral projected gradient for L1 minimization (SPGL1), which
is designed to solve sparse least squares (van den Berg and
Friedlander, 2011). Examples show that our method can
effectively overcome the problems mentioned above.

METHOD

RTM has great advantages in imaging steep strctures such as salt
dome. However, it suffers from low-frequency noise compared to
conventional migration. Least-squares migration can get closer
iteratively to the optimal solution and eventually obtain a
relatively high signal-to-noise ratio, high resolution and
amplitude equalized profile that eliminates the influence of the
acquisition system. It contains three steps: constructing a linear
modeling problem first, using the forward and backward
propagation wavefields to image, and finally updating the
physics model according to the residual.

Linear Modeling Operators
The linearization of nonlinear forward problem is essential to
seismic inversion, making the physical progress more explicit;
moreover, converting the medium parameter becomes easier. The

choice of a linear operator will lead to different physical
significance and images. It is a common way to use Born
approximation to realize linearization. The real velocity model
is divided into two parts: background velocity v0 and velocity
perturbation δv. Given a perturbation δv, it generates a
corresponding wavefield perturbation δu. The Born operator
describes the relationship between reflected wave and model
perturbation. Specifically, the incident wave interacting with
model perturbation becomes a new source, namely the
Huygens principle, and then the new source generates
wavefield perturbations. This can be expressed as follows in
time domain:

( 1

v0(x)2
z2

zt2
− ∇2)u0(x, t; xs) � f (t; xs) (1)

( 1

v0(x)2
z2

zt2
− ∇2)δub(x, t; xs) � m(x) 1

v0(x)2
z2u0(x, t; xs)

zt2

(2)

where u0 represents the background field propagating in v0,
f (t; xs) is the source signature located at xs and excited at t,
the model perturbation is denoted bym(x) � 2δv(x)/v0(x), which
describes velocity changes compared to background velocity. x is
a point in model. This study assumes that the density ρ is a
constant (Eq. 1) and (Eq. 2) can be rewritten in form of an
integral using Green’s theorem:

u0(x, t; xs) � f (t; xs)G0(x, t; xs) (3)

δub(xg , t; xs) � ∫m(x) 1

v20(x)
z2u0(x, t; xs)

z2t
G0(xg , t; x)dx (4)

where G0(x, t; xs) is the Green’s function from xs to x, G0(xg , t; x)
propagates from x to xg . Green’s function is governed by:

( 1

v0(x)2
z2

zt2
− ∇2)G0(x, t; xs) � δ(t; xs) (5)

where the δ(t; xs) is Dirac function.
Born approximation represents scattered phenomenon

caused by model perturbation, which could be a means of
linearizing seismic inversion. However, this approximation is
accurate when scattered field δu is much weaker than
background field u0 (Schuster, 2017), which is a
disadvantage of Born approximation. It cannot describe
kinematic and dynamic information of seismic waves well
with strong reflector. And studies have shown that Born
approximation has limited angle validity and it cannot
appropriately predict the reflections generated with large
incident angle (Yang and Zhang, 2019).

Compared to the Born operator, the Kirchhoff operator relates
the reflectivity to wavefield perturbation. Therefore, it depicts the
interaction between the incident field and reflectivity rather than
velocity perturbation. There is a relationship between reflectivity
and model perturbation when the perturbation and incident
angle are small (Stolt and Weglein, 2012):

r(x, α) � iω
2v0(x) cos(x, α)m(x) (6)
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where the r(x, α) is the reflection coefficient at point x with
incident angle α between the incidence and the normal line
(Figure 1). This means that we can obtain the wavefield
perturbation under the Kirchhoff approximation by
substituting (Eq. 6) into (Eq. 4), and we have

δub(xg , t; xs) � ∫ 2v0(x)
iω

r(x, α) cos(x, α) 1

v20(x)
z2u0(x, t; xs)

z2t
G0(xg , t; x)dx (7)

Here we turn Kirchhoff modeling equation into the same form as
Born approximation. Then Eq. 7 can be rewritten as.

( 1

v0(x)2
z2

zt2
− ∇2)u0(x, t; xs) � −∫ f (t; xs)dt (8)

( 1

v0(x)2
z2

zt2
− ∇2)δuk(x, t; xs) � 2v0(x)r(x,

α) cos(x, α) 1

v0(x)2
z2u0(x, t; xs)

zt2
(9)

It should be noted that the term r(x, α) can be replaced by
the generalized angle-dependent reflectivity model to get rid of
the limitations of small perturbation and incident angle.
Although there are some methods to solve the propagation
direction of wave, such as Poynting vector and Plane Wave
Decomposition (PWD), it is still tedious and time-consuming
to obtain the angle term. Here we give an approximate scheme
(Yang and Zhang, 2019).

Each shot can invert a reflectivity image, here we sum the
images obtained by all shots. Then, we regard the summation as
the final reflectivity model and use it to iterate. Approximately, we
can get an averaged reflectivity model by multiple shots stacking.
Therefore, we can get the predicted data by using this stacked
reflectivity R(x) rather than the angle-dependent term
r(x, α) cos(x, α). Note that R(x) is an averaged reflectivity over
all illuminated angles.

R(x) ≈ ∑
shot

r(x, α) cos(x, α) (10)

With this approximate reflectivity R(x), we can express Eq. 9 as

( 1

v0(x)2
z2

zt2
− ∇2)δuk(x, t; xs) � 2v0(x)R(x) 1

v0(x)2
z2u0(x, t; xs)

zt2

(11)

In sum, with the relationship of reflectivity and model
perturbation, two linear approximations have a similar form,
which expresses their common ground. The difference between
two approximations is also evident. From Eq. 6, cos α
approximately equals to one and can be ignored for a small
incident angle. Therefore, reflectivity can be regarded as the
spatial derivative of model perturbation. The inverted model
after spatial derivation has a higher resolution, that is, the
spectrum has been improved. More details are provided in the
numerical tests.

Least-Squares With Sparse Optimization
In contrast to full waveform inversion (FWI) (Liu, et al., 2020),
LSRTM first establishes a linear relationship between physical
model and corresponding response (Tarantola, 1984), then it
implements the inverse problem. The least-squares method
(LSM) only requires the construction of a migration operator
and inverse migration operator, which is conjugated to each
other. It can reduce the residual between the observed and
predicted data iteratively to approach the optimal solution of
the inverse problem gradually. According to the linear
approximation above, we can express them in the form of a
matrix:

d � Lm (12)

where the d is predicted data, such as background or perturbation
fields. L represents modeling operator andm is the physics model.
Usually, it is assumed that the background velocity has been
obtained in advance, and then the data can be predicted. Hence,
the misfit function can be expressed as:

E(m) � ‖Lm − dobs‖2 (13)

The modelm, which makes zE(m)zm (the Jacobian matrix) equal to 0,
is the optimal solution of Eq. 13. However, the computation of
the Jacobian matrix is quite time consuming, particularly for
seismic exploration. We adopt the adjoint-state method to
calculate the adjoint operator LT of modeling operator L,
Specifically, the gradient of E(m) can be obtained by back
propagation of the wavefield residual and background field,
here we give the gradient based on Kirchhoff approximation
(Plessix, 2006; Wang et al., 2021):

mmig � LTd � 2v0(x)∑
shot

∫ 1

v0(x)2
z2u0(x, t; xs)

zt2
q(x, t; xs)dt

(14)

Where q(x, t; xs) is the adjoint wavefield governed by:

1

v0(x)2
z2q(x, t; xs)

zt2
− ∇2q(x, t; xs) � δu(xr, t; xs) (15)

FIGURE 1 | Schematic illustration of incident wave and reflected wave.
And α is the incident angle.
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According to Eq. 13, we can obtain a least-squares solution
m � (LTL)−1LTd. Note that LSM provides a smooth solution of
the model, which is determined by the properties of the L2 norm.
As a result, LSM has a limited ability to improve the quality of the
image. Here we give a simple model to display the impact of LSM.
In this example, we use the Ricker wavelet with a center frequency
of 30 Hz and a time sampling interval of 1 ms. With convolution
model theory, we can get seismic records via the convolution of
Ricker wavelet and reflection coefficients, which can be obtained
by d � Lm. Conversely, reflection coefficients can be obtained by
the deconvolution of seismic records and wavelet, that is,
mmig � LTd. Figure 2C is the result of deconvolution, and it is
hard to identify the reflectors. Compared to deconvolution,
Figure 2D shows that LSM improves the resolution obviously.
However, many oscillations caused by (LTL)−1 near the real
reflection coefficients should not exist. That’s why we regard
the least-squares solution as a smooth or average solution. The
actual model indicates that the medium presents a layered spatial
distribution, as shown in Figure 2A or Figure 2B, that is, the sub-
surfaces are sparse. In Figure 2E, the inversion result with sparse
constrained LSM performs quite well, and these oscillations
generated by LSM are suppressed; thus, the resolution and
sparsity of the reflection coefficient series are improved
effectively.

Due to the feasibility and sparse property of L1-norm, we
modify the objective function with L1 norm to realize sparse

reconstruction of themodel in this study. Generally, Eq. 13 can be
reformed with two new problems.

1 Basis Pursuit (BP) problem

(BP) min ‖m‖1, subject to Lm � d (16)

Eq. 16 depicts a BP problem that comes from compressed sense
theory, and it aims to seek a sparse solution that satisfies Lm � d.
However, practical seismic data inevitably contain noise, and
Eq. 16 can be modified as a basis pursuit denoising (BPDN)
problem:

(BPσ) min ‖m‖1, subject to ‖Lm − dobs‖2≤ σ (17)

where the σ describes the noise level in the data, and Eq. 16 and
Eq. 17 are equivalent to each other when σ � 0.

2 Least Absolute Shrinkage and Selection Operator (LASSO)
problem

(LSτ) min ‖Lm − dobs‖2 , subject to ‖m‖1 ≤ τ (18)

where the τ ≥ 0 is an explicit limitation of sparsity onm. Problems
(BPσ) and (LSτ) are different descriptions of the same question.
They are equivalent in the sense that there exists a solution m* of
(BPσ) for a given σ, and there exists a corresponding τ that makes
m* also be a solution of (LSτ).

FIGURE 2 | (A) reflectivity model; (B) reflection coefficient series extracted in Figure 2A; (C) deconvolution of single record; (D) the result inverted by LSM; (E) the
result inverted by sparse constrained LSM.
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Both problems mentioned above can be solved by the algorithm
of spectral projected gradient for L1 minimization (SPGL1). Given a
constraint τ, we can obtain the residual norm from Eq. 18:

φ(τ) � ‖rτ‖2 with rτ � Lmτ − dobs (19)

Let

φ(τ) � σ (20)

Eq. 20 recasts (LSτ) as a problem of finding the root of a nonlinear
equation and defines a continuous curve, the Pareto curve
(Figure 3).

For a given σ, SPGL1 uses the Newtonmethod to approach the
root, and as the τ updates iteratively, the optimal solution mτσ of
problems (BPσ) and (LSτ) can be obtained. Therefore, we balance
the 2-norm of the residual against the 1-norm of the solution
eventually (van den Berg and Friedlander, 2009). From Figure 3,
the question is degraded to a simple Lasso problem (LSτ) when
the noise level factor σ is equal to 0. In this study, we set σ � 0.
Note that synthetic seismic records do not contain noise in
general, so we set the noise level factor to be zero. Actually,
the algorithm of SPGL1 can deal with noisy data, and we can add
some random noise or set some traces to be zero in synthetic data.
Besides, the determination of parameter τ is quite important.
According to the theoretical model, we can calculate the
perturbation model or reflectivity model and make a rough
estimate of τ. In general, it is appropriate to set the value of
tau to tens of times that of the calculated perturbation model or
reflectivity model. Then, the parameter τ can be adjusted
according to the inversion results.

Here we summarize the workflow of L1-regularized LSRTM as
follows:

1) Obtain the predicted data d0 with migration velocity v0, and
get the dres with dres � dobs − d0;

2) Set the initial model m0 and predict the data Lm0 based on
Born or Kirchhoff approximation, therefore we can get the
residual r0 � Lm0 − dres and gradient operator g0 � LTr0;

3) Input the parameters of τ, σ and set k � 0;
4) Solve the Lasso problem (LSτ) with the algorithm of SPGL1,

and update the mk, rk and gk until k � kmax;
5) Output the result mkmax .

NUMERICAL EXAMPLE

In this study, two theoretical models are used to test the validity of
the proposed method, including a single diffraction point and
complex fault model. Both are based on the two-way acoustic
wave equation. Here we use the finite difference method on
regular grid.

Single-Diffraction Point
To verify the effectiveness of this method, we first set a simple
model with a diffraction point of 2000 m/s embedded in the
background velocity of 1,000 m/s (Figure 4), and the entire
model has been discretized into 201 × 201 grids in the
horizontal and vertical directions, respectively, with the
same interval of 5m. The geometry system is arranged as
follows: a total of 21 shots are uniformly distributed on the
surface of this model with an interval of 50m. Geophones are
also placed on each grid point on the surface. We use the
Ricker wavelet with a center frequency of 25 Hz for modeling,
and the sampling interval is 0.5 ms. In this example, we set
1,000 m/s as the migration velocity.

As shown in Figure 5A, the image is obtained by LSRTM
based on Born approximation. This is consistent with the
actual situation to a certain degree. The single scatter point
is blurred with a disturbing cross pattern (marked by a yellow
arrow). However, it should be a dot on the image (Lecomte and
Kjeller, 2008). This is because we use the adjoint operator to
migrate rather than the inverse operator in Eq. 14. Specifically,
Eq. 13 defines a normal equation with LTLm � LTd. The term
LTL, Hessian matrix, is equivalent to a blur operator acting on
the true image m. Furthermore, LTL includes the influence of
irregular acquisition, limited acquisition aperture, band

FIGURE 3 | Schematic diagram of the Pareto curve. A Newton-based
root-finding method is used to update the solution of Eq. 20.

FIGURE 4 | A simple diffraction point velocity model.
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limited source, etc., which generate artifacts and degrade the
resolution of the image (Jiang and Zhang, 2019). Compared to
LSRTM, the same method in Figure 5C with the L1 constraint
performs better; it mitigates the distortion caused by the blur
operator. Therefore, with the promotion of sparsity, the
resolution in the least-squares method has been improved
significantly, and the image looks more like a scatter point.

The LSRTM based on the Kirchhoff operator inverts the
reflectivity directly from the seismic records. Figure 5B
displays the image produced by Kirchhoff approximation.
Compared to Figure 5A, least-squares RTM based on
Kirchhoff operator suffers from the same problems. Similarly,
we implement the L1 norm on LSRTM, which is shown in
Figure 5D. The cross pattern is eliminated clearly, and we

FIGURE 5 | The images invert by LSRTM and LSRTM with L1 norm constraint based on Born and Kirchhoff approximation. (A) Unconstrained LSRTM based on
Born approximation. (B) Unconstrained LSRTM using Kirchhoff approximation. (C) The image of the LSRTM with L1 norm regularization based on Born approximation.
(D) The migrated image with sparse constrained LSRTM based on Kirchhoff approximation.

FIGURE 6 | (A) The real velocity of fault model. (B) the background velocity model after smooth.
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obtain an explicit dot rather than a blurred spot. Therefore, for a
simple model, the sparsity-promoting LSRTM based on Kirchhoff
approximation can effectively improve the resolution of the image.
The results calculated by LSRTM in Figures 5A,B iterate 5 times.
Figures 5C,D use the SPGL1 algorithm for iterating 10 times with
τ � 2.

Fault Model
We also test the other relative complex model. In this fault model
(Figure 6A), there are some classical geological structures, including
folds, fault blocks, and depressions. Therefore, it appropriately shows
the complex structure of near-surface media. The maximum and
minimum velocities are 4,000m/s and 1,500m/s, respectively.
Similarly, we discretize it into 265 × 367 grids with an interval of
5 m. Thus, a total of 25 shots are uniformly located at the surface of
this model. Themodeling seismic wavelet is same to last experiment.

As shown in Figures 7A,B, images inverted by LSRTM based on
two approximations fit the fault model well, and the contact
relationship between structures can be clearly depicted. To further
improve the resolution of these images, we combined L1 norm
regularization with LSRTM to reconstruct the model. From
Figures 7C,D, the method based on Kirchhoff approximation

recovers the stratum’s sparsity more effectively. The results in
Figures 7A,B are calculated by LSRTM with 10 iterations. Figures
7C,D use the SPGL1 algorithm for iterating 10 times with
τ � 2000 and τ � 500, respectively. Note that the amplitude of
inverted results is different because of the value of parameter τ.

Furthermore, we enlarge the model framed by red rectangle in
Figure 6A, which has step-like strata (marked by yellow arrows in
Figure 8A). After inverting, the reflectivity image in Figure 8D
produced by constrained LSRTM based on Kirchhoff operator
agrees with the actual situation.

Furthermore, images inverted by two different approximations
have different phases. According to Eq. 6, reflectivity can be derived
from model perturbation. With the assumption of a small incident
angle, cos(x, α) is roughly equivalent to 1 and can be ignored. Then,
Eq. 6 can be rewritten as r(x) � ikm(x)/2, where the wavenumber
k � ω

c . Therefore, reflectivity r(x) is the spatial derivative of model
perturbation m(x). As a result, the image inverted by Kirchhoff
performs sparser and sharper, and there is a phase shift of 90°

between perturbation model and reflectivity model.
Figure 9 shows the amplitude spectra of the images in

Figures 7B–D, respectively. The spectra curves are the sum
of each trace by the spatial Fourier transform along the depth. The

FIGURE 7 | Fault images inverted by (A) Unconstrained LSRTM based on Born approximation. (B) Unconstrained LSRTM with Kirchhoff approximation. (C)
LSRTM with L1 norm regularization based on Born approximation. (D) sparse constrained LSRTM based on Kirchhoff approximation.
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red one is generated from the image inverted by L1-regularized
LSRTMbased on Born approximation. The blue and green spectrum
curves are produced by unconstrained and constrained LSRTMwith
Kirchhoff approximation, respectively. Because of the spatial

derivative and sparse constraint, the spectrum of the image
inverted by L1-LSRTM with Kirchhoff approximation has more
high-wavenumber components than that of Born approximation,
which explains that Kirchhoff approximation improves the
resolution of the image.

CONCLUSION

The LSRTM recasts classical seismic inversion as a linear
inverse problem. By means of linear approximation,
physical model is related to the corresponding wavefield.
Thereafter, we can reduce the residual between predicted
and observed data iteratively to directly invert the interest
parameters. This study introduces two linearization methods.
Born approximation obtains the relationship between the
model and physical response based on perturbation theory.
With the help of the Born operator, we derive another type of
linear method, namely the Kirchhoff operator, which relates the
reflectivity to wavefield explicitly.Moreover, these twomethods have
a relationship of a spatial derivative, and there is a phase shift

FIGURE 8 | (A) true velocity model in the red rectangle in Figure 6A, (B) corresponding image inverted by LSRTM based on Kirchhoff approximation, (C) LSRTM
with sparse constraint based on Born approximation, (D) LSRTM with sparse constraint based on Kirchhoff approximation.

FIGURE 9 | The spectrum of inverted images form Figure 6.
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between perturbation model and reflectivity model. Although two
operators are different physical quantities, the resolution can be
improved by Kirchhoff approximation.

LSRTM can mitigate the shortcomings of other migration
methods, while the solution is smooth and deviates from the
true model. Specifically, there are redundant oscillatory axes in
the strata that should be sparsely distributed. Therefore, we
reform the question as a sparsity-promoting LSRTM. The
SPGL1 algorithm can effectively solve this problem and
invert a sparse image that matches the model well.
Examples prove the validity of our study.
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