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For the issue of collapse susceptibility prediction (CSP), minimal attention has been paid to
explore the uncertainty characteristics of different machine learning models predicting
collapse susceptibility. In this study, six kinds of typical machine learning methods, namely,
logistic regression (LR), radial basis function neural network (RBF), multilayer perceptron
(MLP), support vector machine (SVM), chi-square automatic interactive detection decision
tree (CHAID), and random forest (RF) models, are constructed to do CSP. In this regard,
An’yuan County in China, with a total of 108 collapses and 11 related environmental factors
acquired through remote sensing and GIS technologies, is selected as a case study. The
spatial dataset is first constructed, and then these machine learning models are used to
implement CSP. Finally, the uncertainty characteristics of the CSP results are explored
according to the accuracies, mean values, and standard deviations of the collapse
susceptibility indexes (CSIs) and the Kendall synergy coefficient test. In addition,
Huichang County, China, is used as another study case to avoid the uncertainty of
different study areas. Results show that 1) overall, all six kinds of machine learning models
reasonably and accurately predict the collapse susceptibility in An’yuan County; 2) the RF
model has the highest prediction accuracy, followed by the CHAID, SVM, MLP, RBF, and
LRmodels; and 3) the CSP results of these models are significantly different, with the mean
value (0.2718) and average rank (2.72) of RF being smaller than those of the other five
models, followed by the CHAID (0.3210 and 3.29), SVM (0.3268 and 3.48), MLP (0.3354
and 3.64), RBF (0.3449 and 3.81), and LR (0.3496 and 4.06), and with a Kendall synergy
coefficient value of 0.062. Conclusively, it is necessary to adopt a series of different
machine learning models to predict collapse susceptibility for cross-validation and
comparison. Furthermore, the RF model has the highest prediction accuracy and the
lowest uncertainty of the CSP results of the machine learning models.
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INTRODUCTION

Mountain collapse is a geological phenomenon in which the rock
and soil mass on a steep slope suddenly breaks away from the
parent body under the action of gravity (Martínez-Moreno et al.,
2016; Sun et al., 2017; Yang et al., 2020c). Collapse is a destructive
type of geological disaster in human society that directly
endangers people’s lives and properties and causes serious
environmental problems (Martínez-Moreno et al., 2016; Dou
et al., 2020; Yang et al., 2021).

Collapse susceptibility prediction (CSP) and mapping can
accurately locate potential areas of collapse occurrence and lay
a solid foundation for collapse hazard and risk assessment
(Yilmaz et al., 2013). Collapse susceptibility refers to the
spatial probability of regional collapse occurrence. In recent
years, great progress has been made in mapping collapse
susceptibility based on geographic information system (GIS)
(Li W et al., 2020; Sun et al., 2021) and quantitative CSP
models (Bragagnolo et al., 2020). However, many problems
still need to be solved in this research subject. Hence, this
article attempts to explore the problems existing in CSP and
tries to put forward solutions for promoting the in-depth research
of CSP modeling (Merghadi et al., 2020).

A prediction model can be established by analyzing past
collapses and their related environmental factors to predict
the spatial position of possible collapses in the future (Zhu
et al., 2020). The selection of environmental factors, the
realization of the connection between collapse and
environmental factors, and the selection of an appropriate
prediction model are three basic research topics in collapse
susceptibility modeling (Shirzadi et al., 2017; Huang et al.,
2020a). Some literature works show that environmental
factors related to collapse in a large area mainly include
topographic and geomorphic factors, land cover factors,
and hydrologic environment and lithology factors
(Martínez-Moreno et al., 2016; Santo et al., 2017). The
specific types of collapse environmental factors can be
determined by reviewing the relevant literature, how easy
it is to obtain these environmental factors, and the basic
evolution characteristics of collapses in the study area (Sun
et al., 2017). In the next step, nonlinear connections are made
between the collapses and the abovementioned
environmental factors, and the results of the connections
are used as the input variables of the CSP models (Gutiérrez
et al., 2021). At present, the frequency ratio coefficient (Li
et al., 2017) and information entropy (Feng and Gong 2020)
are commonly used to reflect the above correlation features,
among which the frequency ratio coefficient is widely used
because of its simple principles and excellent effects (Wang
et al., 2016).

Generally, quantitative CSP models can be divided into data-
driven models (Hong et al., 2017) and deterministic models
(Yang et al., 2020b; Huang D et al., 2020). Deterministic
models can be considered mechanical models that mainly
calculate the stability of collapse (Berhane et al., 2021).
However, such models require relatively uniform collapse
types, consistent and detailed soil mechanical parameters, and

hydrological factors (Wang et al., 2021). Unfortunately, these
prerequisites limit the application of deterministic models,
especially in a large area (Godt et al., 2008). Data-driven
models can be divided into heuristic models, mathematical
statistics models (Tang R-X et al., 2020), and machine learning
models (Chen and Chen 2021). Relevant studies show that
machine learning models have better generalization ability and
susceptibility prediction effects (Rahmati et al., 2019) than
heuristic and mathematical statistical models (Hodasová and
Bednarik 2021). Machine learning can handle nonlinear
corrections between the collapse susceptibility index (output
variables) and input variables, and automatically determine the
model parameters (Shirzadi et al., 2017; Huang et al., 2020a;
Chang et al., 2020).

In recent years, the accuracy of susceptibility models is
evolving rapidly from opinion-driven models and
mathematical statistical models toward increased uses of
machine learning models for the landslide, flood, and other
disasters’ susceptibility prediction (Costache 2019; Khosravi
et al., 2019; Romali and Yusop 2021). The research studies
including background information on their operation,
implementation, and performance on machine learning in
disaster susceptibility mapping (Chang et al., 2020), such as
logistic regression (LR) (Sun et al., 2021), radial basis function
network (RBF) (Pham et al., 2016), chi-square automatic
interaction detector decision tree (CHAID) (Chen et al., 2017;
Park et al., 2018), multi-criteria approach (Mahmoud and Gan
2018), fuzzy logic (Xia et al., 2020), artificial neural network (Bui
et al., 2020; Huang et al., 2020d), random forest (RF) (Trigila
et al., 2015; Chen et al., 2018), multilayer perceptron (MLP)
(Pham et al., 2016; Huang et al., 2020b), support vector machine
(SVM) (Zhang et al., 2021), and Bayesian algorithm models (He
et al., 2019), have been published.

However, comparisons of current machine learning models
for CSP studies are currently lacking; there is no consensus on
which model is the most suitable for CSP modeling, and the CSP
results of different machine learning models vary greatly (Wang
et al., 2014). Hence, it is significant to compare the uncertainty
characteristics of CSP modeling by different machine learning
models. Furthermore, even if there is no significant difference in
the accuracy of CSP results, only a small increase will have an
important impact on the distribution rules of collapse
susceptibility indexes (CSIs) and change the classification
results of susceptibility levels. In addition, due to the
influences of environmental factors and machine learning
modeling processes, CSP results are often characterized by
strong uncertainties. Unfortunately, the existing studies pay
little attention to the uncertainties studied under different
machine learning models (Feizizadeh et al., 2014). As a whole,
in addition to the accuracy analysis of CSP, if some other
uncertainty characteristics of CSP results are further analyzed,
the CSP effects and feasibility can be better understood (Liu et al.,
2020).

To summarize, to explore the uncertainty characteristics of
different machine learning models in CSP, six kinds of typical
machine learning models, including LR, RBF, MLP, SVM,
CHAID, and RF models, are adopted to predict the collapse
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susceptibility in An’yuan County of China. In order to avoid the
uncertainty generated by different study areas, Huichang County
of Jiangxi Province in China is also used as the study area.

METHODOLOGIES

The purpose of this study is to explore the uncertainties in CSP
under different machine learning conditions. The modeling steps
of this study are shown in Figure 1 as follows: 1) A spatial dataset
is collected using GIS and remote sensing technologies, including
108 collapses and 11 environmental factors (such as the digital
elevation model (DEM), normalized difference vegetation index
(NDVI), normalized difference built-up index (NDBI), and
modified normalized difference water index (MNDWI)). 2)
Next, the nonlinear correlations between these collapses and
environmental factors are calculated by the FR method in
ARCGIS using spatial analysis functions. 3) Collinearity
diagnosis of environmental factors and analysis of their
relative importance are performed. 4) LR, RBF, MLP, SVM,
CHAID, and RF models are used for collapse susceptibility
modeling and mapping. 5) The area under the ROC curve
(AUC), frequency ratio accuracy (ACC), and other statistical
methods are used to evaluate the predictive performance and
uncertainty characteristics of the above machine learning models.

Remote Sensing and Geographic
Information System for Collapse
Susceptibility Prediction
In this study, the collapse-related environmental factors are
extracted and managed using RS and GIS technologies,
including topographic, land cover, and hydrological and
lithological factors. In particular, the topographic factors of

elevation, slope, slope aspect, profile and plane curvature, and
topographic relief are extracted through the topographic spatial
analysis using ArcGIS 10.3 software (Chen and Chen 2021).
Meanwhile, the hydrological factors of distance to rivers are
extracted through the hydrological analysis tools in GIS.
Furthermore, the NDBI, NDVI, and MNDWI are extracted
from Landsat TM eight images. In addition, the lithology is
drawn and managed in GIS. Finally, the CSMs are produced
and displayed by the GIS.

Acquisition of Topographic Factors
The areas with relatively low elevations mainly distributed in the
central and northern parts of An’yuan County. The plane and
profile curvatures, respectively, describe the vary features of
concave and convex terrains from the horizontal and vertical
directions (Zheng et al., 2021). Based on the definitions, the plane
curvature and profile curvature are, respectively, calculated as the
slope of the aspect and the slope of the slope in the ArcGIS 10.3
software. At the same time, the topographic relief reveals the
surface relief feature of the study region geography is calculated
by the statistical test and the maximum height difference method
in GIS (Tang Y et al., 2020).

Analysis of Hydrological Factors
The effects of hydrological factors on collapse occurrences are
reflected through the distances of grid units to the river networks.
The influence of the river networks on the collapse evolution is
mainly due to slope erosion and slope washing, leading to a lower
stability of the slope mass (Sun et al., 2021). Furthermore, the
distance to rivers shows the balance characteristics among
climate, geomorphology, and hydrology.

Acquisitions of Land Cover Factors From RS Images
The NDVI mainly represents the detection of vegetation growth
and coverage conditions of the study area (Eq. 1). The NDBI is
used to calculate the building distribution features in the study
area (Eq. 2). In addition, the MNDWI represents the surface
water distribution features (Eq. 3) (Roy et al., 2020). The
P(Green),P(Red),P(NIR), and P(MIR) are the measurements of
spectral reflectance obtained in the visible green band, visible red
band, near infrared band, and middle infrared band of Landsat
eight TM image, respectively (Chang et al., 2020).

NDVI � P(NIR) − P(Red)
P(NIR) + P(Red), (1)

NDBI � P(MIR) − P(NIR)
P(MIR) + P(NIR), (2)

MNDWI � P(Green) − P(MIR)
P(Green) + P(MIR). (3)

Frequency Ratio Analysis
The frequency ratio (FR) is a representation of the importance of
attribute intervals of environmental factors to collapse
susceptibility (Zhang et al., 2020; Huang et al., 2021). In
general, FR > 1 indicates that the attribute interval of the
environmental factor has a positive impact on the collapse

FIGURE 1 | Flow chat of regional collapse susceptibility prediction
modeling.
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formation, and FR < 1 indicates that the attribute interval of the
environmental factor has a negative impact on the formation of
collapse. In this study, the FR of environmental factors is used as
the input variable of each model, as shown in Eq. 4, where
Njrepresents the collapse area within the jth attribute interval of
the environmental factor; Nrepresents the total area of collapse in
the study area; Sjrepresents the area of the jth attribute interval;
and S represents the total area of the study area.

FR � Nj/N

Sj/S
. (4)

Machine Learning Models
Logistic Regression Model
Logistic regression (LR) is a classification and a prediction
learning method that approximates the logarithmic probability
of real markers with the predicted results of a linear regression
model (Chen et al., 2016). For collapse events, the probability of
collapse occurrence can be obtained directly by modeling the
classification probability without assuming the data distribution
in advance. As shown in Eq. 5, Zis an effective function of
collapse event; Pis the probability of collapseP ∈ [0, 1 ],
whereP/(1 − P) is the likelihood ratio; B0 is the intercept; Bi is
the logistic regression coefficient; and Xi is the collapse
environmental factor. In the analysis of collapse susceptibility,
LR is used to find the optimal fitting function to describe the
relationship between the occurrence of collapses and a set of
independent indicators such as the elevation, slope, and
formation lithology.

Z � Logit(P) � In(P/(1 − P)) � B0 +∑n

i�1BiXi, (5)

P � exp(Z)
1 + exp(Z). (6)

Radial Basis Function Neural Network
Radial basis function (RBF) neural network is a kind of effective
multilayer feed forward network with a fast operation speed and
strong nonlinear mapping ability (Pham et al., 2018). The input
layer is the collapse-related environmental factors represented
byxi, information is passed through the input node into the
hidden layer without the need for a weight connection. The
hidden layer activation function adopts the nonlinear radial
basis function, and the Gaussian function is most often used,
as shown in Eq. 7:

f (x) � exp(−(‖x − ci‖2�
2

√
σ

)
2

), (7)

where ci indicates the center of the node of the hidden layer and σ
indicates the control parameter of the kernel functions. The
output layer is the linear weighted sum of the output of the
hidden functional layer neurons, and the expression is shown in
Eq. 8:

yi � ∑h
i�1

wij f (x) (j � 1, 2, 3,/, n). (8)

Here,wijdenotes the connection weights between the hidden layer
and the output layer, h denotes the node points of the hidden
layer, and n denotes the node points of the output layer. yi
denotes the output of the jth node of the network corresponding
to the input sample.

Multilayer Perceptron
Themultilayered perceptron (MLP) is the most widely used ANN
type for classification (Pham et al., 2016). An MLP consists of
three main parts: the input layer, hidden layer, and output layer.
The FR values of the environmental factors of collapse are the
input, and the output layer is the result of the binary variables,
where collapse is expressed as 1 and non-collapse is expressed as
0. The classification layer that converts the input variables into
output variables is the hidden layer. In this study, the input layer
Xi, i � 1, 2,/, 11 is a vector of 11 collapse environmental
factors.

The CSP processes of the MLP are as follows: 1) the weight
values between the input and the hidden layers are randomly
initialized, and the activation function y � f (x) in the hidden
layer is used for the process of passing forward; 2) in the training
process of a given network architecture, the network is optimized
by adjusting the weight, and the error between the output result
and the expected value is calculated; and 3) finally, the connection
weights are constantly updated in the iterative processes of error
back propagation to obtain a result output with the minimum
error, which is regarded as the membership of each terrain unit to
the collapse category.

Support Vector Machine
SVM is a typical kind of machine learning (Huang and Zhao
2018). The kernel function is used to map the input vector to a
high dimensional feature space so that the nonlinear data can be
linearly separable in the high dimensional space. Based on a set
of linearly separable training vectors xi(i � 1, 2,/, n) that
includes the FR values of 11 environmental factors and
corresponding output classesyi � ± 1, the collapse classes are
distinguished by the maximum clearance of n-dimensional
hyperplane. In addition, correct constraints are classified as
yi((ω · xi) + b)≥ 1, where ‖ω‖ is the norm of the normal hyper-
plane and b is a constant. The Lagrange function is used to solve
the convex quadratic optimization problem, as shown in Eq. 9,
whereλiis a Lagrange multiplier. For the case of linear
inseparability, a relaxation variable ξiis added to control
classification errors. The constraints for correct classification
are changed as Eq. 10.

L(ω) � 1
2
‖ω‖2 −∑n

i�1
λi(yi((ω · xi) + b) − 1), (9)

yi((ω · xi) + b)≥ 1 − ξ i. (10)

Then, ](0, 1) is introduced to consider the wrong classification,
and the hyperplane distance is expressed in Eq. 11. The kernel
functions of the SVM model include linear, polynomial, radial
basis function, and sigmoid; the RBF kernel function is more
commonly used for several kinds of landslides and CSP than the
others.
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L(ω) � 1
2
‖ω‖2 − 1

]n
∑n
i�1

ξ i. (11)

Chi-Square Automatic Interactive Detection Decision
Tree
The CHAID model has the ability to automatically classify a
large number of collapses with environmental factors (Kadavi
et al., 2019). After feature selection and data preprocessing,
11 environmental factors are taken as input variables, and
“collapse” and “non-collapse” are taken as the output
variables in the screening process of the decision tree
model. In CHAID, the performance of the classification
iteration stops as long as there is no significant chi-square
value between the output variable and the environmental
factors. Nominal data are used by CHAID as the output
variable. If the data are essentially classified, Pearson chi-
square, Eq. 12, is used.

χ2 � ∑J

j
∑I

i

(nij −mij)2
mij

. (12)

Here, nij � ∑n∈DfnI(
∣∣∣∣xn � i∩yn � j), nijindicates the frequency of

the unit, mijis the prediction rate of the independent model
(xn � i, yn � j), and the corresponding p � pr(xed > x2).

Random Forest
The RF model is a relatively new and powerful approach to
regression and supervised learning that integrates all the results of
the classification and regression tree (Emami et al., 2020). RF can
alleviate the discontinuities in classification and regression trees
and make the predicted values smoother. Classification and
regression trees have two disadvantages: first, they are sensitive
to training datasets, and different training data may lead to
significant changes in the constructed trees; second, a finite
number of leaves lead to a limited number of predicted values,
thus making the predicted values discontinuous. Fortunately, the
RF model can be introduced to effectively overcome these
disadvantages (Trigila et al., 2015).

Accuracy Evaluation and Uncertainty
Analysis
AUC and ACC of the Model’s Accuracy
The evaluation of CSP model quality is the key to the modeling
success. The ROC is a precision evaluation method that does not
need to reclassify the CSIs, and the evaluation results are more
objective (Cantarino et al., 2019). The area under ROC curve
(AUC) is used to evaluate the model accuracy quantitatively, as
shown in Eq. 13, where n0 denotes the number of negative
samples, n1denotes the number of positive samples, and ri
represents the order of the ith negative sample in the entire
test sample. The greater the AUC value is, the better prediction
performance of the model.

AUC � ∑n0
i�1 ri − n0 × (n0 + 1)/2

n0 × n1
. (13)

Predictive accuracy (ACC) is also widely used to evaluate the
predictive ability of CSP models. ACC is the ratio of correctly
predicted collapse and non-collapse grid units, as shown in Eq.
14, where TP (true positive) and TN (true negative) express the
number of correctly classified grid units, and FP (false positive)
and FN (false negative) express the number of misclassified grid
units.

Accuracy � TP + TN
TP + FP + TN + FN

. (14)

Uncertainty Analysis
The Kendall synergy coefficient test is used to analyze the
difference in the distribution of the CSIs of these machine
learning models (García-Ruiz et al., 2010). Additionally, the
numerical distribution characteristics of the CSIs predicted by
the machine learning models are analyzed from the perspective of
both the mean value and standard deviation. Finally, the best
machine learning model is obtained through a comparative
analysis of the model uncertainty. The null hypothesis of the
Kendall coefficient test with the coefficient W is that the
prediction results of different models are consistent, as shown
in Eq. 15, where m is the evaluation model, n is the sample
number, Ri is the sum of the rank of the first sample,
and W ∈ [0,1 ].

W � 12
m2(n3 − n)∑

n

i�1
(Ri −m(n + 1)

2
)

2

. (15)

When the prediction results of different models are
consistent, W is 1. When the W value is less than 1, the
Kendall synergy coefficient should reject the null hypothesis
(the differences in the prediction results of the original
hypothesis are not significant). When the sample size tends
to infinity, the significance test can be performed using Eq. 16.
At the significance level of 5%, the chi-square test is used to
evaluate the significance difference between machine learning
model groups. Therefore, if the calculated significance level is
less than or equal to 5%, the null hypothesis is rejected, and the
performance of the susceptibility model is significantly
different, and vice versa.

m(n − 1)W � 12
mn(n + 1) → χ2α(n − 1). (16)

STUDY AREA AND DATABASE

Introduction of the Study Area
This county is located in the hilly southeastern region, Jiangxi
Province of China. The latitude and longitude ranges are
115°9′ E ∼ 115°37′ E, 24°52′ N ∼ 25°36′ N, with a total area of
2,374.59 km2. Almost 83.43% of the total area is mountainous; the
middle part of the terrain rises and slopes to the north and south
(Figure 2). The elevation ranges from 180 to 1,150 m, and the slope
ranges from 0° to 58.4°. There are many rivers in An’yuan County
with rich water resources. The average annual rainfall in the study
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area has been 1,640 mm from the 1970s to 2020s, and the rainfall is
concentrated in April ∼ July. The land use types are mainly forest
and bare grassland, and the forest coverage rate of the study area is
71.8%. Geologically, the strata exposed in the study area include pre-
Sinian, Sinian, Cambrian, Carboniferous, Jurassic, Cretaceous, and
Quaternary strata.

Spatial Database
Collapse inventory is the basis for collapse susceptibility
mapping. According to the statistics of the collapse
inventory of the county natural resources bureau,
combining high-resolution remote sensing images and
field investigations, a total of 108 collapses (Figure 2) with
a density of 4.55 collapses per 100 km−2 have been identified
over approximately 30 years (1978s–2010s). The collapse size
of this region is mainly small and medium sized, and the
average area is approximately 7,000 m2. These collapse
disasters have the characteristics of the spatial
concentration distribution, and the disaster points are
more likely to be distributed near the river network system
(Figure 3). Steep landform, rock mass with poor mechanical
properties and a complex geological structure are the
material basis of collapse evolution. Rainfall, groundwater,
earthquakes, and engineering construction are the inducing
factors for the formation of collapses (Zheng et al., 2018).

Selection of Collapse Environmental
Factors
According to the statistical data and geographical characteristics
of An’yuan County, as well as the relevant literature on the
selection of collapse-related environmental factors in
southeastern China, the types of environmental factors are
determined (Yilmaz et al., 2013). In addition, collapse-related
environmental factors are specifically acquired based on the data
sources of 30 m resolution remote sensing images (Landsat eight
TM, October 15, 2013, path/row 121/41 and path/row 121/42),
DEMs with a 30 m resolution, and geological maps in GIS (Huang
et al., 2020c). As a result, the final 11 environmental factors are
topographic factors acquired from DEM data (elevation, slope,
topographic relief, profile curvature, etc.), geological factors
acquired from a lithology map with a 1:100,000 scale (rock
types), hydrological factors (distance to rivers acquired from
DEM, and the MNDWI from the above remote sensing
image), and land cover (NDVI and NDBI from the above
remote sensing image). The collapse inventory and
environmental factors are both mapped with a 30 m resolution
(Figure 4).

The data types of the environmental factors mainly include
continuous and discrete types. In this study, the lithology factor is
discrete and divided according to its rock types. The distance to
rivers divided into four levels is calculated by the multiloop buffer

FIGURE 2 | Geographical location and collapse data.
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analysis in ArcGIS 10.2, and the aspect is divided into eight
directions as well as flat land. The rest are continuous
environmental factors that should be first divided into eight
attribute intervals using the natural breaks method according
to the literature (Li Y et al., 2020). Then, based on the eight
attribute intervals of the environmental factors, the FR method is
adopted to quantitatively analyze the relationship between
collapses and these environmental factors, as shown in Figure 5.

Analysis of Collapse Affecting Factors
Topographic and Geomorphic Factors
DEM is the data source of other topographic factors, whose
effects on collapse are illustrated by taking the elevation and slope
as examples. In this study, the collapses are mainly distributed at
elevations of 180–368 m with frequency ratios greater than 1
(Figure 5A). The slope has a direct and significant influence on
the occurrence of collapses. The collapses are mainly distributed
within the slope ranges of [24, 60°] (Figure 4B). The frequency
ratios suggest that the slope is one of the most important
environmental factors (Figure 5B).

Rock Types
The lithology is the material basis of collapse, influencing the
probability of collapse occurrence. As a part of the slope body,
different rock types have significant differences in collapse
susceptibility (Yang et al., 2020a; Cui et al., 2021). The study

area is located in a complex Lingnan structural belt where fold
structures and fault structures are developed. The rock types
mainly include magmatic rocks (41.83%), metamorphic rocks
(32.18%), clastic rocks (25.87%), and carbonate (0.12%)
(Figure 4E), with corresponding frequency ratios of 0.539,
1.364, 1.297, and 0, respectively (Figure 5F), showing that
metamorphic rocks have greater effects on CSP than others.

Land Cover and Hydrologic Factors
The NDVI and NDBI indirectly reflect the influences of
engineering activities on collapses in An’yuan County. The
frequency ratio of NDVI is greater than 1 when the NDVI is
lower than 0.66 (Figure 4F and Figure 5G). The NDBI with
values between 0.49 and 0.71 shows relatively larger frequency
ratios (Figure 4G and Figure 5H). For the distance to rivers, the
closer the river is to the slope, the higher the soil moisture content
of the slope. The area with a distance of less than 300 m to the
river system has the highest concentration of collapses (35%),
with a frequency ratio of 1.869. Meanwhile, the collapses usually
occur under MNDWI ranging from 0.392 to 0.498 with a
maximum frequency ratio value of 1.214 (Figure 4H and
Figure 5I).

Training and Validation Datasets
A spatial database containing collapse grid cells, non-collapse
grid cells, and related environmental factors is required, and these

FIGURE 3 | Photos of typical collapses in Ganzhou City. (A–D) Examples of four collapses in Ganzhou.
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spatial data are further divided into training and test datasets. In
this study, a 30 m grid unit is used as the mapping unit; as a result,
108 collapses are divided into 1,463 collapse grid units.
Additionally, 1,463 non-collapse grid units are randomly
selected from 2,655,972 grid units in the whole study area.
The 1,463 collapse grid cells and the same number of non-
collapse grid cells are randomly divided into two parts, with a
ratio of 70/30 (Zhu et al., 2021). Seventy percent of collapse and
non-collapse grid cells are randomly selected for model training,
and the rest are used for model testing. The susceptible value of
the collapse grid cell is set as 1, while the susceptible value of the
non-collapse grid cell is set as 0. Then these values are set as
outputs. The calculated FR values of the corresponding
environmental factors are set as the inputs of the machine

learning. Finally, the trained machine learning is used to
predict the CSIs of all grid cells in An’yuan County (Guo
et al., 2021).

MAPPING OF COLLAPSE SUSCEPTIBILITY
IN AN’YUAN COUNTY
Collinearity Analysis of Environmental
Factors
Collinearity among collapse-related environmental factors may
decrease the predictive performance and increase the complexity
of machine learning modeling. Therefore, in this study, the
collinearity of the 11 environmental factors is determined by

FIGURE 4 | Environmental factors (A) elevation; (B) slope; (C) Plan curvature; (D) Topographic relief; (E) lithology; (F) NDVI; (G) NDBI; (H)MNDWI (Aspect, Profile
curvature and distance to rivers are not present).
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means of the variance enlargement factor (VIF) and tolerance
factor (TOL) before the modeling of the susceptibility, when
VIF≥ 5 or TOL ≤ 0.2, suggesting that the collinearity among
environmental factors is so serious that it is necessary to carry out
some corresponding data compression processing. As seen from

Table 1, the maximum value of VIF is 2.374 and the minimum
value of TOL is 0.421, indicating that there is only small
multicollinearity among the collapse-related environmental
factors; hence, all 11 input factors can be used to predict the
collapse susceptibility of the study area.

FIGURE 5 | Frequency ratio diagram of environmental factors in the An’yuan County: (A) elevation; (B) slope; (C) slope direction; (D) Plane curvature; (E)
Topographic relief; (F) lithology; (G) NDVI; (H) NDBI; (I) MNDWI (Profile curvature and distance to rivers are not present).

TABLE 1 | Collinearity test results of collapse environmental factors.

Environmental
factors

TOL VIF Environmental
factors

TOL VIF

DEM (F1) 0.862 1.159 Lithology (F7) 0.935 1.070

Slope (F2) 0.421 2.374 Distance to rivers (F8) 0.945 1.059

Aspect (F3) 0.951 1.051 NDVI (F9) 0.761 1.315

Plan curvature (F4) 0.746 1.341 NDBI (F10) 0.767 1.304

Profile curvature (F5) 0.938 1.066 MNDWI (F11) 0.95 1.053

Topographic relief (F6) 0.469 2.130
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Collapse Susceptibility Prediction by the
Logistic Regression Model
The LR model is trained and tested on the basis of the space
dataset, and the regression coefficient (β), standard errors, and
significance of each environmental factor are obtained by the
maximum likelihood estimationmethod (Erener et al., 2016). The

calculated CSIs are shown in Eq. 17, and the significances of all
variables are less than 0.05, indicating that all variables are
statistically significant; the values of the environmental factors
are positive, indicating that these environmental factors are
conductive to the occurrence of collapses. In the following
stages, Eq. 17 shows that the coefficients of the MNDWI,

FIGURE 6 | CSP levels using machine learning models: (A) LR, (B) RBF, (C) MLP, (D) SVM, (E) CHAID, and (F) RF models.
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lithology, and slope are 1.389, 1.280, and 1.244, respectively.
Hence, these three environmental factors have a greater influence
on the collapse prediction than the other factors. The collapse
susceptibility of An’yuan County is predicted using Eq. 17 and
divided into 5 levels according to the natural break point method,
as shown in Figure 5A.

RSI � −10.621 + 1.172pF1 + 1.244p F2 + 0.748p F3 + 0.572pF4
+ 0.528pF5 + 0.249pF6 + 1.280pF7 + 0.669pF8
+ 0.699pF9 + 1.234pF10 + 1.389pF11

(17)

Collapse Susceptibility Prediction by the
Radial Basis Function and Multilayered
Perceptron Models
The radial basis function (RBF) locally produces an effective
nonzero response in a small range and can be used for efficient
nonlinear learning. During RBF neural network learning, the
number of neurons in the hidden layer is set as 10, and the
activation function is the normalized radial basis function. The
FR values of the 11 environmental factors are put into the trained
model, and the CSIs in the study area are calculated and divided
into 5 susceptibility levels, as shown in Figure 6B.

The two groups of training data of the MLP model are used to
build the best model by adjusting the relevant parameters. The
learning rate, momentum, and iteration time in the model are
0.01, 0.25, and 500, respectively. Then, the number of hidden
layers is set as two, and the activation function is the Softmax
function. The trained MLPmodel is used to predict the CSIs of all
the grid units in the whole study area, as shown in Figure 6C.

Collapse Susceptibility Prediction by the
Support Vector Machine, CHAID, and RF
Models
Based on the SVM for collapse susceptibilitymodeling, the RBF, which
has been widely used, is selected as the kernel function of the SVM.
Three parameters, such as regular parameter (C), regression accuracy
(ε), and kernel parameter (c), of the SVMmodel are determined by the
interactive verification method. In this study, the values of C, ε, and c
are set as 9, 0.1, and 0.6, respectively. The trained SVM is used to map
the collapse susceptibility of An’yuan County, as shown in Figure 6D.

The classification significance level of the CHAID prediction
results is controlled by the Pearson chi-square statistical test
(Althuwaynee et al., 2014). Most of the environmental factors that
have strong logical relationships with the instability of collapses
are classified by CHAID. The CHAIDmodeling results show that
the occurrence of collapse is most significant for the slope,
elevation, lithology, and distance to the river. Finally, the
trained CHAID model is used to predict the collapse
susceptibility in this county, as shown in Figure 6E.

For the modeling of RF, the out-of-pocket errors of different
random forest bags are calculated by R language cyclic iteration. In
general, the smaller the out-of-pocket error is, the higher the
prediction accuracy of the corresponding model. Loop iteration is
carried out in R language; when the number of random features is 4,

the out-of-pocket error reaches the minimum. In addition, when the
number of classifications is 500, the out-of-pocket error tends to be
stable. Hence, the optimal number of random features is set to 4 and
the number of decision trees is 500. Finally, the trained RF model is
used to obtain the collapse susceptibility, as shown in Figure 6F.

RESULTS AND DISCUSSION

Analysis of Collapse Susceptibility Area
Combined with the natural break point method and the
distribution trends of the CSIs in An’yuan County, the
collapse susceptibility levels (CSLs) are classified into five
categories according to equal intervals: very low [0, 0.2], low
(0.2, 0.4], moderate (0.4, 0.6], high (0.6, 0.8], and very high (0.8,
1]. Additionally, the CSP accuracy is tested by the collapse point
density. The collapse point density of the RF model is 16.87 in the
very high CSL, while the collapse point densities of all the other
five models are distributed between 4 and 8 (Table 2). Next, the
CSL distributions are analyzed as follows:

1) High and very high CSLs are located in the central and northern
parts of this county, where the terrain ismainlymountainous and
hilly, the river network is dense, erosion of the slope mass by
rivers is serious, and engineering activities are intense. The area
with very high CSL accounts for about 4% of the total area of this
county with a total number of 981 collapse grids. The area with
high CSL accounts for approximately 9% of the whole study area
with a total of 316 grid units.

2) The area with moderate CSL is located in the low-
mountainous and low-altitude areas, with moderate slope
and topographic relief, moderate intensity human
engineering activities, and distances to the rivers ranging
between 300 and 600 m. In this area, the geological
conditions are relatively good, and the geological disasters
are scattered and distributed. In general, this area accounts for
approximately 16% of the total study area with a total number
of 122 collapse grid units (Table 2).

3) The areas with low and very low CSLs are mainly located in the
southeastern part and the western plains of this county, with
gentle slopes, small topographic relief, and intrusive magmatic
rocks. In this area, the engineering activities are relatively weak,
the distances to rivers are relatively large, and the geological
environment conditions are relatively good. As a result, the
distribution of collapse disasters is very sparse, with the
density of collapse points being less than 0.1 (Table 2).

Analysis of the Importance of the
Environmental Factors
The importance of environmental factor reflects the contribution
of each environmental factor to the collapse susceptibility (Li Y
et al., 2020). Due to the uncertainties in machine learning
modeling, the importance of collapse-related environmental
factors in various machine learning models is different
(Figure 7A). This study intends to propose the “weighted
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TABLE 2 | Prediction effects of each model’s susceptibility interval.

Interval LR RBF MLP SVM Chain RF

Area
ratio

Point
density

Area
ratio

Point
density

Area
ratio

Point
density

Area
ratio

Point
density

Area
ratio

Point
density

Area
ratio

Point
density

Very low [0–0.2] 0.33 0.13 0.31 0.10 0.37 0.12 0.42 0.47 0.47 0.11 0.52 0.01

Low (0.2–0.4] 0.28 0.39 0.30 0.48 0.27 0.41 0.24 0.51 0.22 0.43 0.22 0.12

Moderate sw
(0.4–0.6]

0.20 0.95 0.23 1.06 0.18 1.00 0.16 0.69 0.12 1.10 0.13 0.62

High (0.6–0.8] 0.14 2.35 0.12 2.37 0.12 2.19 0.13 1.38 0.09 2.16 0.09 2.36

Very high (0.8–1] 0.04 7.87 0.04 7.56 0.05 7.39 0.06 6.78 0.10 5.12 0.04 16.87

FIGURE 7 | Importance of environmental factors. (A) Relative importance of environmental factors in different models. (B) Average importance of environmental
factors under different models.
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mean method” to calculate the importance of each factor based
on all the six machine learning models (Tien Bui et al., 2015).

First, the model AUC value is divided by the sum of AUC values
in all models, and the calculated ratio value is regarded as the model
weight. Second, the model weight is multiplied by the standardized
importance of each environmental factor. Third, the multiplied
results in the second process are added together to obtain the
final importance of each environmental factor. The final
importance weights calculated by the “weighted mean method” is
shown in Figure 7B, suggesting that among the 11 environmental
factors used in this study, the slope (0.25), lithology (0.14), DEM
(0.11), and distance to river (0.09) are of higher importance in turn
than other factors, while the profile curvature, topographic relief, and
MNDWI have the least importance among the six models.

Among them, the mean importance of the slope is the greatest,
and collapse tends to occur on slopes greater than 24°. The greater the
slope, the more conducive it is to collapse susceptibility. The second
important factor is the lithology, the probability of collapse is as high
as 43.88% under the conditions of metamorphic rocks, and the
probability of collapse of clastic rocks is 33.56%. Following the
lithology is the DEM; the collapses mainly occur in the range of
180–368m, in which the intensity of human engineering activities is
relatively high. Although the importance of environmental factors
obtained by different models varies in specific values, the weights of
environmental factors calculated by the weighted mean method are
consistent with different models as a whole.

Validation and Comparison of Model
Accuracy
AUC and ACC are both used to evaluate the performance of each
machine learning in this county, and the evaluation results are visual
and objective. Figure 8 shows that the RF has the highest CSP
performance among these machine learning models, with an AUC
value of 93.1% and a standard error of 0.005. The CSP performance of
CHAID, with an AUC value of 86.2%, is better than those of the other
fourmodels, SVM (84.4%),MLP (83.8%), RBF (82.8%), and LRmodel
(82.4%). The comparison results show that the nonlinear relationships
between collapse and environmental factors can be more accurately
constructed by the RF than the other machine learning.

According to the ACC prediction accuracies shown in Table 3, the
RFmodel also has the best prediction accuracy, with an ACC value of
85.9%, while those of the other five models are all less than 80%. In
general, the accuracy evaluation results of the models based on AUC
and ACC are consistent, reflecting the real prediction effect of each
machine learning model (Figure 8). Moreover, the literature also
shows that RF is an excellent model with good practicability available
for landslide andflooddisaster susceptibility prediction studies (Trigila
et al., 2015; Chen et al., 2018). This is because RF algorithm offers
robust performance for accurate CSP with only a small number of
adjustments required before training the model.

Statistical Characteristic Analysis of
Collapse Susceptibility Indexes
In themodeling processes of CSP, there aremany uncertainties in the
selection of environmental factors, correlation analysis between
collapse and environmental factors, and different machine
learning models for predicting CSIs. In this study, the feasible
environmental factor selection scheme and the correlation analysis
method are determined by means of a literature review. On these
bases, this article focuses on the uncertainty characteristics of different
types of machine learning modeling for CSP. The mean value and
standard deviation are used to analyze the distribution rules of the
predicted CSIs; additionally, the Kendall synergy coefficient method
is used to analyze the differences in the distribution trends of the CSIs
in various machine learning models at the significance level of 0.05.
Finally, the machine learning model with the highest prediction
performance and lowest uncertainty is obtained through the
comparative analysis.

The Mean and Standard Deviation of the Collapse
Susceptibility Indexes
The distribution characteristics of the CSIs predicted by the
machine learning models are analyzed from the perspectives of
the mean values and standard deviations. According to Figure 9,
the mean values of the CSIs of LR, RBF, MLP, SVM, CHAID, and
RF are 0.350, 0.345, 0.335, 0.327, 0.321, and 0.272, respectively.
These mean values vary between 0.27 and 0.35 and show a
gradually decreasing trend from the LR to RF models. In
particular, the RF model predicts an average susceptibility
index of less than 0.3. The comparison results show that the
CSIs of all the machine learning predictors are mainly distributed
in the very low and low CSLs, and the number of grid units in the

FIGURE 8 | Prediction rates of eachmodel performance. (A) AUC values
of all models. (B) ACC performance of all models.
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other CSLs decreases gradually. These distribution rules are
consistent with the actual collapse probability distribution in
An’yuan County because the actual number of collapses in
An’yuan County is small and most of the study area is not
prone to collapse.

In addition, the standard deviations of the CSIs predicted by
all six machine learning models are calculated as LR 0.234, RBF
0.239, MLP 0.246, SVM 0.254, CHAID 0.276, and RF 0.256. The
results show that the RF, CHAID, and SVMhave greater standard
deviations than the other models. A greater standard deviation
value means a stronger dispersion of the CSIs, which also means
higher recognizability of the collapse probability of different grid
cells. Based on the comparisons of the mean values and standard
deviations of all the machine learning models, the RF model has
the lowest mean value and largest standard deviation, followed by
the CHAID, SVM, MLP, RBF, and LR models. Combined with

the prediction accuracy of the AUC and ACC of various machine
learning models, this suggests that the RF model predicts the
collapse susceptibility with the lowest uncertainty, followed by
CHAID and SVM models, while the LR model has the highest
uncertainty.

Significance Difference Analysis of Collapse
Susceptibility Indexes
The Kendall synergy coefficient test is used to evaluate the
significant differences between the CSIs predicted by the
different machine learning models at the significance level of
5%. The results show that all the p values between the CSIs
predicted by the six models are less than 0.05, with a Wvalue of
0.062 for Kendall. These p values suggest that there are
significant differences between the predicted CSIs of the six
machine learning models, and the null hypothesis is rejected.

TABLE 3 | ACC performance of all models.

Parameters RF Chain SVM MLP RBF LR

True positive 1,322 1,125 1,170 1,113 1,136 1,125

True negative 1,190 1,175 1,057 1,085 1,052 1,040

False positive 273 288 406 378 411 423

False negative 141 338 293 350 327 338

Positive predictive value (%) 0.829 0.796 0.742 0.746 0.734 0.727

Negative predictive value (%) 0.894 0.777 0.783 0.756 0.763 0.755

Accuracy (%) 0.859 0.786 0.761 0.751 0.748 0.740

FIGURE 9 | Collapse susceptibility indexes distributions of different models: (A) LR model, (B) RBF, (C) MLP, (D) SVM, (E) CHAID, and (F) RF models.
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The mean rank values of the LR, RBF, MLP, SVM, CHAID, and
RF are 4.06, 3.81, 3.64, 3.48, 3.29, and 2.72, respectively, which
are consistent with the prediction performance of these models;
the better the prediction performance of the model is, the
smaller the mean rank is. For example, the mean rank value
of the RF model (2.72) is the best, while that of the LR model
(4.06) is relatively poor.

Collapse Susceptibility Prediction of
Huichang County for Comparisons
The machine learning models are also undertaking an extensive
analysis and comparison using a case study of Huichang County,

with 70 collapses (762 grid units) and 11 related environmental
factors. In this example, LR, RBF, MLP, SVM, CHAID, and RF
models are also used to address the CSP. It can be seen from
Figures 10, 11 that RF model achieves excellent results compared
to other machine learning models. Furthermore, the uncertainty
rule of this example is consistent with those shown in the CSP
results of An’yuan County. In detail, the CSP modeling
parameters of Huichang County are described as follows.

For the LR model, the absolute values of correlation coefficients
of 11 environmental factors are all less than 0.30, and the
significances of all input variables are less than 0.05; the values of
β are positive; here, the coefficients of elevation, slope, distance to
rivers, TWI, NDVI, and MNDWI are 1.341, 1.262, 1.643, 1.412,

FIGURE 10 | Collapse susceptibility graph using machine learning models in Huichang county: (A) LR, (B) RBF, (C) MLP, (D) SVM, (E) CHAID, (F) RF models.
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1.463, and 1.432, respectively. During RBF model learning, the
number of neurons in the hidden layer is set as 15, and the
activation function is the normalized radial basis function. For
the MLP model, its learning rate, momentum, and iteration time
are set as 0.01, 0.3, and 2,000, respectively. The number of hidden
layers is set as 2, and the activation function is set as the Softmax
function. All these three models are built in SPSS 24 software.

For the SVM model, the RBF is widely used as its kernel
function in CSP modeling. During the modeling process of
SVM, the regular parameter (C), regression accuracy (ε), and
kernel parameter (c) are set as 5, 0.1, and 0.3, respectively. For
the CHAID model, its LSP accuracy is estimated by the boosting
method, which employs the cross-validation method to boost the
accuracy. The rest parameters are the default values, so as to avoid
the over-fitting of this model. The SVM and CHAID models for
CSP are completed in SPSS Modeler 23. In addition, for the
modeling of RF, R language cycle iteration is used to calculate
the out-of-pocket errors of different random forests, the optimal
number of random features is set to 3, and the number of decision
trees is 500.

Future Research Plan
There are many other machine learning models that are not covered
in this study or used for comparative analysis (He et al., 2019; Dou
et al., 2020). Here, machine learningmodels adopted in this study are
representative to some extent from the current literature, the earliest
machine learning (LR, RBF, and MLP methods) and highly popular
algorithms such as SVM, CHAID, and RF models (Merghadi et al.,
2020). Other machine learning such as deep learning are also worth
exploring. Next, the optimal spatial resolutions of collapse inventory
and related environmental factors should be determined through
some comparative researches of the CSP accuracies at various spatial
resolutions. Moreover, more types of collapse-related environmental
factors need to be acquired and introduced into the machine
learning models, and the optimal combination of environmental

factors should be considered. Anyway, various uncertainties
characteristics of CSP modeling should be explored in the future
research studies.

CONCLUSION

Based on the collapse inventory and related environmental
factors, six machine learning models, namely, the LR, RBF,
MLP, SVM, CHAID, and RF, are used to predict the collapse
susceptibility in An’yuan County and Huichang County,
China. Results show that all of these machine learning
models are applicable to the prediction of collapse
susceptibility, and their prediction results are consistent
overall. The prediction performance of the RF model is
6–10% greater than that of the other five machine learning
models.

The contributions of this study can be mainly reflected as
follows: 1) Compared with other machine learning models, the
RF model has higher CSP accuracy; 2) comparison of the
uncertainties of the above models in CSP shows that the RF
model has lower uncertainties, followed by the CHAID, SVM,
MLP, RBF and LR models; 3) among the above 11 collapse-
related environmental factors, the slope has the most important
influence on the CSP, followed by the lithology, elevation, and
other factors; and 4) the collapses in An’yuan County are
concentrated in the areas with very high and high CSLs,
specifically for slopes of 24°–60°, elevations of 188–368 m, and
a relatively brittle lithology.
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