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Paleoearthquake data obtained from fault trenching are essential for rebuilding the rupture
history and understanding the rupture behavior of active faults. However, due to the lack of
attention to stratigraphic sequences, the usual multiple trench constraining method may
result in uncertainties of paleoearthquake sequences. In this study, we proposed an
improved constraining method to generate stratigraphic sequences frommultiple trenches
of different drainages to obtain a paleoearthquake sequence of the Gulang fault. Single-
trench stratigraphic sequences were built up by nineteen trenches excavated along the
fault. Based on stratigraphic characteristics, we found the strata sedimented around the
fault were derived from five drainages. The single-trench sequences were divided into five
drainages to establish the composite sequence of multiple trenches through the
correlation of stratigraphic units. Meanwhile, we used high-quality event indicators to
pick out very likely earthquakes. Coupled with the dating samples, the events were used to
determine the earthquake horizons in the composite sequence and to constrain the
numbers and ages of events in each drainage. After combining the event sequences, six
paleoearthquakes were determined along the Gulang fault since the late Pleistocene. Their
occurrence timings are 13,700–10,400, 10,400–10,200, 8,560–7,295, 5,825–4,810,
4,285–3,200, and 2,615–2,240 a B.P. And their different rupture scenarios indicate
that the fault might be composed of two rupture segments.

Keywords: drainage analysis, stratigraphic sequences, fault trenching, paleoearthquakes, rupture segmentation,
Gulang fault

INTRODUCTION

The study of paleoearthquake is essential for understanding the long-term seismic behavior of faults.
Based on the surface rupture remainders in geologic and geomorphic records, quantitative
parameters of the prehistorical strong earthquakes, such as the occurrence timing and
reoccurrence feature, can be obtained and further used to discuss the reoccurrence pattern, fault
rupture segmentation, and seismic hazard assessment (e.g., Sieh, 1978; Schwartz and Coppersmith,
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1984; Weldon et al., 2002; Liu-Zeng et al., 2006; Scharer et al.,
2007; Scharer et al., 2017; McCalpin, 2009; Ran et al., 2012a;
Berryman et al., 2012). Trenching across faults provides key
insights in studying paleoearthquake through stratigraphic
record analysis, faulting interpretation, and age constraint
from the dating samples (e.g., Sieh, 1978; Weldon et al., 2002;
McCalpin, 2009; Burbank and Anderson, 2012). Many
paleoearthquake studies along continental active faults have
proved that it is common to miss some events in a single
trench (e.g., Schwartz and Coppersmith, 1984; Zhang et al.,
1988; Mao and Zhang, 1995; Zhang et al., 2005). However, the
surface rupture of historical earthquakes indicates that the
earthquake-derived evidence may not be obliterated but could
be preserved along some fault sections (e.g., Lanzhou Institute of
Seismology, 1995; Zheng et al., 2005; Ren et al., 2016). The
earthquakes identified between different trenches are either
repetitive or supplemental with each other, implying that
multiple trenches excavated on different fault sections are
possible to recover a complete sequence of recent
paleoearthquakes.

Multiple trench constraining method is now widely used to
refine the ages of paleoearthquakes. For example, an event logged
in multiple trenches yielded slightly different age estimates, and
the most likely age of the event would be the time window
common to all these different ages (McCalpin, 1987; Khajavi
et al., 2016; Guo et al., 2019). Only an upper or a lower age bound
of a given event can be determined from a single trench because of
the limitation of dating samples in many cases. The progressive
constraining method is proposed to identify the same events by
these upper and lower bounds and reduce the age interval by
usingmultiple bounds (Mao and Zhang, 1995; Zhang et al., 2005).
In recent years, the reliability of event interpretation has gained
more attention. Similar geologic evidence caused by the
nonearthquake processes increases the possibility to
misestimate the number of paleoearthquakes, so a new system
of evaluating event indicator was proposed to exclude the
potential events without enough evidence (Scharer et al., 2007;
Scharer et al., 2017; Yuan et al., 2018; Liu et al., 2021).

Little attention has been paid to stratigraphic characteristics;
however, the stratigraphic interpretation and analysis in the
trench is the prerequisite of event identification and sample
dating. The best evidence for determining the number and the
age of events is offered by the stratigraphy and deformation of
unconsolidated sediments (e.g., Sieh, 1978; McCalpin, 2009).
Ideally, more trenches are used, completer event sequences can
be obtained, but it also means more complicated results of event
identification and dating samples. Without the composite
analysis of multiple trench stratigraphic sequences,
nonearthquake events and dating outliers possibly lead to
uncertainties in the identification of the stratigraphic horizon
of paleoearthquake evidence, from which the quantity and age
of events will be misestimated. The stratigraphic sequence is
needed to be added to the multiple trench constraining method
because it has the potential to test for event synchronicity and
bring more precise event sequence out (Weldon et al., 2002;
Bacon and Pezzopane, 2007; Goldfinger et al., 2008; Ferry et al.,
2011).

In this study, the multiple trench constraining method was
improved by combining the stratigraphic sequences of multiple
trenches in different drainages to study the paleoearthquakes of
the Gulang fault. According to stratigraphic characteristics, the
trenches previously excavated on different fault sections have
been divided into five drainages. Through the stratigraphic
correlation between single-trench sequences, we built up the
composite stratigraphic sequences of five drainages to which
all potential events observed in trenches were matched. After
the evaluation of event indicators, the earthquake horizons were
picked out to constrain the event ages and conclude the
paleoearthquake sequence of the fault. Furthermore, the
practicability of this improved constraining method and the
rupture behaviors of the Gulang fault were discussed.

GEOLOGIC SETTING
The Gulang fault (also named the Tianqiaogou-Huangyangchuan
fault) is an important active fault in the eastern part of the
northern Qilianshan fault zone in the northeastern Tibet
(Wan, 1987; Dai et al., 1995; Gaudemer et al., 1995; Lanzhou
Institute of Seismology, 1995; Lasserre et al., 2002). It splays
eastward from the Qilian–Haiyuan fault zone and is located east
of the Lenglongling fault (Figure 1B). Starting fromHongyaoxian
and terminating in Jiapigou, the fault is 86 km long, striking near
E–W (Figure 1C). It can be divided into two segments, the
Tianqiaogou segment in the west and the Huangyangchuan
segment in the east, by the Guanjiatai pull-apart basin (Dai
et al., 1995; Dai et al., 1999; Lanzhou Institute of Seismology,
1995; Zheng et al., 2005). About 8 Ma, the Gulang fault turned
into a strike-slip fault from a thrust fault (Gansu Bureau of
Geology and Mineral Resources, 1989; Zhang et al., 2019). It is
dominated by a left-lateral strike-slip with little thrust
component. The Holocene left-lateral slip rate of the fault is
estimated to be stable between 2 and 4.5 mm/a, while its vertical
slip rate is mostly less than 0.5 mm/a (Lanzhou Institute of
Seismology, 1995; Zheng et al., 2005; Gao, 2018; Zhang et al.,
2019). The M8.0 Gulang earthquake (Figure 1B) in 1927 is
thought the largest historical earthquake along the Hexi
Corridor (Gaudemer et al., 1995; Lanzhou Institute of
Seismology, 1995; Hou et al., 2000), but whether the Gulang
fault was ruptured by this event is still controversial (Hou, 1998;
Zheng et al., 2005; Shi et al., 2019; Zhang et al., 2019).

There are distinct linear fault scarps and well-preserved
faulted geomorphology along the Gulang fault, including the
displaced gullies, fluvial terraces, alluvial fans, and mountain
ridges (Lanzhou Institute of Seismology, 1995; Dai et al., 1999;
Gao, 2018; Zhang et al., 2019). The fault has kept active in the late
Quaternary. Trenches excavated across these offset geomorphic
sites have been used to study the paleoearthquake history of the
fault. Dai et al. (1995) had dug five trenches across the fault and
found seven paleoearthquakes between 22,700 and 7,590 a B.P.
with an average recurrence interval of about 3,350 a. And they
suggested that the fault moved frequently from the late
Pleistocene to the early Holocene but had become less active
since the middle Holocene. However, by analyzing another six
trenches, Zheng et al. (2005) reported seven paleoearthquakes
and one historical earthquake along the fault in the Holocene.
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These eight events were characterized by quasi-periodic
recurrence with an average interval of about 1,500 a. Besides,
two trenches opened by Shi et al. (2019) showed at least five
paleoearthquakes with their moment magnitudes estimated to be
Mw7.3–7.4 occurring on the Gulang fault in the Holocene and
their average recurrence interval is about 2,400 a. Several
paleoearthquake investigations have been carried out, in which
different geomorphic units, dating methods, and multiple trench
constraining methods were applied. They finally led to
inconsistent paleoearthquake sequences. Therefore, additional

work is highly required to unravel the long-term
paleoearthquake behavior of the fault.

Totally, nineteen trenches excavated by previous studies
(Figure 1C and Table 1; Dai et al., 1995; Zheng et al., 2005;
Gao, 2018; Shi et al., 2019) have been collected. They are
uniformly distributed along the fault with the westernmost
one located in Hongyaoxian and the easternmost one located
in Jiucaigou. The majority of them are excavated on the displaced
fluvial terraces (T1–T3 from young to old), while three trenches
are excavated on the dislocated mountain ridges. A new

FIGURE 1 | Tectonic setting and distribution map of the Gulang fault. (A) Tectonic location of the study area. (B). Main active faults around the study area. The fault
locations are modified from (Zheng et al., 2016) and (Guo et al., 2019). The seismic data (hollow dots) are from USGS. Focal mechanism solutions (gray beach balls) are
from (Hou et al., 1999) and (He et al., 2020). Abbreviations: QHFZ �Qilian–Haiyuan fault zone; LLLF � Lenglongling fault; JQHF � Jinqianghe fault; MMSF �Maomaoshan
fault; LHSF � Laohushan fault; HSF � Huangcheng-Shuangta fault; SWBF � South Wuwei Basin fault; GLF � Gulang fault; NCF � North Changlingshan fault. (C)
Distribution map of the Gulang fault and five main drainages (Drainages A to E) along the fault. The fault locations are from (Shi et al., 2019). Rectangular boxes represent
the trench locations.

TABLE 1 | Trenches: locations, geomorphic units, and sedimentary characteristics.

Trench No. References Segment Drainages Geomorphic unit Sedimentary characteristics

Hongyaoxian 1 1 Gao (2018), Shi et al. (2019) Tianqiaogou Drainage A T1 —

Hongyaoxian 2 2 Gao (2018), Shi et al. (2019) Tianqiaogou Drainage A T1 —

Yangjiawan 3 Zheng et al. (2005) Tianqiaogou Drainage A Mountain ridge Thin stratigraphic units
Tianqiaogou 1 4 Dai et al. (1995) Tianqiaogou Drainage A T1 —

Tianqiaogou 2 5 Dai et al. (1995) Tianqiaogou Drainage A T1 —

Motaizi 1 6 Gao (2018), Shi et al. (2019) Tianqiaogou Drainage B T2 Slope deposit
Motaizi 2 7 Dai et al. (1995) Tianqiaogou Drainage B T3 —

Qianjingcun 8 Zheng et al. (2005) Tianqiaogou Drainage B Mountain ridge Thin stratigraphic units
Dashigou 9 Zheng et al. (2005) Tianqiaogou Drainage C Mountain ridge Thin stratigraphic units
Liutiaohe 10 Gao (2018), Shi et al. (2019) Tianqiaogou Drainage C T2 —

Guanjiatai 11 Zheng et al. (2005) Tianqiaogou Drainage C T2 —

Xiaoshigou 1 12 Dai et al. (1995) Huangyangchuan Drainage D T2 Considerably different from surrounding trenches
Xiaoshigou 2 13 Zheng et al. (2005) Huangyangchuan Drainage D T2 —

Kuangou 1 14 Gao (2018), Shi et al. (2019) Huangyangchuan Drainage D T1 —

Kuangou 2 15 Gao (2018), Shi et al. (2019) Huangyangchuan Drainage D T1 Merely two dating samples with age inversion
Gulanghe 16 Dai et al. (1995) Huangyangchuan Drainage E T2 Considerably different from surrounding trenches
Youzhagou 17 Zheng et al. (2005) Huangyangchuan Drainage E T1 —

Guodiwan 18 Gao (2018), Shi et al. (2019) Huangyangchuan Drainage E T2 —

Jiucaigou 19 Gao (2018), Shi et al. (2019) Huangyangchuan Drainage E T1 Fine-grained sag pond filling materials
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systematic analysis based on the stratigraphic sequences of these
trenches would be presented to rebuild the paleoearthquake
history of the Gulang fault.

DATA AND METHODS

Stratigraphic Sequence Establishment
The single-trench stratigraphic sequences (Figure 1C and
Table 1) were established first (Figure 2). More materials are
likely to deposit on the footwall in which a completer

stratigraphic sequence should be preserved because the
footwall is low-lying over a period of time after faulting. The
top of the hanging wall has probably used to be eroded, yielding
the sedimentary interruption and the destruction of earthquake-
derived evidence. The footwall of the Gulang fault is the north
wall. In the trenches, the portions of the footwall with more near-
horizontal layers and dating samples would be a better alternative.
The colluvial wedge and fissure-filling material are the local
sedimentary product of faulting so they were not considered
in the establishment of stratigraphic sequences. To expose the
entire thickness of the stratigraphic unit, the thickness of the

FIGURE 2 | Single-trench stratigraphic sequences, composite stratigraphic sequences of multiple trenches, age framework, and inferred ages of
paleoearthquakes in (A) Drainage A, (B) Drainage B, (C) Drainage C, (D) Drainage D, and (E) Drainage E. Dating results and event indicators are shown in the single-
trench sequences of each trench. The dashed lines indicate the proposed correlation among these trenches. In composite stratigraphic sequences, we label units (A)
from A1 to A12, (B) from B1 to B4, (C) from C1 to C9, (D) from D1 to D10, and (E) from E1 to E9, from top to bottom.
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TABLE 2 | Recalibration of radiocarbon samples.

Trench no Sample Sample type Sample layer Radiocarbon age (a B.P.) Calendar age (Cal B.P.) (2σ)

1 HYXW20 Organic sediment Gravelly silty clay 1,420 ± 30 1,290–1,360
HYXE22 Charcoal Gravelly silty clay 1,670 ± 30 1,420–1,690
HYXE20 Organic sediment Gravelly silty clay 3,500 ± 30 3,650–3,870
HYXE23 Charcoal Gravelly silty clay 2,990 ± 30 3,070–3,330
HYXE04 Charcoal Gravelly silty clay 3,870 ± 30 4,160–4,410
HYXW03 Charcoal Gravelly silty clay 4,000 ± 30 4,410–4,530
HYXE03 Charcoal Gravelly silty clay 7,810 ± 30 8,470–8,650
HYXE05 Charcoal Gravelly silty clay 9,330 ± 30 10,420–10,650
HYXE01 Organic sediment Gravelly silty clay 8,720 ± 30 9,550–9,890

2 — — Gravelly silty clay 2,510 ± 30 2,490–2,740
— — Gravelly silty clay 3,900 ± 30 4,240–4,420
— — Colluvial wedge 5,520 ± 30 6,280–6,400
— — Colluvial wedge 7,860 ± 40 8,540–8,970

3 LUG-02–129 — Silty clay 2,213 ± 50 2070–2,340

8 LUG02-125 — Silty clay 2,571 ± 53 2,490–2,780
LUG02-126 — Silty clay 6,732 ± 65 7,440–7,690

9 LUG02-130C Charcoal Silty clay 1865 ± 121 1,530–2,110
LUG02-131 — Silty clay 9,730 ± 75 10,780–11,270

10 W58 — Silty clay 3,810 ± 30 4,090–4,350
E44 — Silty clay 4,210 ± 30 4,620–4,850
E42 — Silty clay 5,070 ± 30 5,740–5,910
E37 — Silty clay 5,060 ± 30 5,730–5,900
E25 — Silty clay 6,480 ± 30 7,320–7,430
E40 — Silty clay 6,580 ± 30 7,430–7,560
E04 — Breccia 8,870 ± 30 9,790–10,170
E05 — Breccia 8,660 ± 30 9,540–9,680

11 LUG02-101 — Soil –47 ± 47 30–260
LUG02-100 — Gravelly silty clay 1,270 ± 42 1,070–1,290
LUG02-99 — Gravelly silty clay 2,262 ± 54 2,130–2,350
LUG02-98 — Silty clay 8,072 ± 79 8,650–9,270

13 LUG02-104 — Silty clay 3,258 ± 86 3,260–3,700
LUG02-102 — Silty clay 6,371 ± 68 7,170–7,420
LUG02-103 — Silty clay 8,110 ± 100 8,650–9,400

14 KG22 Charcoal Clay 840 ± 30 680–790
KG23 Charcoal Silty clay 770 ± 30 670–730
KG26 Charcoal Silty clay 1,790 ± 30 1,600–1740
KG25 Charcoal Loess 4,250 ± 30 4,650–4,870
KG32 Charcoal Loess 4,080 ± 30 4,440–4,810
KG24 Organic sediment Clay 8,020 ± 40 8,660–9,020
KG29 Organic sediment Sandy clay 9,560 ± 40 10,720–11,100
KG36 Charcoal Clay 11,980 ± 40 13,780–14,020
KG17 Organic sediment Clay 9,570 ± 40 10,720–11,110
KG43 Charcoal Bedrock 10,970 ± 90 12,760–13,080

17 LUG02-120 — Silty clay 4,272 ± 63 4,580–5,040
LUG02-119 — Silty clay 5,599 ± 74 6,220–6,560
LUG02-121 — Silty clay 8,576 ± 58 9,470–9,680
LUG02-117 — Silty clay 9,054 ± 87 9,910–10,490

18 GDW10 — Silty clay 420 ± 30 330–520
GDW15 — Silty clay 5,370 ± 30 6,010–6,280

19 — — Silty clay 2,660 ± 30 2,740–2,850
— — Silty clay 6,260 ± 30 7,030–7,260

Symbol — herein indicates that the name or type of the radiocarbon dating sample was not reported in references.
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stratigraphic unit was determined by the thickest portions that
are not anomalous or obviously structurally controlled. Trenches
3, 8, and 9 were excavated on the dislocated mountain ridges
(Table 1) on which the erosion rate is higher. Their stratigraphic
units are much thinner than those of other trenches (Figure 2).

Furthermore, different radiocarbon calibration methods used
in previous studies might make difference in age determination of
the stratigraphic units; thus, we provided a consistent
recalibration (Table 2) in the radiocarbon measurements on
all radiocarbon dating sample by applying the OxCal 4.4
program and the IntCal 20 curve (Reimer et al., 2020). In
Trench 2, there is an age inversion of dating samples in two
older colluvial wedges, and the contact relation between two
colluvial wedges and stratigraphic units in Trench 2 is unusual
(Gao, 2018; Shi et al., 2019), so the dating samples within these
two older wedges were not taken into account in the sequence
establishment.

In different drainages, different sources of sediments and
hydrodynamic conditions can result in different sediments and
stratigraphic characteristics. Five main drainages can be found
along the Gulang fault, involving the Tianqiaogou, Haxihe,
Liutiaohe, Zhangjiahe, and Huangyangchuan, from west to east.
Nineteen trenches were divided into these five drainages to integrate
the single-trench stratigraphic sequences and establish the composite
stratigraphic sequences of multiple trenches (Figure 1C). Glacier
and frozen soil at high altitudes are the sediment supplies of the
trenches along the Tianqiaogou in Drainage A. The sediments of
trenches in Drainages B, C, and D are derived from snowmelt and
fluvial erosion of theHaxihe, Liutiaohe, and Zhangjiahe, respectively.
And the sediments of the trenches in Drainage E mainly come from
the Quaternary unconsolidated sediments transported by the
Huangyangchuan. The trenches in Drainage A contain more
sand and gravel, while the component of clay increases and the
loess unit appears in the trenches in Drainages B, C, and D
(Figure 2). It might be the result of a stronger hydrodynamic
condition in Drainage A but weaker ones in Drainages B, C, and
D. In the trenches of Drainage E (Figure 2E), a sandy gravel unit is
commonly observed between two silty clay units, possibly revealing a
variable hydrodynamic condition.

The correlation of stratigraphic units among multiple trenches
is based on the marker stratigraphic unit, sedimentary
characteristics (grain size and color), and dating samples of
similar age. Various sedimentation rates and erosion rates in
the trenches, combined with different judgments about lithology
and stratification from the previous studies, produce a certain
influence on our stratigraphic correlation. We tried to refine the
sediment stratification and recover the unit thickness reasonably
during the unit correlation as far as possible. When regarding
Trenches 6, 12, 15, and 16, their original limited description, age
inversion of dating samples, and considerably different
stratigraphic sequences from those of the surrounding trenches
(Dai et al., 1995; Gao, 2018; Shi et al., 2019) excluded them from
the composite stratigraphic sequence establishment.

In Drainage A (Figure 2A), the transition from gravelly silty
clay to sandy gravel between units A5 and A6 is sharp at
approximately 10 ka. Two maker units, unit A10 composed of
orange gravel and unit A11 composed of greyish-green breccia,

link Trench 5 with Trench 4. And the sediment grain coarsening
from unit A7 to unit A8 also matches, although there are different
dating results between these two trenches. In Drainage B
(Figure 2B), unit B3 of loess-like silt or silty clay and unit B4
of sandy gravel can be thought of as two marker units. Unit C2 in
Drainage C is mostly shown as gravelly silty clay and unit C9 is
shown as gravel or sandy gravel (Figure 2C). Units C3 to C8 are
mostly composed of silty clay and they are correlated among
Trenches 9, 10, and 11 based on the dating samples of similar
ages. For example, units C3 to C6 are silty clay formed between 10
and 2.3 ka. The components of sand and gravel increase in units
D6 and D9 in Drainage D, respectively (Figure 2D). The
correlation of units D2 to D5 is mainly constrained by the
dating results. For example, unit D5 is silty clay or loess
deposited between 7.5 and 3 ka. In Drainage E (Figure 2E),
the interbed of silty clay unit and sandy gravel unit from unit
E3 to unit E7 matches Trench 18 with Trench 17 well. Trench 19
is composed of the fine-grained filling materials in the sag pond
because it was excavated in a sag pond east of the Jiucaigou village
(Gao, 2018; Shi et al., 2019). The correlation of Trench 19 with the
other two trenches is mainly determined by the dating results.
Overall, the sediments were dominated by gravel before 10 ka and
the grain size has become finer since 10 ka in these five drainages,
indicating a dramatic change of climatic or hydrologic conditions
(Shen et al., 2005; Sun and Colin, 2014).

Event Indicator Analysis
Without the influence of faulting, the stratigraphic unit in the
trench should keep in its original and natural state, for example,
shown as a horizontal layer with consistent or gradual varying
thickness. The deformation and disruption of the stratigraphic
unit will be regarded as a possible paleoearthquake indicator.
Common event indicator includes a colluvial wedge, sag pond
sediment, material-filled fissure, vertical offset of stratigraphic
unit, upward termination of fault, angular unconformity, and
growth strata (McCalpin, 2009; Ran et al., 2012a; Ran et al.,
2012b). They are the critical evidence from which we pick up each
interpreted event and which help us to distinguish observations
from earthquake horizons. The highest-quality event indicators
are the sedimentary characteristics which can only be caused by
an earthquake, while there may be some other types of
nonearthquake triggering mechanisms for the low-quality
indicators. The event indicators of high quality can be used to
identify very likely earthquakes (Scharer et al., 2007; Scharer et al.,
2017; Liu-Zeng et al., 2015; Yuan et al., 2018). The quality of
individual event indicators is the most important factor in
paleoearthquake identification. To document the quality of
event indicators observed in the trenches, all event indicators
have been tabulated in Table 3. The trenches exhibit a wide
variety of event indicators.

The colluvial wedge, sag pond sediment, and material-filled
fissure herein are the high-quality indicators required to identify
the very likely earthquakes. Colluvial wedge is the most common
paleoearthquake evidence of reverse faults. Degradation of the
fault scarp is indicated in the stratigraphy as a wedge of
colluvium. It is derived from the erosion of the top unit on
the hanging wall and subsequent in situ deposition above the same
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TABLE 3 | Event indicators and associated stratigraphic units.

Trench no. Event Upper unit Lower unit Event indicator

1 E1-3 A2 A3 Colluvial wedge
Upward termination of fault
Vertical offset of unit and colluvial wedge
Greyish-green breccia lens at the bottom of unit A2

E1-2 A3 A4 Colluvial wedge
Debris at the bottom of unit A3
Vertical offset of colluvial wedge

E1-1 A4 A5 Colluvial wedge
Special contact relation of colluvial wedge and unit
Upward termination of fault

2 E2-1 A1 A2 Deformation of colluvial wedge

3 E3-1 A1 A2 Colluvial wedge
Upward termination of fault

4 E4-2 Qml A7 Upward termination of fault
E4-1 A8 A9 Colluvial wedge

5 E5-1 A6 A7 Colluvial wedge
Upward termination of fault

7 E7-1 B1 B3 Colluvial wedge
Upward termination of fault

8 E8-3 B1 B2 Upward termination of fault
E8-2 B2 B2 Thin charcoal layer indicating new sag pond
E8-1 B2 B3 Sag pond sediment

Upward termination of fault
Vertical offset of unit

9 E9-2 C2 C3 Sag pond sediment
E9-1 C6 C7 Colluvial wedge

10 E10-2 C3 C4 Colluvial wedge
Upward termination of fault

E10-1 C4 C5 Upward termination of fault

11 E11-4 — C1 Upward termination of fault
E11-3 C2 C2 Thin charcoal layer indicating new sag pond
E11-2 C2 C3 Sag pond sediment
E11-1 C6 C7 Colluvial wedge

Upward termination of fault

13 E13-3 D5 D5 Thin charcoal layer indicating new sag pond
Upward termination of fault

E13-2 D5 D6 Sag pond sediment
E13-1 D6 D7 Material-filled fissure

14 E14-3 D4 D5 Vertical offset of unit
Upward termination of fault

E14-2 D6 D7 Vertical offset of unit
Upward termination of fault

E14-1 D8 D9 Vertical offset of unit
Upward termination of fault

17 E17-4 — E1 Upward termination of fault
E17-3 E4 E5 Colluvial wedge

Vertical offset of unit
E17-2 E6 E7 Colluvial wedge

Vertical offset of unit
E17-1 E7 E8 Sag pond sediment

Vertical offset of unit

18 E18-2 E2 E3 Sag pond sediment
E18-1 E4 E5 Material-filled fissure

Upward termination of fault

19 E19-2 E3 E3 Upward termination of fault
E19-1 E4 E5 Upward termination of fault

Bold event indicators are the indicators of high quality.
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top unit on the footwall (Figure 3A; Wallace, 1977; Nelson, 1992).
The wedge-shaped colluvium composed of debris can be often
observed near the faults in the footwalls of the trenches along the
Gulang fault. Sag pond is a kind of typical offset geomorphology
along the strike-slip fault. In the hillside and valley, materials
mainly come from the unconcentrated flows and the gullies with
small catchment areas. As the fault moves, a sag pond will be
formed by the local blockage of flows in which the fine-grained
materials deposit to record this earthquake (Figure 3B; Sieh, 1978;
Allen et al., 1991; Fumal et al., 1993). These fine-grained sag pond
deposits are usually shown as deep-color silt and clay units in the
trenches. Material-filled fissures are characterized by vertically
displaced and horizontally separated units and out-of-sequence
material filling. The fissures are caused by coseismic cracks opening
to the ground which are subsequently filled with colluvium and
younger sediment (Figure 3C; Bonilla and Lienkaemper, 1991;
McCalpin, 2005). They appear to result from nearly vertical or
high-angle normal fault branches in the trenches.

Take Trench 17 in Drainage E for example (Figure 2A and
Table 3). High-quality event indicator in it includes sag pond
sediment and colluvial wedge. The sag pond sediment can
identify event E17-1 as a very likely earthquake between units
E7 and E8. Events E17-2 and E17-3 can be marked as very likely
earthquakes by the colluvial wedges between units E6 and E7 and
between unit E4 and unit E5, respectively. But event E17-4 can
only be marked as a possible earthquake by the low-quality

indicator of the upward termination of fault. Similarly, all
events interpreted in the trenches could be classified into very
likely earthquakes and possible earthquakes based on the quality
of event indicators (Figure 2).

According to the stratigraphic horizons of the event indicators
in single-trench stratigraphic sequences, very likely earthquakes
and possible earthquakes interpreted in the trenches could be
placed between corresponding upper and lower stratigraphic
units in the composite stratigraphic sequences of five
drainages (Figure 2). Very likely earthquakes identified by the
high-quality indicators provide vital evidence for picking out the
earthquake horizons. For instance, an earthquake horizon was
considered to be located between unit A2 and unit A3 by two very
likely earthquakes E1-3 and E3-1 (Figure 2A), from which event
EA5 in Drainage A could be identified by this earthquake
horizon. Meanwhile, it is supposed that event EA5 occurred
during the formation time of this earthquake horizon. It can
be constrained by the dating samples within the upper colluvial
wedge and in the top of the lower unit A3. Similarly, the
paleoearthquakes can be identified by earthquake horizons
through the high-quality event indicators. And the timing of
their occurrence can be constrained by the ages of the upper and
lower units that are determined by the dating samples from
multiple trenches (Figure 2). In some cases, there are inconsistent
dating results of one stratigraphic unit in different trenches. By
avoiding age inversion and considering the dating method, the

FIGURE 3 | High-quality event indicators and their formation: (A) colluvial wedge, (B) sag pond sediment, and (C) material-filled fissure, modified from (Wallace,
1977; Sieh, 1978; Allen et al., 1991; Bonilla and Lienkaemper, 1991; Nelson, 1992; Fumal et al., 1993; McCalpin, 2005). (A) As the fault moves, a fault scarp forms with
the appearance of a free face. During the modification of the free face, until the slope of the fault scarp reaches the repose angle, the hanging wall will be eroded and will
provide colluvial debris that accumulates along the degrading scarp as a colluvial wedge on the local footwall. (B) In the valley, a gully flows through the fault. The
gully and the mountain on either side will be left-lateral offset by faulting during an earthquake. The gully is locally obstructed by the dislocated mountain of the footwall,
and a sag pond forms in which the fine-grained deposits record this earthquake. (C) A normal fault branch develops in themiddle of a stratigraphic unit. The unit would be
vertically displaced and horizontally separated to open a coseismic fissure as the fault shakes. Assuming that both sides of the fissure are eroded soon after the
earthquake, this fissure would be filled with texturally distinct material and then the younger material.
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sample type, and relative stable long-term sedimentary rate, the
outlier dating samples can be excluded to offer better constraints
of the ages of sedimentary units.

RESULTS

The paleoearthquake sequences were recovered with the composite
stratigraphic sequence establishment and event indicator analysis
in five drainages. The results show that five events EA1, EA2, EA3,
EA4, and EA5 occurred at 13,700–10,400, 10,400–10,000,
8,560–4,470, 4,285–3,200, and 2,615–2,205 a B.P. in Drainage A,
respectively (Figure 2A). Only one paleoearthquake, EB1,
occurring at 10,500–10,200 a B.P. has been found in Drainage B
(Figure 2B). Three paleoearthquakes were logged in Drainage C,
including events EC1, EC2, and EC3 occurring at 11,025–9,980,
5,825–4,735, and 4,220–2,240 a B.P., respectively (Figure 2C). Two
paleoearthquake, ED1 and ED2, occurred at 10,910–9,025 and
8,840–7,295 a B.P. in Drainage D (Figure 2D). There were four
events EE1, EE2, EE3, and EE4 with an occurrence sequence of
>10,200, 9,575–6,390, 6,145–4,810, and 2,795–425 a B.P. in
Drainage E, respectively (Figure 2E). Combining the
paleoearthquake sequences of five drainages, it is supposed that
a total of six paleoearthquakes (E1–E6) have occurred on the
Gulang fault. The timings of these six events can be constrained to
13,700–10,400, 10,400–10,200, 8,560–7,295, 5,825–4,810,
4,285–3,200, and 2,615–2,240 a B.P., respectively (Figure 4).

DISCUSSIONS

Completeness and Reliability of
Paleoearthquake Sequence
The assessment of completeness and reliability of the
paleoearthquake sequence identified in the trenches is the
precondition for further discussion of the fault behavior. The
stratigraphic record of paleoearthquakes is probably incomplete
or not reliable enough primarily because 1) the site for trench

excavation cannot preserve the complete geologic records; 2)
some earthquakes have no observable evidence due to the nature
of earthquake and subsequent modification; 3) event indicators
caused by earthquakes is difficult to be differentiated from the
nonearthquake ones; and 4) the resolution and reliability of
dating samples are not high enough (Liu-Zeng et al., 2006;
Scharer et al., 2007; McCalpin, 2009; Ran et al., 2012b).

Multiple trench constraining method is effective in addressing
the incompleteness and unreliability of paleoearthquake
sequence. The progressive constraining method usually used
before is to arrange the upper and lower age bounds of events
interpreted in multiple trenches by time, during which the
bounds of some events can be refined step by step, and the
age of paleoearthquakes can be estimated (Mao and Zhang, 1995;
Zhang et al., 2005). It was also applied to constrain the
paleoearthquakes in five drainages of the Gulang fault (Figure 5).

There is some difference between the paleoearthquakes
constrained by the progressive constraining method and by
the method based on stratigraphic sequences mentioned above
(Figure 2, Figure 5). In Drainage E (Figure 2E, Figure 5E), it is
possible for event EE’? (event EE4 in Figure 2E) to be missed
without the exact evidence of its existence by using the
progressive constraining method. It can only be constrained
by two lower age bounds interpreted in different trenches
without the limitation of an upper bound. Besides, the upper
bound of event EE2’ (event EE2 in Figure 2E) has been postdated
for over 2000 a. This event should be constrained by the dating
samples of its upper unit E6 and lower unit E7. The upper bound
provided by the dating sample of unit E5 in Trench 19 was
wrongly regarded as the upper bound of event EC2’ when using
the progressive constraining method. Overall, the progressive
constraining method strongly depends on the results of the dating
samples and event identification of the single trench. And the
low-quality event indicators cannot be excluded from event
constraints. More trenches are considered, and more problems
will arise. The improved multiple trench constraining method we
used is capable of preventing these problems by adding composite
stratigraphic sequence establishment and event indicator analysis,

FIGURE 4 | Age limitation of paleoearthquakes of the Gulang fault. (A) Distribution map of the Gulang fault and trench locations. (B) Paleoearthquake sequences of
five drainages and the Gulang fault. Events marked by the light gray boxes indicate the paleoearthquakes logged in Drainages A, B, C, D, and E. The gray bars show the
fault sections ruptured during the earthquakes. Events marked by the dark boxes are paleoearthquakes of the Gulang fault.
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further greatly enhancing the completeness and reliability of the
paleoearthquake sequence along the Gulang fault. Besides, the
stratigraphic unit correlation gives us a chance to combine
more dating samples of multiple trenches and provide a better
estimation for the occurrence timings of paleoearthquakes.

Rupture Segmentation of the Gulang Fault
The Gulang fault is geometrically divided into two segments by the
Guanjiatai pull-apart basin (Figure 1C; Dai et al., 1995; Dai et al.,
1999; Lanzhou Institute of Seismology, 1995; Zheng et al., 2005).
Fault steps over 5 km are regarded to be persistent barriers of
rupture propagation in most circumstances and provide a limit to
the rupture length of earthquakes (Wesnousky, 2006; Biasi and
Wesnousky, 2016). The scale of the Guanjiatai pull-apart basin
between the Tianqiaogou and Huangyangchuan segments is
merely several hundred meters. It is too small to control
rupture propagations; therefore, it cannot become a termination
of the paleoearthquakes along the Gulang fault (Figure 4). Event
EC1 and EC3 logged in multiple trenches in Drainage C are
cascade ruptures of the Tianqiaogou and Huangyangchuan
segments, passing the fault step in Guanjiatai (Figure 2).

The rupture segmentation of active fault is different from the
geometric image in some cases; for instance, Gaochuan gets little

attention during geometric segmentation but acted as a boundary of
the surface rupture zone in Mw7.9 Wenchuan earthquake in 2008
(Xu et al., 2009; Xu et al., 2010; Zhang et al., 2010). Comparing the
age ranges of paleoearthquakes recorded in each drainage, the events
likely occurring at the same timing can bematched; thus, the rupture
extents of these events can be inferred (Figure 4). Discrete fault
sections that have demonstrably ruptured during several prehistoric
earthquakes are called rupture segments (dePolo et al., 1991; Fumal
et al., 1993; McCalpin, 2009). Along the Gulang fault, events E1 and
E5 merely ruptured the fault section in Drainage A, while event E4
ruptured the fault sections in Drainages C, D, and E. The fault might
be composed of two rupture segments. One rupture segment is the
fault section in Drainage A, termed the western rupture segment,
and another consists of fault sections in Drainages C, D, and E,
termed the eastern rupture segment herein. Only one entire-fault
rupture event, E2, is logged in Drainage B, making it difficult to infer
whether the fault section in Drainage B ruptured with the western
rupture segment or the eastern rupture segment.

We have collected the left-lateral strike-slip rates of the Gulang
fault since the late Pleistocene (Figure 6A; Lanzhou Institute of
Seismology, 1995; Zheng et al., 2005; Gao, 2018; Zhang et al., 2019).
The slip rate is stable between 2 and 4.5 mm/a. Its spatial variation
along the fault shows that the slip rate is lower between Huoshaotai

FIGURE 5 | Paleoearthquakes constrained by the progressive constrainingmethod in (A)Drainage A, (B)Drainage B, (C)DrainageC, (D)DrainageD, and (E)Drainage E.
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and Motaizi (Figure 6B). Slip rate change along the fault strike is
kinematic evidence of the fault behavioral segmentation (Knuepfer,
1989; Dawers et al., 1993; Dawers and Anders, 1995). The local
lower slip rate along the Gulang fault that can be a boundary of
fault behavioral segments probably fits the fault section that
stopped the rupture propagation during some paleoearthquakes
between the western and eastern rupture segments.

Earthquake rupture often terminated at geometric or structural
changes of the fault zone (Wesnousky, 1988; McCalpin, 2009).
Between Huoshaotai and Motaizi, the fault shows about 5 or 10°

change along strike, yielding a compressive area shown as
mountains in geomorphology (Figure 6A). Double restraining
bends >20° are considered as a termination of earthquake
rupture in most cases (Lozos et al., 2011; Elliott et al., 2015;
Elliott et al., 2018); nevertheless, minor changes in fault geometry
along the strike-slip faults are likely to be conditional barriers to
rupture propagation, terminating some earthquakes and allowing
others to pass (Duan and Oglesby, 2005; Howarth et al., 2021). The
minor change in fault strike between Huoshaotai andMotaizi might
be a conditional barrier, stopping some paleoearthquakes between
the western and eastern rupture segments and allowing others to
complete the entire-fault rupture of the Gulang fault. But it is hard to
determine the location of rupture termination via trenching due to
the limited precision of horizontal spacing of the trenches between
two rupture segments.

Reoccurrence Behavior of the Gulang Fault
The Gulang fault can be divided into two rupture segments and it
shows two scales of paleoearthquake ruptures (Figure 4). Events
E2, E3, and E6 represent the entire-fault rupture events. Event E4 is
a single-segment rupture event of the eastern rupture segment
while events E1 and E5 are single-segment rupture events of the
western rupture segment. Four paleoearthquakes were constrained
along the eastern rupture segment with the reoccurrence intervals
of about 2,370, 2,610, and 2,890 a between events E2, E3, E4, and

E6, respectively. It indicates an average recurrence interval of about
2,620 a. To quantify the paleoearthquake recurrence behavior, the
coefficient of variation of the recurrence interval (Cv) was
calculated to be 0.10 (Kagan and Jackson, 1991; Berryman et al.,
2012). In the western rupture segment, the reoccurrence intervals
are about 1750, 2,370, 4,190, and 1,320 a between events E1, E2, E3,
E5, and E6 with Cv to be 0.53. The earthquake reoccurrence of the
eastern rupture segment is of stronger periodicity.

Whether the Gulang fault was ruptured by the 1927 Gulang
earthquake or not (Hou, 1998; Zheng et al., 2005; Shi et al., 2019;
Zhang et al., 2019) is still controversial. It is an important factor in
seismic hazard assessment of the fault. Unfortunately, merely
near 100 a has passed since its occurrence hardly forming a
complete record in the stratigraphic sequence. There is not
enough stratigraphic record in trenches to prove or disprove
this historical earthquake along the Gulang fault.

CONCLUSION

Earthquake-derived surface deformation can lead to the interruption
and new beginning of sedimentation near the fault. The high-quality
stratigraphic evidence logged inmultiple trenches is an important signal
to indicate the paleoearthquakes of an active fault. Six paleoearthquakes
were constrained along the Gulang fault by using an improvedmultiple
trench constraining method based on the stratigraphic sequence of five
drainages. They occurred at 13,700–10,400, 10,400–10,200,
8,560–7,295, 5,825–4,810, 4,285–3,200, and 2,615–2,240 a B.P.
Compared to the events constrained by the progressive constraining
method, it can be proved that the paleoearthquake sequence we
obtained is of higher completeness and reliability. The fault could be
divided into two rupture segments. The slight variation in fault strike
between Huoshaotai and Motaizi probably yields a conditional barrier
to rupture propagation. There might be two scales of earthquake
rupture: rupture of single rupture segment and rupture of entire

FIGURE 6 | (A) Distribution of left-lateral strike-slip rates along the Gulang fault. The slip rates are from (Lanzhou Institute of Seismology, 1995; Zheng et al., 2005;
Gao, 2018; Zhang et al., 2019). Fault traces of the Gulang fault between Huoshaotai andMotaizi show aminor change in fault strike. (B)Spatial variation of slip rates along
the Gulang fault.
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fault. And two rupture segments showed different reoccurrence
behaviors of paleoearthquakes. Besides, the seismogenic fault of the
1927 Gulang earthquake is debatable and it is hard to discuss this event
along the Gulang fault by using trench data due to the lack of
stratigraphic record.
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