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The offset tracking approach has been widely used to measure large ground deformation
as a complement to Interferometric Synthetic Aperture Radar (InSAR) when its coherence
is poor and/or the deformation gradient is large. The standard offset tracking procedures
estimate deformation of tie points, which are uniformly distributed over two SAR images,
resulting in many unsatisfactory measurements. In this paper, we propose a feature point
offset tracking (FPOT) procedure to overcome the limitation of the standard method. First,
we identify feature points using the Speeded Up Robust Feature (SURF) algorithm.
Improper feature points are masked using external land coverage information like
water coverages. Then, we use the standard cross-correlation algorithm to find offsets
of the remaining feature points between reference and secondary images. The offset
outliers are removed using a quadtree filtering. Finally, the resultant deformation field is
generated by removing systematic offsets estimated with far-field feature points. We
assess the effectiveness of our proposed procedure using the 2016 Mw 7.8 Kaikōura
earthquake in New Zealand. In far-field where deformation is expected to be negligible,
histograms of offset distribution show that the root-mean-square error (RMSE) is
decreased from 0.07 pixels to 0.02–0.03 pixels for regular points and feature points,
respectively, after quadtree filtering. The RMSE between our FPOT-derived offsets and
GPS measurements are 0.14 and 0.48 m for range and azimuth offsets, respectively. The
results show that our proposed procedure can significantly improve the efficiency,
accuracy, and reliability with respect to the standard regular point offset tracking (RPOT).
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INTRODUCTION

Interferometric Synthetic Aperture Radar (InSAR) is widely used in natural disaster monitoring
because of its large coverage, all-day time, high accuracy, and unaffected by clouds (Elliott et al., 2016;
Hooper et al., 2012; Wang et al., 2019; Wright et al., 2013). However, the use of InSAR for
deformation mapping is often limited when large deformation gradients are involved. When the
deformation gradient is up to half wavelength within a single pixel, aliasing phenomenon will occur
during the phase unwrapping process (Goldstein et al., 2016; Massonnet and Feigl, 1998). In
addition, InSAR is also limited for measuring deformation in an area with strong decorrelation noise
(Michel et al., 1999). This usually occurs in the near field of coseismic rupturing (Lasserre et al., 2005;
Wang et al., 2014), crater of volcanic eruptions (Pagli et al., 2007; Sturkell et al., 2006), and sinking
holes of mining subsidence (Ng et al., 2017). Instead of measuring deformation via interferometric
phase, the pixel offset tracking (POT) method extracts surface displacements by estimating pixel
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offsets before and after sudden events like earthquakes (Michel
et al., 1999). Although POT is less accurate than InSAR, it is
relatively insensitive to coherence and can deal with amuch larger
measurable deformation gradient. Hence, POT can well
complement InSAR measurements when large deformation
gradient is expected (Michel et al., 1999).

The core idea of POT is the cross-correlation algorithm, which
acquires pixel offsets by matching patches to yield the maximum
correlation between two images (Michel et al., 1999). For a given
spatial resolution, the quality of cross-correlation mainly depends
on the feature similarity of the matching patches. The standard
POT approach (named as RPOT here) selects regular tie points,
which are uniformly distributed throughout the scene with a
certain spacing. RPOT has been demonstrated useful for
mapping large deformation in many studies (e.g., Fialko et al.,

2001; Hamling et al., 2017; Jónsson et al., 2002; Michel et al., 1999;
Wang et al., 2007a, 2007b; Wang et al., 2018; Wright et al., 2006).
However, its limitation is often found in fast-changing regions such
as farmland, densely planted forests, large areas of water, etc., where
the correlations of tie points are usually extremely low, even less
than 0.1. In these situations where there are not apparent features,
tie points could be mismatched and the resultant offset estimates
would be very noisy (Zebker and Chen, 2005). Hence, it is not
reliable to conduct modeling based on such offset measurements.

Serafino (2006) proposed to use isolated and bright points
(IPS) as coregistration candidates. This method is useful to avoid
decorrelated areas like water bodies. For offset tracking, dense tie
points are usually selected to ensure a high-resolution
deformation field. Patch-like offset patterns occur if strong
reflectors are clustered in space and included in multiple

FIGURE 1 | Cross-correlation of three tie points in radar amplitude images. (A) A blindly selected tie point in the green circle and its associated reference matching
window. (B) The searching secondary window, in which the green box indicates the corresponding region with the same size of the reference window. (C) The
coefficients from pixel-by-pixel cross-correlation, in which the red numbers denote range (Δr ) and azimuth (Δa ) offsets in pixels and the maximum coefficient (ρmax). The
corresponding figures for a dark and a bright feature point are shown in (D–F) and (G–I), respectively.
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neighboring matching windows.Wang and Jonsson (2015) used a
sinc filter to enhance the original amplitude image, which can
avoid patch-like offset estimates. The main drawback for using
IPS as coregistration candidates appears in rural areas with fewer
or even no manufactured structures, it may only be able to detect
a small number of strong reflectors, possibly leaving large areas
without any measurements. Thus, the spatial resolution of offset
measurements is limited if only bright points are selected as
coregistration candidates.

Since themain purpose of POT is to find identical points between
reference and secondary images, it is helpful to utilize all points with
apparent features. Figure 1 shows cross-correlation of a blindly
selected regular tie point in the agricultural area without obvious
features (Figures 1A–C), a dark point at the bend corner of a river
(Figures 1D–F), and a bright point for a large circular building
located on a hill of Redcliffs town (Figures 1G–I). It is clear that the
two feature points, nomatter bright or dark, can derive higher degree
and clearer focus of correlation than the blindly selected tie point.
Therefore, utilization of all the feature points can help to improve the
spatial resolution and the accuracy of the deformation field.

Speeded Up Robust Features (SURF) is one of the most
popular methods for feature detection and description of

remote sensing images (Bay et al., 2006). It has been used to
match SAR images (Durgam et al., 2016; Liu and Wang, 2009).
However, the registration accuracy using the SURF method is
only at the level of ~0.5 pixels (Durgam et al., 2016), which is
much lower than the requirements of InSAR coregistration and
offset tracking.

In this paper, we propose a feature point offset tracking
(FPOT) procedure to improve the spatial resolution, reliability,
and computing efficiency of the conventional method. The
procedure consists of feature points detection with SURF, data
masking with external land coverage data, cross-correlation
analysis, quadtree filtering, and systematic offset removal. We
conduct a real data analysis to assess the capability of RPOT by
mapping co-seismic deformation associated with the 2016 Mw
7.8 Kaikōura earthquake using Sentinel-1 radar images.

DATA

On November 14, 2016 (local time), the Mw 7.8 Kaikōura
earthquake occurred in the northeastern part of the South
Island of New Zealand (Figure 2). It is one of the largest

FIGURE 2 | Color-shaded relief map of central New Zealand. The blue box indicates the coverage of the Sentinel-1A SAR imagery. The dashed magenta box
shows the location of our study area for this study. The black triangles show GPS sites. The blue star in the middle denotes the epicenter of the Kaikōura earthquake.
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earthquakes in New Zealand and one of the most complex
earthquakes ever recorded on Earth (Hamling et al., 2017). The
entire New Zealand reported a shock with widespread damage
across much of the northern South Island. In the capital city,
Wellington, at least two people were killed in the earthquake that
occurred in the early hours of the day. SAR data showed that the
earthquake triggered a significant partial rise in the northeastern
part of the South Island, reaching a peak amplitude of about 8 m,
with a horizontal displacement of more than 10m in the active
fault area, triggering a complex fault rupturing process (Hamling
et al., 2017). Due to excessive deformation gradients, the near-field
deformation of the earthquake cannot be correctly derived using
the interferometric phase from the C-band Sentinel-1A data
(Hamling et al., 2017).

Here, we apply our proposed FPOT approach on a pair of
C-band Sentinel-1A ascending data collected on November 3,
2016 and November 15, 2016. The data were acquired in
interferometric wide-swath mode (IW) on track 52, with pixel
spacing of 2.3 by 14.1 m in slant range and azimuth directions,
respectively. This corresponds to a spatial resolution of 5 by 20 m
in ground range and azimuth directions, respectively (Torres
et al., 2012; Yague-Martinez et al., 2016).

MATERIALS AND METHODS

Figure 3 shows the flowchart of our FPOT procedure. First, the
feature points in the reference single look complex (SLC) image are

extracted using the SURF algorithm. Some unsatisfactory tie points
are then discarded according to external land coverage data. The
cross-correlation process is then applied to the remaining feature
points. Outliers of offsets are removed using the adapted quadtree
filtering. Finally, the resultant deformation field is derived after
removing a bi-linear model fitted with far-field offsets.

Feature Point Identification Using SURF
Bay et al. (2006) proposed the SURF algorithm to detect features
based on Scale-Invariant Feature Transform (SHIF) (Lowe,
2004). SURF, a faster and more robust algorithm compared to
the standard SHIF, is powerful to deal with a large volume of data,
so that we can set relatively large matching windows to improve
the reliability for feature points identification.

We use the SURF operator from the third-party open-source
library OpenCV, an efficient tool for identifying feature points
using SURF, to detect feature points (Bradski, 2000). To improve
the speed in feature point identification and noise suppression, we
convert the radar intensity with a range between the 2.5th and
97.5th percentile values of the cumulative image histograms to
0–255 scale. The pixels beyond the upper (97.5%) and lower
(2.5%) bounds are set to 255 and 0, respectively. We set the
window size to 24,000 × 6000 to speed up the calculation and
prevent the entire detection window from lying in a water body.
For large-scale images, we split the entire image into multiple
blocks for parallel computing. By taking the advantage of
OpenCV’s high computational efficiency, the processing time
for the whole progress with 24,000 × 6000 pixels is only 167 s on a
DELL laptop with AMD RYZEN 3600x CPU and 16G memory.
Figure 4A shows the distribution of feature points with Hessian
thresholds of 6000 and 10,000, respectively.

Feature Point Removal With Land Coverage
Data
It is worth noting that some kinds of ground surface might not
consist of proper feature points for offset tracking, for example,
the water bodies in coastal areas, forests, deserts, and so on.
Although SURF can somehow avoid selecting feature points in
water bodies, some points still can be in the water for noisy
amplitude images. The reasons include 1) the Hessian threshold is
too low; 2) the search window is too small so that wrong feature
points are selected due to random noise in the amplitude image;
and 3) the entire search window is in the water. The correlation
degrees of such feature points are expected to be low. It is a severe
waste of time for matching these points because their resultant
offsets are too noisy to be used for POT. Since many standard
products are available already, e.g., the SRTM Water Body Data
(SWBD) (NASA, 2013), we can mask the feature points lying in
improper regions assisted with the land coverage information.

In the upper right corner of Figure 4A, a clear amplitude
difference can be observed between water and land, and almost
no feature points lie in the water. However, it can be seen from the
bottom of Figure 4A that many feature points exist in the water,
mainly because the coastal area comprises dense forests giving
random noise in the amplitude image. In this situation, masking
with water body data is necessary to remove these points. This can

FIGURE 3 | Flowchart of the FPOT procedure.
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improve the efficiency and reliability of cross-correlation.
Figure 4B is the zoom in of the region indicated using a black
box in the upper-left corner of Figure 4A. The feature points,
shown as green circles, are strongly related to the ground of
corner points and urban buildings. These feature points have high
degrees of correlation (Figure 4C) and rarely appear in low-
correlation areas such as waters, farmlands, forests, etc.

Cross-Correlation and Quadtree Filtering
In cross-correlation, we set the reference and the search windows
as 64 × 64 and 84 × 84 pixels, respectively, with an oversample
factor of two and step size of 4 × 4 pixels. Figure 4C shows the
cross-correlation degrees of all regular pixels in Figure 4B. The
white holes indicate areas that are completely decorrelated and
cannot be matched. It is obvious that most of the feature points
are in high-correlation areas. For the whole image in Figure 4A,
we use the cross-correlation approach on the remaining feature
points and the resultant offsets are shown in Figure 5A.

The quadtree algorithm has been routinely used to reduce data
points in high-resolution interferograms for geophysical

modeling (Jónsson et al., 2002). Instead of using it for down-
sampling, here we adapt the algorithm to remove outliers in the
dataset as shown in Figure 5A. Our algorithm divides the whole
image into quadrants, and then fit a bi-quadratic model of the
offsets in each quadrant. If the RMSE in the quadrant exceeds a
given threshold, the quadrant is further subdivided into four.
Otherwise, we detect and remove the outliers based on a well-
known robust scale estimator known as median absolute
deviation (MAD). The bi-quadratic model is used because it
can help keep the high deformation gradients. In addition, we
subdivide the epicentral area into two regions with positive and
negative values and apply filtering to them individually. These
two strategies ensure that the pixels with the largest deformation
are not removed. The adapted algorithm can well keep the major
deformation features and remove noisy offsets, resulting in a
high-resolution and reliable deformation field. Figure 5 shows a
range of offsets before and after quadtree filtering. Figures 5E–L
show a zoom in of quadtree filtering for the near-field and far-
field areas denoted as red and black boxes in Figures 5A–D,
respectively. We can see that most noisy pixels have been

FIGURE 4 | Distribution of feature points and cross-correlation degrees. (A) The green circles and the magenta squares represent feature points on land and in
water, respectively, obtained by setting the Hessian threshold as 6000. The red circles and the blue stars are the corresponding feature points with the Hessian threshold
of 10,000. (B) Zoom in of the area denoted as a black box in the upper-left corner in (A). Feature points are denoted as green circles. (C)Cross-correlation degrees of the
amplitude image with a matching window size of 64 × 64 pixels and a step of 4 pixels. Pixels in water are not masked to show correlation comparison.
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removed (Figures 5B,C). Figure 5D shows the residuals between
the observed offsets of the outliers and the mean of their
associated quadrant. The random signs of the residuals
indicate that qualified data points are not culled out.

Systematic Offset Removal
The geometric offset of the orbits derives large-scale and
systematic offsets between reference and secondary images. In
conventional InSAR processing, coregistration is to constrain a
transform matrix to convert a secondary image into a reference
frame. The purpose of offset tracking is to measure offsets
associated with deformation instead of orbit effects. Therefore,
we first fit a bi-linear model using far-field offsets only, and then
remove the predicted offsets to obtain the resultant deformation
field. The bi-linear model is as

[ Δr

Δa
] � [m1 m2

m3 m4
][ r1

a1
] + [m5

m6
] (1)

where m1 - m4 are the rotation parameters, and m5 - m6 are the
translation parameters, respectively. r1 and a1 are the range and
the azimuth coordinates of the reference image, Δr and Δa are the
range and the azimuth offsets of the secondary image relative to

the reference image, respectively. The removal of such systematic
offsets is the like InSAR coregistration, which we will discuss in
Potentials for Applications in InSAR Coregistration.

RESULTS AND DISCUSSION

Results
We apply the FPOT approach to derive the co-seismic
deformation associated with the Kaikōura earthquake using
the entire image shown in Figure 2. With a Hessian threshold
of 6000 in the near-field and 10,000 in the far-field, we initially
select 387,605 feature points from the reference image whose size
is 24,302 × 66,213 pixels. For the RPOT approach, we select
390,602 regular points with steps of 64 and 32 pixels in range and
azimuth directions, respectively. After the cross-correlation
process, the outliers are culled out by a cross-correlation
coefficient threshold of 0.45 and SNR threshold of 5. About
69% of the regular and 35% of the feature points are culled out.
We then apply quadtree filtering, which removes 66,846 noisy
points for the FPOT and 32,123 for the RPOT. Finally, we fit and
remove the systematic offsets using far-field data points. The
resultant points are 170,309 and 76,699 for the FPOT and RPOT,

FIGURE 5 |Quadtree filtering for range offsets. (A) Range offsets before and (B) after quadtree filtering. (C) Pixels removed by the filter. (D) Residuals between the
observed offsets of the outliers and the mean of their associated quadrant. Red and black boxes in the first column correspond to near-field and far-field data, the
corresponding figures are shown in (E–H) and (I–L), respectively.
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respectively. For a comparable number of preliminary points, the
remaining qualified points for the FPOT approach are about
twice the RPOT counterparts.

Figures 6A,B show the FPOT-derived range and azimuth
offsets in the near field associated with the Kaikōura earthquake.
Figures 6C,D show scatterplots of the displacements between
FPOT-derived offsets (red), RPOT-derived offsets (blue), and
GPS measurements projected to the range and azimuth
directions, respectively. The results show good agreement
between FPOT-derived range offsets and GPS measurements,
with an RMSE of 14 cm. The RMSE of 48 cm in azimuth is higher
than that of the range due to coarser azimuth resolution of the
Sentinel-1A satellite. The RPOT-derived offsets have

approximate agreements after culling out outliers, giving an
RMSE of 15 and 55 cm for range and azimuth, respectively.
Without removing the outliers, the RMSE of the RPOT-derived
offsets are 37 and 69 cm in range and azimuth, respectively, which
is larger than the corresponding values of 18 and 50 cm of the
FPOT-derived offsets.

Feature vs. Regular Points
Figures 7A,B are probability distribution of range and azimuth
offsets of the entire SAR image after masking the near-field
deformation. Therefore, the bias from 0 should be able to
evaluate the accuracy of the algorithms. The histograms show
that the RMSE of range offsets are reduced from 0.07 pixels for

FIGURE 6 | (A,B) FPOT-derived co-seismic displacements in range and azimuth directions, respectively. The black circles denote GPS sites color-coded with their
displacements projected in range and azimuth directions. (C,D) Scatterplots show comparison between GPS displacements and FPOT-derived (red) and RPOT-derived
(blue) offsets in range and azimuth. The corresponding FPOT value is the average offset within a 500 × 500 m box surrounding each GPS site.
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RPOT to 0.05 pixels for FPOT. This is further decreased to 0.03
pixels for FPOT after quadtree filtering. For azimuth offsets, the
corresponding values decreased from 0.07 to 0.04 and 0.02 pixels,
for RPOT, FPOT, and FPOT after quadtree filtering, respectively.

The degree of cross-correlation is another important index for
the quality of offset tracking. Figure 7C shows the probability
distribution of the cross-correlation coefficients. The peak value
of RPOT is ~0.3, which is significantly lower than that of FPOT.
With increasing Hessian threshold, we find that the number of
feature points decreases (from 779,174 to 265,967) and the peak
of cross-correlation coefficients increases (from 0.45 to 0.7).

Bright vs. Non-Bright Points
Bright points have often been used as tie points for offset tracking
or coregistration (Serafino, 2006; Hu et al., 2014). However, some
other points can also have apparent features, which can be
considered as tie points in identifying offsets (Figure 1B). To
test the degree to which bright and non-bright points contribute
to offset tracking, we rescale the amplitudes of the identified
feature points into the range between 0 and 255. Figure 8 shows
the probability distribution of the grayscales with 10 levels. The
brightest values between 230 and 255 account for ~33% of the
feature points, notably higher than any other level. The other

levels have roughly uniform distribution at 6–10%, accounting for
~67% in total. Although the brightest points account for the
highest percentage, the non-bright points can significantly
improve the number of feature points and the spatial
resolution of the resultant deformation field.

Potentials for Applications in InSAR
Coregistration
Coregistration accuracy and efficiency are the two important
factors for justifying the performance of the feature points for
routine InSAR coregistration. At present, regular points are
widely used in routine InSAR coregistration. Because regular
points may be in a decorrelation area, many tie points are needed
to ensure the accuracy and the reliability of affine matrix fitting.
Our analysis above shows that feature points have high degrees of
cross-correlation and reliable offset estimates. Therefore, a small
number of feature points might satisfy the requirement for InSAR
coregistration.

To test the feasibility of feature points for routine InSAR
coregistration, we evaluate the accuracy of the coregistration
affine matrix fitted using feature and regular points,
respectively. We use a robust iterative least-square estimation.
The outliers are identified and removed if the residuals are larger
than 1.5 times of the posterior standard deviations. The inversion
is converged when the RMSE is less than 0.08 pixels. We select
497 regular points with steps of 1024 pixels in the far field where
co-seismic deformation is assumed to be negligible. To identify
feature points, we set the detection window size as 6000 × 20,000
pixels and the Hessian threshold as 20,000. First, we select the
same number of feature points as regular points to fit the affine
matrix (Eq. 1). In the iteration inversion, the ratios of outliers are
83 and 27% for the regular and the feature points, respectively.
The uncertainties of the resultant affine matrix fitted by feature
points is about 1/3 of that fitted by regular points (Table 1).
Second, we pick up the top 79 feature points with the largest
response value in the detection window.We find that these points
constrain the affine matrix even slightly better than that with 497
regular points. These two tests show that 1) the time-consuming
cross-correlation operations for most regular points are not

FIGURE 7 | (A,B) Probability distribution of the range and azimuth offsets. One pixel spacing is 2.3 m in range and 14.1 m in azimuth. (C) Cross-correlation
coefficients for regular and feature points.

FIGURE 8 | The grayscale histogram of all the feature points.
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necessary in routine InSAR coregistration; and 2) only 1/6 of the
size and computing time is required to achieve equal accuracy if
the feature points are used instead of regular points.

Matching window size is another factor that affects the
efficiency of InSAR coregistration. The smaller the search
window size, the shorter the computing time. When the
search window size is reduced in cross-correlation,
nevertheless, the estimated offsets of some points might
change much. Here we use the data in Figure 4B to test if
feature points can reduce the matching window size while
remaining reliable coregistration accuracy. To investigate the
effect of matching window sizes to the matching success rate,
we have conducted an experiment with reference matching
window sizes from 64 × 64 to 8 × 8 pixels. Searching window
sizes of 10 pixels larger than the corresponding reference
matching windows are used in this experiment. For the case of
FPOT, we find that thematching success rate has only dropped by
2% when comparing the reference window size of 64 × 64 pixels
to 16 × 16 pixels. For the case of RPOT, a noticeable fall in
matching success rates, by 13 and 36%, has been observed with
the reference window size of 32 × 32 pixels and 16 × 16 pixels,
respectively. Therefore, it is possible to use much smaller
reference and search windows (i.e., 16 and 26 pixels,
respectively) for FPOT while ensuring the offset’s reliability.
These are much smaller than that of 64 and 84 pixels for the
RPOT. This suggests that FPOT can further improve the
coregistration efficiency.

CONCLUSIONS

The offset trackingmethod is an important complement to obtain
large surface displacements in both azimuth and range directions
where the InSAR technique is unfeasible due to excessive
displacement gradients and phase unwrapping errors. To
improve the reliability and efficiency of the standard method,
we propose a method that combines SURF, external geographic
data, cross-correlation, and quadtree filtering to derive reliable
offset estimates. Application to the 2016 Mw 7.8 Kaikōura
earthquake has shown that these feature points have distinct
features that are helpful in identifying offsets. In offset tracking,
feature points have higher amplitude cross-correlation than

blindly selected regular points. In addition, feature points are
not limited to bright points, and therefore have more
observations, which can significantly improve the number of
data points and the spatial resolution of the resulting deformation
field. Furthermore, a smaller number of feature point matching
patches can be used to achieve the equal coregistration accuracy
of regular points, which can significantly improve the efficiency,
accuracy, and reliability relative to standard coregistration.
Considering the similarity of optical and SAR offset tracking,
the procedure proposed in this study can also be used to improve
deformation measurements in optical imagery (Avouac and
Leprince, 2015; Leprince et al., 2007).
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TABLE 1 | The comparison of fitting affine matrix with feature and regular tie points.

Tie
points

Outliers Range
RMSE
(pixel)

Azimuth
RMSE
(pixel)

σm1 σm2 σm3 σm4 σm5 σm6

10−8 10−8 10−8 10−8 10−4 10−4

FP 79 23 0.038 0.046 2.2 4.0 3.1 5.8 4.8 6.9
FP 497 165 0.042 0.050 1.0 1.9 1.5 2.6 2.1 3.0
RP 497 421 0.050 0.053 3.2 6.7 3.8 8.1 7.7 9.2
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