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Shale gas production prediction and horizontal well parameter optimization are significant
for shale gas development. However, conventional reservoir numerical simulation requires
extensive resources in terms of labor, time, and computations, and so the optimization
problem still remains a challenge. Therefore, we propose, for the first time, a new gas
production prediction methodology based on Gaussian Process Regression (GPR) and
Convolution Neural Network (CNN) to complement the numerical simulation model and
achieve rapid optimization. Specifically, through sensitivity analysis, porosity, permeability,
fracture half-length, and horizontal well length were selected as influencing factors.
Second, the n-factorial experimental design was applied to design the initial
experiment and the dataset was constructed by combining the simulation results with
the case parameters. Subsequently, the gas production model was built by GPR, CNN,
and SVM based on the dataset. Finally, the optimal model was combined with the
optimization algorithm to maximize the Net Present Value (NPV) and obtain the optimal
fracture half-length and horizontal well length. Experimental results demonstrated the GPR
model had prominent modeling capabilities compared with CNN and Support Vector
Machine (SVM) and achieved the satisfactory prediction performance. The fracture half-
length and well length optimized by the GPR model and reservoir numerical simulation
model converged to almost the same values. Compared with the field reference case, the
optimized NPV increased by US$ 7.43 million. Additionally, the time required to optimize
the GPR model was 1/720 of that of numerical simulation. This work enriches the
knowledge of shale gas development technology and lays the foundation for realizing
the scale-benefit development for shale gas, so as to realize the integration of geological
engineering.
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INTRODUCTION

In recent years, the successful development of unconventional
petroleum resources, especially shale gas, indicates that the oil
and gas industry has made substantial breakthroughs and
innovations in theory and technology, greatly expanding the
field of petroleum exploration (He et al., 2020). At present,
China has built hundreds of billion cubic meters of marine
shale gas fields in the upper Yangtze region, such as Fuling,
Changning, and Weiyuan (Jia et al., 2016). Shale gas exists in the
micro nanopores of shale in the form of free adsorption, which
requires horizontal wellbores and hydraulic fracture treatment to
develop effectively (Chen et al., 2020; Hu et al., 2021; Yang et al.,
2021). The economic benefit of many shale gas wells is often in
the boundary benefit, so it is critical to balance the investment and
profit. The fracture half-length and horizontal well length have a
great influence on the entire investment and profit. Reservoir
numerical simulation results show that revenue increases with the
rise of fracture half-length, whereas the simulation results of
hydraulic fracturing illustrate that the fracturing cost increases
with the rise of the half-length (Figure 1). When the NPV
(income minus expenditure) reaches the maximum value, the
half-length is optimal. There is a similar relationship between the
horizontal well length and the NPV. Therefore, it is of great
significance to determine the optimal fracture half-length and
horizontal well length for oil and gas field development.

There are currently two main approaches for determining
optimal fracture half-length and horizontal well length. The first
one is to compare several design schemes and then determine
optimal fracture half-length and horizontal well length
empirically, which is often used in practical production.
Although this method is simple and easy to implement, it
relies heavily on human experience and is difficult to get the
optimal solution due to many factors of reservoir geological
uncertainty. The second one is the computation optimization
method based on optimization theory and reservoir numerical

simulation. The main idea is to set the objective function (e.g., the
NPV) and then utilize an optimization algorithm to call the
numerical simulation software to obtain the optimal solution,
which has been studied extensively (Babaei and Pan, 2016;
Jahandideh and Jafarpour, 2016). Xu et al. (2018) combined
the embedded discrete fracture model (EDFM) and intelligent
algorithm to maximize the NPV. Differential evolution (DE) has
been employed on a shale gas reservoir simulation model to
optimize fracture half-length and fracture spacing (Rammay and
Awotunde, 2016). Wang and Chen (2019a) proposed a
generalized differential evolution (GDE) algorithm to optimize
the well spacing, fracture spacing, half-length, and conductivity of
tight oil horizontal wells. Although it has high precision and is
recognized as the standard decision-making technique, it requires
significant resources in terms of labor, time, and computation.
Because each single well optimization needs hundreds of
iterations, and each iteration takes more than 10 min, the
optimization of fracture parameters in the whole area needs
tens of thousands of iterations, which means more than
2 months. The traditional computation optimization is
completely dependent on numerical simulation, which is
inefficient and difficult to converge quickly. Therefore, we
need a shale gas production forecasting model with high
efficiency and good performance to optimize fracture half-
length and horizontal well length.

A practical alternative is to use a proxy model, which is well
suited for repeated calculations. There are two main types of
surrogate models, where one is the reduced physical model
(Wilson and Durlofsky, 2013; Pouladi et al., 2017), and the
other one is the data-driven model (Zhou et al., 2014; Kulga
et al., 2017; Wang and Chen, 2019b; Wang et al., 2021; Xue et al.,
2021). The data-driven model can quickly establish a
mathematical model approaching the accuracy of the
numerical simulation model by sampling the reservoir
numerical simulator. It is reported that GA recursive sampling
assisted a dynamically updated Artificial Neural Network (ANN)

FIGURE 1 | Economic optimization diagram [modified after (Li, 2009)].
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method to optimize production (Golzari et al., 2015). A data-
driven forecasting technique is built based on ANN to
complement the simulator-based model (Kulga et al., 2017).
The oil production models are developed based on Random
Forests (RFs), Support Vector Regression (SVR), and
Gradient-Boosting Machine (GBM) (Schuetter et al., 2018).
However, few researchers have optimized hydraulic fracture
parameters assisting the data-driven model. Consequently, in
this study, we propose adopting the Gaussian Process Regression
(GPR) and Convolution Neural Network (CNN) in the machine
learning field as the proxy models to predict production and
utilize the GA and penalty function method to obtain the optimal
solution based on these two proxy models.

GPR is a supervised learning model based on Bayesian theory,
which has a strict statistical learning foundation and can solve the
complex regression problems (Yu et al., 2017). Compared with
other regression methods, GPR is characterized by high
prediction accuracy, strong generality, and robust
performance, which has been widely used in the machine
learning field (Ganti and Khare, 2020; Zhang and Xu, 2020).
As a new research direction in machine learning, deep learning
has attracted growing attentions (Zheng et al., 2020). CNN is a
kind of multilayer feedforward neural network with convolution
operations. Unlike the BP, which only has a fully connected layer,
the local connection, weight sharing, and pooling operation of
CNN can enhance the representation ability and robustness of a
network (Karpathy et al., 2014).

This research attempts to build a robust and rapid production
prediction proxy model based on machine learning to
complement the physical-driven model and obtain the optimal
fracture parameters by applying the optimization algorithm on
the proxy models. The article has been organized in the following
way. Specifically, the sensitivity analysis of reservoir parameters
and hydraulic fracturing parameters is carried out to study the
contribution of each parameter to production. The n-factorial
experimental design is used to design the initial experiments, and
256 cases are obtained. Then 256 cases are simulated by CMG,
and the dataset is constructed by combining the simulation
results with the case parameters. Subsequently, the gas
production model is built by GPR, CNN, and SVM based on
the dataset. Finally, the optimal model of the three models is
combined with the optimization algorithm to maximize the NPV
and obtain the optimal fracture half-length and horizontal well
length. The performance of the proxy model is assessed in terms
of time efficiency and prediction accuracy by comparing the
results with the simulator-based approach.

DATA PREPARATION

Before establishing the data-driven model, it is necessary to
collect the data of production and geological engineering
parameters. It is better to collect real data, but if there is no
high quality real data, numerical simulation data can be used. In
this study, a numerical simulator is applied to obtain annual
production data of shale gas under the given geological
engineering parameters. At present, about 30 wells have been

drilled in this area. The shale is mainly developed in the Lower
Silurian Longmaxi Formation to the Upper Ordovician Wufeng
Formation, with an effective thickness of 30–40 m. The buried
depth of the gas reservoir is 2000–3000 m, the pressure coefficient
is 1.1–1.3, and the formation temperature is about 80°C. The
average matrix porosity, average matrix permeability, average
matrix gas saturation, and the average adsorbed gas content are
4%, 0.00003 md, 65%, and 3 m3/t, respectively.

According to the reservoir geological parameters and
horizontal well engineering parameters in the study area, a
single-well numerical model of shale gas multistage fracturing
horizontal well was established by CMG software (Table 1).

The gas reservoir size was 4200 m × 500 m × 30 m, and the
reservoir type was the dual-porosity and dual-permeability
model. The established reservoir model was a rectangular grid
system with horizontal wells in the center of the model. The
horizontal well was placed in the middle layer in the reservoir
model, and the production duration was set to 15 years. The
hydraulic fracture propagated along the direction of the
maximum principal stress. Figure 2 shows a top view of the
hydraulic fracture model. The grid we set was 20 m. Local grid
refinement (LGR) was applied to simulate fluid flow in hydraulic
fractures accurately.

By analyzing the study area’s geological engineering
conditions, we selected four key influencing parameters,
including matrix porosity, matrix permeability, fracture half-
length, and horizontal well length. The n-factorial
experimental design procedure was utilized to build a data set
for building the proxy model. The range of four factors were
divided into four equally-spaced levels (Table 2), so 256 cases
were obtained. Other experimental design method, such as
response surface design, only needs 29 experiments, which
cannot achieve the required accuracy. Therefore, an n-factorial
experimental design was adopted. If the variables increase, we can
use Latin hypercube design, response surface design, and so on.
All cases were run using CMG-GEM numerical simulation
software to obtain the corresponding performance
(Supplementary Table S1).

TABLE 1 | Basic parameters of shale gas numerical model.

Parameters Values Unit

Adsorbed gas content 3 m3/t
Langmuir pressure 4 MPa
Langmuir volume 2 cm3/g
Initial formation pressure 32 MPa
Matrix permeability 0.00003 Md
Gas saturation 65 %
Matrix porosity 4 %
Hydraulic fracture half-length 120 M
Hydraulic fracture conductivity 7 md.m
Hydraulic fracture aperture 0.001 M
Hydraulic fracture spacing 60 M
Reservoir thickness 30 M
Number of fracture stages 26 /
Natural fracture spacing 1 M
Production time 15 Year
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METHODS

Gaussian Process Regression Model
Principle of GPR
In recent years, machine learning has been widely used in all
walks of life. The purpose of machine learning is to use algorithms
to build statistical models for the collected data and to solve
practical problems by building good statistical models. There are
many regression learning algorithms: nonlinear regression,
Support Vector Machine regression (SVM), Gaussian Process
Regression (GPR), Regression Tree (RT), Random Forest (RF),
and so on. Considering the advantages of GPR model mentioned
above, we use GPR model (Hamdi et al., 2017) to build
production prediction model.

GPR is a nonparametric probability model for regression
analysis of data based on the Bayesian principle. The basic
principle of GPR is as follows. Firstly, given the Gaussian
Process (GP) prior distribution, the mean and covariance of
the GP posterior distribution are calculated based on the prior
and the hypothesis of training data (joint Gaussian distribution).
When the input data (xi) and the output data (yi) of the training
data are given, the trained GPRmodel can predict the new output
data (yp) according to input data (xp).

Assuming that the noise between the observed value and the
prediction function satisfies the normal distribution, the
expressions are as follows (Zhang et al., 2020):

yi � f (xi) + ε (1)

ε ∼ N(0, σ2) (2)

where xi is the input vector, f is the prediction function, andyi is
the observation value polluted by noise. ε is noise, following the
normal distribution (N) of mean value 0 and variance σ2.

GP is a set of any finite number of random variables with a
joint Gaussian distribution, whose properties are entirely
determined by the mean function and the covariance function:

f (x) ∼ GP(m(x), k(x, x′)) (3)

m(x) � E[(f (x))] (4)

k(x, x′) � E[(f (x) −m(x))(f (x′) −m(x′))] (5)

where m(x) and k(x, x′) are the mean function and covariance
function, respectively. The prior distributions of the observed
values y are as follows:

y ∼ N[u,K(x, x) + δ2nI] (6)

According to Bayes principle, the prior joint distribution of the
observed value y and the predicted value fp (the output value
corresponding to xp) are[ y

fp
] ∼ N(0,[K(X,X) + δ2nIn K(X, xp)

K(xp,X) k(xp, xp) ]), (7)

where K(X,X) � Kn � (kij) is the symmetric positive definite
matrices of order n × n, the matrix element (kij) � k(xi, xj) is
implemented to measure the correlation between xi and xj, and
K(X, xp) � K(xp,X)

T are the n × 1 covariance matrix between the
test input values xp and the training input values. K(xp, xp) is
covariance matrix of test input values xp. In is an n-dimensional
identity matrix.

According to the marginal distribution property of normal
joint distribution, the posterior distribution of fp can be
modeled as

fp
∣∣∣∣X, y, xp ∼ N( fp, cov( fp)) (8)

fp � K(xp,X)[K(X,X) + σ2nIn]−1y (9)

FIGURE 2 | Top view of the numerical simulation model.

TABLE 2 | The levels of four factors.

Parameters Level Unit

Matrix porosity 1 3 5 7 %
Matrix permeability 0.00001 0.00005 0.0001 0.0005 md
Fracture half-length 50 100 150 200 m
Horizontal well length 1,020 1,980 3,000 4,020 m
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cov(f p) � k(xp, xp) − K(xp,X) × K(X,X) + σ2
nIn]−1K(X, xp),

(10)

where fp and cov(fp) are the mean and variance of the predicted
value fp.

Covariance Functions Optimization
Since the covariance function in the GPR method is a symmetric
function satisfying the Mercer condition, the covariance function
is equivalent to a kernel function, which can be parameterized by
vectors θ in kernel parameters. Therefore, the expression of a
covariance function is k(xi, xj

∣∣∣∣θ). Kernel functions can be divided
into two types according to the characteristic length scale. If the
length scale is the same, the kernel function encompasses squared
exponential kernel, exponential kernel, Matern 3/2, Matern 5/2,
and rational quadratic kernel. The kernel functions with a
separate length scale realizing the automatic correlation
determination include ARD squared exponential kernel, ARD
exponential kernel, ARDMatern 3/2, ARDMatern 5/2, and ARD
Rational Quadratic Kernel. The squared exponential kernel is the
most commonly used kernel function, which is defined as

k(xi, xj|θ) � σ2f exp
⎡⎢⎢⎢⎣ − 1

2

(xi − xj)T(xi − xj)
σ2l

⎤⎥⎥⎥⎦ (11)

where xi and xj are the training input data and σ f and σ l are the
hyperparameters of the kernel function, which represent signal
standard deviation and length scale.

Kernel function directly affect the accuracy of the GPR
algorithm. We need to optimize the kernel function. The
commonly used effective method for the limited dataset is
cross-validation, which comprises k-fold cross-validation and
leave-one-out cross-validation. K-fold cross-validation
randomly divides the sample data into k copies, each time
selects k-1 as the training set and the remaining one as the
test set. Leave-one-out cross-validation is a special case of k-fold
cross validation, where k is equal to the number of samples. This
method is suitable for the case of small data.

We applied MATLAB software to establish the GPR technique
to forecast production. In order to ensure the reliability of the
model, the scheme of 10-fold cross-validation was adopted. The
performance was evaluated using the coefficient of determination
(R2) and root mean square error (RMSE).

R2 � ∑N
i�1[(zi − zl) − (yi − yl)]����������������������∑N
i�1 (zi − zl)2 ∑N

i�1 (yi − yl)2√ (12)

RMSE �

�����
1
N

∑N
i�1

√√ (zi − yi)2 (13)

where zi is the gas production predicted by the data-drivenmodel,
yi represents the gas production calculated by a numerical
simulation model, zl represents the average gas production
predicted by the data-driven model, yl represents the average
gas production calculated by a numerical simulation model, and
N is the number of samples.

Convolution Neural Network
Deep learning can achieve complex function approximation by
learning a group of kernel parameters of a nonlinear network,
which shows a strong ability to learn the essential characteristics
from a small sample set. CNN is a multilayer feedforward neural
network with a convolution structure and becomes one of the
most concerned research hotspots (Wang et al., 2019; Zheng et al.,
2020). Unlike the traditional fully connected feedforward neural
network, CNN has the characteristics of local connection and
parameter sharing, which reduces the complexity of the network
and improves computational efficiency. In image processing, 2D
convolution is usually used to extract features layer by layer and
then complete the corresponding visual tasks. The convolution
kernel size is usually square N ×N, and N represents the width or
height of the convolution kernel. In addition, convolution neural
network has 1D convolution operation, which can process
sequence data. The convolution kernel used is N, and N
represents the length of the convolution kernel. Similar to 2D
convolution neural network, 1D convolution kernel also
processes input data layer by layer to extract discriminative
features, so as to complete classification, regression, and other
tasks. As shown in Figure 3, the typical CNN mainly comprises
the input layer, convolution layer, downsampling layer (pooling
layer), full connection layer, and output layer. The convolution
layer and pooling layer are the special network structure of CNN.
The convolution layer is responsible for extracting the
convolution features of the input data, and the pooling layer is
used to down sample the convolution features to improve the
robustness.

The role of the convolutional layer is to use convolution
operations to extract features. The more the convolutional
layers are, the stronger the expressive ability of features is. By
designing multiple convolution kernels in the convolution layer,
CNN can extract a variety of different types of local features and
then extract higher-level features layer by layer. Finally, global
features can be abstracted through deep learning of local features.
A layer of CNN can contain several convolution filters (each
containing a deviation coefficient). The filters in the upper left
corner slide through each input image from left to right and from
top to bottom, and convolution are performed in each iteration.
Then, the sum of convolution result and deviation value is
converted nonlinearly. Commonly used activation functions
include ReLU, sigmoid, and tanh.

According to the local connection principle of CNN, each
pooling layer is also composed of multiple sampling neurons, and
each unit is also connected to the corresponding receptive field of
the previous layer of network. But different from the
convolutional layer, all the weights of the neurons in this layer
and the local connection of the previous layer are fixed constants.
Downsampling is performed by taking the local maximum value
or the average value to generate all the local features in the same
filter. The pooling operation not only further reduces the network
scale and suppresses possible over-fitting, but also improves the
robustness of the extracted features, while retaining the salient
features and shift invariance.

The CNN proposed in this study mainly had five layers. The
first layer was porosity, matrix permeability, fracture half-length,
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and horizontal well length, respectively. The second, third, and
fourth layers were the convolutional layers, which had 5, 10, and
15 convolution kernels with a size of 3 × 1. The fifth layer was a
fully connected layer with a total of 15 neurons. The output layer
was the predicted gas production value. A stochastic gradient
descent algorithm was used to train CNN, and the activation
function was Sigmoid. The number of iterations was 5,000, and
the weight values were updated repeatedly until the error meets
the requirements.

1) First, input data were normalized to make all the data on the
same magnitude.

xattr � 1
N

∑N
i�1

xi,attr (14)

sattr �

��������
1

N − 1
∑N
i�1

√√ (xi,attr − xattr)2 (15)

X̂i,attr � xi,attr − �x attr

sattr
, (16)

where attr denotes porosity, matrix permeability, fracture half-
length, and well length, xattr is the average attr value of all
samples, xi,attr donates the value of the i-th sample, sattr is the
variance of attr of all samples and X̂i,attr is the normalized value of
the sample, and N is the number of samples.

2) Three convolution layers with a different number of kernels
performed 1D convolution on the input data:

YCNN
1 � ReLU(W1ʘX + b1) (17)

YCNN
2 � ReLU(W2ʘY

CNN
1 + b2) (18)

YCNN
3 � ReLU(W3ʘY

CNN
2 + b3) (19)

where YCNN
1 , YCNN

2 , and YCNN
3 are the outputs of the second, third,

and fourth layers, and ReLU is the activation function.
W1 ∈ R5×1×2, W2 ∈ R10×5×2, and W3 ∈ R15×10×2 are parameters

of the convolution kernels of the second, third, and fourth
layers, respectively. b1, b2, b3 are the bias. The symbol ʘ
denotes the convolution operation.

3) Next, the fully connected layer was utilized to predict the gas
production.

Qgas � Relu(W4 × YCNN
3 + b4), (20)

where Qgas is cumulative gas production in 15 years. Averpool
denotes the average pooling layer, W4 ∈ R15×1 denotes the
parameters of the fully connected layer, b4 is the bias.

4) Finally, the performance was evaluated using R2 and RMSE.

Support Vector Machine Regression
SVM is based on the theory of small sample statistical learning
proposed by Vapnik (2000), which focuses on the statistical
learning rule under small sample data. Compared with neural
network, SVM has strict theoretical andmathematical foundation
and has strong generalization ability. It also has a weak
dependence on the number of samples. The basic idea of
support vector machine regression theory is to find a
nonlinear mapping (ϕ) from input space to output space.
Through this nonlinear mapping, the data (x) are mapped to a
high-dimensional feature space (F). The nonlinear regression
function of SVM is as follows:

f(x) � ∑n

i�1(ai − api )K(xi, xj) + b (21)

where ai and api are Lagrange multiplier and K(xi, xj) is kernel
function.

The kernel function of the SVM converts nonlinear separable
samples into a linearly separable feature space. Different kernel
functions produce different classification hyperplanes, so the
kernel function has a direct impact on the performance of
SVM. We applied MATLAB software to establish the SVM
technique to forecast production. In order to ensure the

FIGURE 3 | Typical structure of convolution neural network (Wang et al., 2019).
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reliability of the model, the scheme of 10-fold cross-validation
was adopted. The performance of different kernel functions was
evaluated using the R2 and RMSE.

Economic Model
To improve the economic benefit of the study area, the
economic NPV is considered the objective function to
optimize the fracturing parameters of shale gas
horizontal wells.

NPV consists of two parts: cash inflow and cash outflow.
According to the data of the study area, we adopt the following
NPV mathematical model:

NPV(xf , L) �∑Nt

n�1[ 1

(1 + b)t (P0Qgas(xf , L) − Coperating − Ctax)]
− (Cground + Cwell(L) + Cfracture(xf , L)),

(22)

where t is time, (year); b is discount rate, (%); P0 is the gas price,
(USD/m3); Qgas is annual gas production, (m

3/year); Coperating is
annual operating cost, (USD/year); Ctax is tax, (USD/m

3); Cground

is ground cost, (USD); Cwell is drilling cost, (USD); Cfracture is
fracturing cost, (USD); L is horizontal well length, (m); xf is
fracture half-length, (m). L and xf are optimization variables. In
the optimization process, the ranges of the two variables are
50–200 m, 1,000–4,000 m, respectively. Related parameters are
shown in Table 3.

In the process of hydraulic fracturing, tens of thousands of
cubic meters of fracturing fluid and thousands of tons of
proppant are pumped into the ground to produce fractures
and release natural gas. Therefore, fracturing cost mainly
includes the cost of pumping fracturing fluid and proppant. A
larger number of researches have been conducted on the
relationship between the volume of fracturing fluid and
fracture half-length (Rammay and Awotunde, 2016; Yang
et al., 2017; Wang and Chen, 2019). Here, the relationship
between them is obtained by referring to Rammay and
Awotunde (2016) and Nordgren (1970).

xf � Q(W + 2SP)
4πhC2

(ex2 erfc(x) + 2x��
π

√ − 1) (23)

W � (64
3π

(n′ + 1)) 1

2(n′+1))(6q
H
) n′

2(n′+1))(Kα(1 − vH)L)
G

) 1

2(n′+1)

(24)

x � 2C
��
πt

√
W

(25)

Kα � k′(2n′ + 1
3n′ )n′

(26)

ex
2
erfc(x) � 0.254829592y − 0.284496736y2 + 1.42143741y3

− 1.453152027y4 + 1.06140429y5

(27)

y � 1
1 + 0.3275911x

(28)

V � Qt, (29)

where xf is fracture half-length, (m);Q is displacement, (m3/min);
W is fracture width (m); Sp is spurt loss volume, (m3/m2); h is
fracture height, (m); C is fluid loss coefficient, (m/

����
min

√
), n′ is

rheological index, k′ is the consistency coefficient, (MPa·s); G is
shear modulus, (MPa); v is Poisson’s ratio; t is time, (min); erfc(x)
is error compensation function of x; V is amount of fracturing
fluid per stage (m3/stage). Table 4 shows the input parameters for
calculating the fracture half-length according to the amount of
fracturing fluid.

By analyzing the fracturing cost of horizontal wells in the study
area, the relationship between fracturing fluid volume and
fracturing cost is established, so as to finally obtain the
relationship between fracture half-length and fracturing cost.

Cfracture � ((1.9402T + 1.0506Qtransport/10000 + 0.039117VL

+ 0.14425PL + 0.25155L + 0.25155L + Qtubing

+ 310.3908)10000)/6.5;
(30)

T � 26.83 + 0.00974L + (0.012987VL − 27.214L)/23040 (31)

Qtubing � (183.4585 + (0.012987L − 137.363)/6.5 (32)

Qtransport � (12648.08 + 17.574L), (33)

where Cfracture is fracturing cost, (USD); T is construction time,
(day); L is horizontal well length, (m); Qtransport is transportation
cost, (USD); Qtubing is tubing costs, (USD); P is the volume of
proppant. The volume ratio of proppant to fracturing fluid
is 0.035.

The drilling cost is related to the length of the horizontal
section. By analyzing the drilling cost data in the study area, the
relationship between the length of the horizontal section and the
drilling cost can be obtained.

Cwell � (9060544 + 1137.55(3500 + L) + (2.5985(3500 + L)
+ 104211) (9.1 + 0.0000028531L2 + 0.0036156L

+ 50.09) + 149.116L + 44160 exp(0.0002(3500 + L))
+ 33514exp(0.0006(L + 700))
+ 26458exp(0.00039(L + 700)))

(34)

The formula of operating cost is as follows:

Coperating � 37, 000 + 0.05Qgas (35)

TABLE 3 | Parameters for NPV calculation.

Parameters Values Symbols Unit

Discount rate 8 b %
Ground cost 700,000 Cground USD
Tax 0.001 Ctax USD/m3

Gas price 0.2 P0 USD/m3
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Optimization Algorithm
Optimization algorithms are divided into traditional gradient-
based optimization algorithms and evolutionary algorithms.
Traditional gradient-based optimization algorithms, such as
the penalty function method and the conjugate gradient
method, have fast convergence speed, but they are easy to fall
into the local optimum. Evolutionary algorithms such as particle
swarm optimization (PSO) algorithm (Li et al., 2012) and genetic
algorithm (GA) (Cen et al., 2016) have good global search
capabilities, but their convergence speed is relatively slow. In
practical application, we can employ these two optimization
algorithms to benefit each other. In this article, we used
MATLAB to build GA model and penalty function method.

Genetic Algorithm
As a classical global optimization algorithm, GA has been widely
used in many fields, such as industrial design and economic
management (Golzari et al., 2015; Zhang et al., 2019). GA starts
the search process from a set of initial solutions, called
population. Each individual in the population is a solution to
the problem, called a chromosome. These chromosomes continue
to evolve in subsequent iterations, known as heredity. GA is
mainly realized by crossover, mutation, and selection. The next
generation of chromosomes generated by crossover or mutation
operations is called offspring. The quality of chromosomes is
measured by fitness. According to the fitness, a certain number of
individuals are selected from the previous generation and
offspring as the next generation population and then continue
to evolve. After several generations, the algorithm converges to
the best chromosome, which is likely to be the optimal solution.

Penalty Function Method
The basic idea of the penalty function method is to transform the
constraint into a kind of penalty function and add it to the
objective function, thus transforming the constrained
optimization problem into a series of unconstrained
optimization problems (Hao et al., 2021). The penalty function
method includes the interior point method, external penalty
function method, and multiplier method. This research mainly
adopts the interior point method, which has the advantages of
simple structure and strong adaptability.

Optimization problems with general constraints are

min f (x) x ∈ Rn (36)

Subject to ci (x)> 0, i � 1, . . . ,m (37)

D0 � {x ∈ Rn|ci (x)> 0, i � 1, . . . ,m} ≠∅ (38)

where f (x) is the objective function, ci (x) is the constraint
condition, and D0 is the feasible region. The interior point
method needs to construct the following augmented objective
functions:

p(x, σ) � f(x) + σp(x) (39)

where σ> 0 is penalty parameter and p(x) is obstacle
function. It needs to satisfy the following properties: when
x tends to the boundary at D0, at least one ci (x) tends to 0 and
p(x) tends to infinity. There are two forms of obstacle
function:

p(x, σ) � −∑m

i�1 ln[ci(x)] (40)

p(x, σ) � −∑m

i�1
1

ci(x) (41)

In this way, when x is in D0, it is finite; when x is close to the
boundary, p(x)→ +∞ the value of the augmented objective
function tends to infinity, so it is severely punished.

Since the minimum point of constrained optimization
problem is generally reached at the boundary of feasible
region, the penalty factor in interior point method requires
σk → 0, so the solution problem is transformed into solving
nonsequence constrained optimization subproblem.

min p(x, σ) � f (x) + σkp(x) (42)

The overall optimization framework is shown in Figure 4.

RESULT AND DISCUSSION

Sensitivity Analysis
Matrix porosity, matrix permeability, horizontal well length, and
fracture half-length have an influence on gas production. In order
to intuitively study the influence of various factors on the
cumulative gas production, we made a correlation diagram.
Matrix porosity and horizontal section length have linear
relationships with gas production, while matrix permeability
and fracture half-length are logarithmically related to the gas
production (Figure 5). The results of the sensitivity analysis show
that these four factors have a significant influence on gas
production.

Comparison of Gas Prediction Models
GPR model is parameterized by kernel function, which
directly affects the prediction accuracy. In order to obtain
a suitable kernel function, we experimented with the ten
kernel functions. Through comparing different kernel
functions (Table 5), we found that ARD squared
exponential outperformed other kernel functions by
providing higher R2 and lower RMSE, so we chose it as
the final kernel function.

Different kernel functions will affect the prediction accuracy of
SVM. As can be seen from Table 6, the polynomial kernel

TABLE 4 | The input parameters for calculating the fracture half-length.

v Q(m3/min) h (m) C(m/
����
min

√
) SP (m3/m2) n9 k9 (mPa·s) G(MPa)

0.25 10 30 0.0028 0.00041 0.63 0.0000002 30,000
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function provides higher R2 and lower RMSE, so we chose it as
the final kernel function. According to the optimal kernel
function and kernel parameters of SVM, we can accurately
establish the production prediction model.

In this section, the performances of the GPRmodel, CNNmodel,
SVM model and model are compared. 256 experiments (Table 2)
were acquired from the initial experimental design for the shale gas
estimation model. The cross-validation and kernel function

FIGURE 4 | Flowchart of the optimization algorithm.

FIGURE 5 | (A) The relationship between matrix porosity and CGP (Cumulative gas production of 15 years). (B) The relationship between matrix permeability and
CGP. (C) The relationship between fracture half-length and CGP. (D) The relationship between horizontal well length and CGP.
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optimization were utilized to improve the prediction accuracy. R2

and RMSE were used to compare the performance of three models
on the validation set. As shown in Figure 6, R2 of GPR, CNN, and
SVM is 99.99, 98.07, 99.65, and 99.6%, respectively, and RMSE is
0.0127, 0.1690, and 0.0807, respectively. The GPR model reveals
competitive modeling capabilities compared with CNN and SVM.
This gives confidence in the model’s predictive ability. Therefore, the
GPR model is more reliable. The proxy model constructs an
approximate model of production prediction by collecting a small
number of samples. It is applied when calculating the production
instead of directly calling the reservoir numerical simulation
program, which effectively improves the optimization speed.

Additionally, to further study the performance of GPRR
model to predict the gas production per year, we calculated

the gas production of each year for 15 years under a given
geological engineering parameter using surrogate model and
compared it with the results obtained by a simulator-based
approach. The fixed parameters are porosity, permeability,
fracture half-length, and horizontal section length of 4%,
0.00003 md, 120 m, and 1,600 m respectively.

It is observed that the two production decline curves are
relatively close, indicating that the GPR model is capable of
estimating well performance (Figure 7). Therefore, the GPR
model has high reliability. Besides, the GPR approach is faster
than the numerical simulation technique. The numerical
model takes about 10 min to complete each simulation on
the machine with I7-6700 3.4 GHz CPU, while the data-
driven model can calculate the output within a minute.
Therefore, the GPR model is a good alternative to
numerical models.

Comparison of Optimization Results
An important application of production prediction model is
to optimize fracturing design and horizontal well parameters.

TABLE 5 | Comparison of kernel function precision.

Evaluation
standard

a b C d e f g h i j

RMSE 0.0749 0.0158 0.0315 0.0189 0.0163 0.0646 0.0127 0.0229 0.0165 0.0135
R2 0.9966 0.9998 0.9993 0.9998 0.9998 0.9975 0.9999 0.9996 0.9998 0.9999

a- exponential; b- squared exponential; c- Matern 32; d- Matern 52; e- rational quadratic; f- ARD exponential; g- ARD squared exponential; h- ARD Matern32; i- ARD Matern52; j- ARD
rational quadratic.

TABLE 6 | Comparison of kernel function precision.

Evaluation standard Rbf Linear Polynomial

RMSE 0.2817 0.4409 0.0807
R2 0.9630 0.8708 0.9965

FIGURE 6 | (A) Comparison of production predicted by the GPR model and numerical simulation model. (B) Comparison of production predicted by the CNN
model and numerical simulation model. (C) Comparison of production predicted by the SVM model and numerical simulation model. (D) RMSE of GPR model, CNN
model and SVM model.
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Therefore, in order to verify the effectiveness of the
established production proxy model, we used GA and
penalty function to optimize the fracture half-length and
horizontal segment length based on GPR model and NPV
model established in Methods. Because porosity and
permeability were not involved in the optimization, the
porosity and permeability were fixed at 4% and
0.00003 md, respectively. At the same time, the fracture
half-length and horizontal section length are optimized
based on the numerical simulation model. We used the
optimization algorithm to iterate for 100 times and
obtained the following results.

The initial fracture half-length, horizontal well length, and
NPV of field reference case are 100 m, 1,600 m, US$ -1.13
million, respectively. The fracture half-length, horizontal
well length, and NPV optimized by GA based on GPR
model and numerical simulation model converge to almost
the same values (Table 7). Compared with the field reference
case, the optimized NPV increased by US$ 7.43 million.
Therefore, according to the optimization results, the GPR
model coupled with GA and penalty function method can
meet the requirements of reservoir well layout optimization.
We also noticed that the optimization time of GPR model is
1/720 of that of the numerical simulation model, which
dramatically improves the optimization efficiency

(Table 7). This proves the applicability and strength of the
GPR model.

It is noted that the optimized horizontal well length reaches the
maximum values (4000 m). Since drilling cost is a function of
measuring depth and horizontal well length, there is an incentive to
increase reservoir contact by extending the horizontal section to
recover the cost of drilling vertical section. In addition, longer
horizontal wells have created more room for hydraulic fracture
treatments, and, thus, increasing shale gas production. This result is
consistent with the industry trend toward a longer horizontal well
(Wilson andDurlofsky, 2013).Meanwhile, it is worthwhile to point
out that the optimized fracture half-length is not the maximum
value in the range. This can be attributed to the fact that the rate of
revenue increase is not as fast as the cost increase rate.

To prove the adaptability of the GPR model in the variable
economic conditions, changes in natural gas prices are
considered. The gas price ranges from 0.138 USD/m3 to 0.261
USD/m3. Figure 8 displays the relationship between natural gas
price and optimal fracture parameters. As the price of natural gas
increases, the optimal fracture half-length gradually increases, but
the optimal horizontal well length remains unchanged. The
increase of optimal fracture half-length could be attributed to
the increase in income exceeding the increase in expenditure.
With a higher gas price, it is reasonable to use a longer horizontal
well length and longer fracture half-length.

FIGURE 7 | Comparison of production decline curves between GPR model and numerical simulation model.

TABLE 7 | Optimization results.

Optimal
fracture half-length(m)

Optimal well length(m) Optimal NPV (MMUSD) Required time (minute)

Field reference case 100 1,600 −1.13 /
GPR model-GA 146 4,000 6.72 1
GPR model-penalty function method 146 4,000 6.72 1
Numerical simulation model-GA 140 4,000 6.3 720
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The benefits of data-driven models are evident when a large
number of numerical simulations are needed without enough
time and computing resources. This fast proxy model can
optimize the engineering parameters of a single well in a
minute, and its accuracy is almost equal to that of the
numerical model that takes 12 h. If there are more wells, it
takes dozens or even hundreds of days to run reservoir
simulation, resulting in an unaffordable computational cost.
The efficiency and flexibility of the proxy model enable
engineers to estimate gas production and optimize fracture
parameter accurately.

Although the data-driven model possesses many advantages,
the potential limitations should not be ignored. The accuracy of
the numerical simulation model limits the prediction accuracy of
the surrogate model. It should be noted that the aim of GPR
model is not to replace the numerical simulation model but to
perform fast and efficient modeling. The optimized fracture half-
length is constrained by fixed fracture spacing and fracture
conductivity. The fracture spacing and fracture conductivity
should be incorporated in the optimization process in the
future. Complex fracture networks and geomechanical
properties are not considered in this work. In future work, the
geomechanical properties will be integrated into the rapid and
robust model for shale gas production.

CONCLUSION

In this article, data-driven prediction techniques, including GPR,
CNN, and SVM models, were developed and verified by
combining machine learning with a reservoir numerical
program. Following that, the GPR model and reservoir
simulator were driven by the evolutionary algorithm and
traditional optimization algorithm. The main conclusions are
summarized as follows:

1) The developed GPR model outperforms the CNN and SVM
models by providing higher R2 and lower RMSE, indicating it
can quickly establish a mathematical model approaching the
accuracy of the numerical simulation model by sampling the
numerical model.

2) The optimal half-length, horizontal well length, and NPV
obtained by the GPR model and simulator-based model
converge to almost the same value, further verifying the
GPR model’s reliability. Whereas the GPR model’s
optimization time is only 1/720 of that of the numerical
simulation model, which dramatically improves the
optimization efficiency. Compared with the field
reference case, the optimized NPV increased by US$
7.43 million.

3) The developed data-driven model based on the optimization
methodology provides a substantially fast and accurate
substitute for the numerical-simulation-assisted
optimization algorithm. These findings provide a basis for
the rapid optimization of the whole region. In the future, more
parameters such as fracture spacing and fracture conductivity
will be considered in the optimization process.
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