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Understanding the evolution of lakes in arid areas is very important for water resource
management. Previous studies have mainly focused on lakes with runoff recharge, while
the evolution of groundwater recharge lakes in hyper-arid areas is still less known. In this
study, an 86 cm-long sediment core was extracted from Sayinwusu Lake, one of
groundwater-recharge lakes in the southeastern Badain Jaran Desert, Northwest
China. 210Pb and 137Cs dating, total organic carbon (TOC) and total nitrogen (TN)
contents, and mineral content analysis were used to reconstruct the lake evolution
over the past 140 years. The evolution of Sayinwusu Lake since 1880 can be divided
into two periods. In the first period from 1880 to 1950, the TOC and TN contents were low,
and the minerals consisted of all detrital minerals, which indicate that the lake’s primary
productivity and salinity were low. During the second period from 1950 to 2018, the
contents of TOC, TN, and carbonate minerals increased rapidly at the beginning of the
1950s, indicating that the lake’s primary productivity and salinity increased.
Comprehensive analysis of regional climate data suggests that the increase in
evaporation caused by rising temperature is an important factor affecting lake evolution
in the desert. Although precipitation has increased in the arid region of Northwest China in
recent decades with increasing temperature, the enhancement of the evaporation effect is
much greater. As a record from groundwater recharge lakes in deserts, our study provides
new insight into projecting future lake changes in hyper-arid areas.
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INTRODUCTION

Lakes are important water resources, especially in hyper-arid areas. Understanding lake evolution
patterns can help us predict lake development trends and manage water resources (Panizzo et al.,
2013; Creutz et al., 2016; Lopez et al., 2019; Wan et al., 2019; Woolway et al., 2020). Previous studies
of lake evolution have mainly focused on the important role of runoff, precipitation, and/or snow
melt water in hydrological systems (Zhai et al., 2011; Long et al., 2012; Liu et al., 2013; Li et al., 2016).
In hyper-arid areas, including Xinjiang Province and Gansu Province, recharge by groundwater plays
a crucial role in the evolution of the main inland basin and is at least equal to, if not greater than, the

Edited by:
Zhiwei Xu,

Nanjing University, China

Reviewed by:
José Darrozes,

UMR5563 Géosciences
Environnement Toulouse (GET),

France
Li Wu,

Anhui Normal University, China
Steffen Mischke,

University of Iceland, Iceland

*Correspondence:
Gaolei Jiang

jianggl198899@163.com
Nai’ang Wang

wangna@lzu.edu.cn

Specialty section:
This article was submitted to

Quaternary Science, Geomorphology
and Paleoenvironment,
a section of the journal

Frontiers in Earth Science

Received: 07 June 2021
Accepted: 23 August 2021

Published: 01 October 2021

Citation:
Jiang G, Wang N, Mao X, Zhao H,

Liu L, Shen J, Nie Z andWang Z (2021)
Hydrological Evolution of a Lake

Recharged by Groundwater in the
Badain Jaran Desert Over the

Past 140 years.
Front. Earth Sci. 9:721724.

doi: 10.3389/feart.2021.721724

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7217241

ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/feart.2021.721724

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.721724&domain=pdf&date_stamp=2021-10-01
https://www.frontiersin.org/articles/10.3389/feart.2021.721724/full
https://www.frontiersin.org/articles/10.3389/feart.2021.721724/full
https://www.frontiersin.org/articles/10.3389/feart.2021.721724/full
https://www.frontiersin.org/articles/10.3389/feart.2021.721724/full
http://creativecommons.org/licenses/by/4.0/
mailto:jianggl198899@163.com
mailto:wangna@lzu.edu.cn
https://doi.org/10.3389/feart.2021.721724
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.721724


amount of runoff and precipitation (Zhang and Li, 2005a; Zhang
and Li, 2005b). The evolution of lakes recharged by groundwater
is characterized by intense vertical intersphere water recharge
from other areas and no discharge except evaporation; this
situation is different from the previous lake evolution model.
Many studies have been conducted and have achieved much
progress on the evolution pattern, driving factors of lake
evolution, and response to climate change for lakes recharged
by runoff and/or precipitation (Chen et al., 2009; Long et al., 2012;
Liu et al., 2013; Wang et al., 2014; Wu et al., 2020; Fu et al., 2021).
However, much less work has been done on the evolution of
groundwater recharge lakes.

The Badain Jaran Desert (BJD), located in western Inner
Mongolia in a hyper-arid area of China, is sensitive to climate
change, with an increase in the temperature of 0.34°C per decade
(Figure 1; Yang et al., 2011; Ning et al., 2021). The BJD, with an
area of 5.2 × 104 km2, is the second largest desert in China (Zhu
et al., 2010). It is characterized by the coexistence of more than
110 perennial lakes and thousands of mega-dunes (Dong et al.,
2013). The BJD has the tallest mega-dunes on Earth, with mega-
dunes more than 100 m tall covering 68% of the area and
concentrated in the southeastern part of the sand sea (Dong
et al., 2013). More than 90% of the recharge of lakes between
mega-dunes is from groundwater (Dong et al., 2016; Wang et al.,
2016). Therefore, the BJD is an ideal region to study the evolution
pattern of lakes recharged by groundwater. Previous studies in the
BJD were mainly based on the dating of discontinuous lake
sediments during the late Quaternary, especially the Holocene

at the millennial scale (Yang and Williams, 2003; Yang et al.,
2010; Bai et al., 2011; Wang et al., 2016; Chen et al., 2019). This is
not sufficient for a detailed understanding of the factors
influencing lake evolution during past decades, which is
important for predicting the development trend in future
decades or centuries.

The global environment has experienced dramatic change,
with the highest rate of increase in global temperature over the
last century (Woolway et al., 2020). Arid zones are recognized to
be more sensitive than other areas to temperature variations
associated with global climate change (Huang et al., 2016), and
the resulting changes in evaporation are an important factor in
lake evolution (Li et al., 2016; Wang et al., 2016). Therefore, the
past century is a key period for understanding lake evolution and
predicting its trend in the context of global warming (Neukom
et al., 2019). Unfortunately, few studies on lake evolution have
been conducted during this period in the BJD. In this study, we
reconstructed the lake evolution history over the last 140 years
based on continuous lake sediments, which may provide new
insight into projecting the trend of lake evolution responses to
future climate change.

STUDY AREA

The BJD is located on the northwestern Alxa Plateau in
Northwest China (Figure 1A). It has an elevation of
900–1800 m a.s.l., falling from the southeast to the northwest.

FIGURE 1 | Sketch map showing the geographic setting of the BJD (A), the location of the SY-2 sediment core from Sayinwusu Lake (B), and the variation in
monthly temperature (red circles) and precipitation (blue pillars) [(C), data are the averages for 1960–2017].
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To the south, it is bounded by the Beida Mountains (Mt) and the
Heishantou Mt (maximum elevation 1963 m a.s.l.), which
separate it from the Gobi of the Hexi Corridor (Dong et al.,
2013). To the southeast, it is bounded by the Yabrai Mt
(maximum elevation 1957 m a.s.l.), which separate it from the
Tengger Desert. To the west and northwest, it stretches down to
Ugrian Lake and the Heihe River. To the north, it is bounded by
Guaizi Lake, close to the Mongolian Gobi (Dong et al., 2013).
Stratigraphic studies of the Badain Jaran Basin demonstrate that
Cretaceous strata are widely distributed in the piedmont area of
the surrounding mountains and the Badain Jaran Desert. They
are several thousand metres thick and mainly consist of red and
brick-red sandstone, siltstone with calcareous nodules
intercalated with a small amount of conglomerate, and
calcareous sandstone (BGMIMAR, 1991). Cenozoic sediments
are distributed in the western and southern intermontane areas,
which unconformably underlie the upper Quaternary deposits
and are less than 200 m thick. The Quaternary aeolian sand has a
thickness of 200–400 m and is intercalated with several lacustrine
layers (Wang et al., 2015a). Studies have assumed that the sandy
materials in the Badain Jaran should have been derived from the
weathered extensive lacustrine sediments of dry lake beds in the
west and northwest (Yang, 1991; Yan et al., 2001) and the giant
alluvial fan of the Heihe River (Mischke, 2005; Hu and Yang,
2016).

The lakes lying amongmega-dunes are concentrated within an
area of approximately 4,000 km2 (Dong et al., 2013). Most lakes
are less than 0.6 km2, and the largest is 1.46 km2. Water depth is
generally a few metres up to 10 m, and the deepest lake depth is
15.9 m (Zhang et al., 2013; Wang et al., 2016). The hydrological
properties of the lakes vary greatly, with the total dissolved solids
(TDS) ranging from less than 1 to 400 g/L (Yang and Williams,
2003; Lu et al., 2010). Most lakes from the southeast edge to the
hinterland are of the sulfate–carbonate–chloride type with
increasing salinity (Lu et al., 2010). Although the origin of
groundwater in the desert remains a hotly debated issue, it is
generally agreed that groundwater is the main water source of the
lakes and is primarily from the south and southeast areas, such as
the Yabrai Mt, and Qilian Mt (Ma and Edmunds, 2006; Gates
et al., 2008a; Dong et al., 2013; Wang et al., 2016).

The BJD has an extreme continental desert-type climate (Dong
et al., 2004). The mean precipitation ranges from 40 to 90mm,
decreasing from the southeast to the northwest. Most of the
precipitation occurs in summer (Figure 1C). The evaporation from
lake surfaces is 1,450mm, which is more than 20 times the amount of
precipitation (Hu et al., 2015). The mean annual air temperature
ranges from 9.5 to 10.3°C, with the lowest monthly mean temperature
of 8.3°C in January and the highest of 24.1°C in July (Figure 1C). The
mean annual wind speed ranges from 2.8 to 4.6 m s−1, and the wind
direction is mainly northwest (Hu and Yang, 2016).

The surface vegetation coverage of the BJD ranges from 5 to
50, with most areas having very low coverage; the vegetation is
dominated by xerophytic and ultraxerophytic shrubs and
subshrubs, and herbacea is dominated by annual plants. On
the sandy hills, the vertical distribution of vegetation is
obvious. In the dry lake basin, the Nitraria tangutorum
community is widely distributed, accompanied by Zygophyllum

xanthoxylum and Calligonum mongolicum (Cui et al., 2014;
Wang et al., 2015b). Around the modern lake shore, the
vegetation is distributed in a ribbon with a width of a few
metres to a dozen metres. Along the lake, there is a marsh-
shaped halophytic meadow, mainly composed of Trigolochin
maritimum, Glaux maritima, and Aeluro littorlis. In the
periphery, there is a halophytic meadow, mainly composed of
Phragmites communis and Achnatherum splendens. Due to the
government’s relocation policy and the improvement of living
conditions, there are only a few herders living around a few lakes.
In 2009, the BJD became a global desert geopark, and thousands
of people visited it every year, mainly in October.

The distribution of lakes in the BJD is relatively concentrated in
the southeastern region. Lakes with lower salinities are more
sensitive to the environmental changes and are easily observed
for hydrochemical changes. Sayinwusu Lake, located at the
southeastern margin of the BJD, has an area of approximately
0.12 km2 (Figure 1B). The lake is 720 m long and 170 m at the
widest point, with the largest water depth of approximately 2 m.
The lake water has a pH of 9.5 and salinity of 18.0 g/L with major
cations of K+ (384 mg/L), Na+ (5,330 mg/L), Ca2+ (37 mg/L), and
Mg2+ (751 mg/L) and major anions of Cl− (6,440 mg/L), SO4

2−

(4,166mg/L), HCO3
− (693 mg/L), and CO3

2− (531 mg/L) (team
unpublished data). Due to the high salinity, there are no fish in the
lake, and no animals, such as camels, drink the lake water.
Terrestrial vegetation is distributed in belts around the lake
shores, with areal extents of tens of metres. The dominant plant
species around the lake are mainly xerophytes, super-arid shrubs,
and semi-shrubs, and are mainly composed of Trigolochin
maritimum, Glaux maritima, and Aeluro littorlis inside and
Phragmites communis and Achnatherum splendens outside.

MATERIALS AND METHODS

Field Sampling
An 86 cm long sediment core (SY-2) was drilled from the centre
of Sayinwusu Lake (102°19.82′ E, 39°34.00′N) in September 2018
A.D. using a gravity corer. The water depth of the sampling point
is approximately 1.6 m. The sediment core was sectioned at
1.0 cm intervals (86 samples) and then fully dried in a
vacuum-freezing dryer at −25°C for 48–72 h. Before laboratory
analysis, these samples were stored in a dry place at room
temperature.

210Pb and 137Cs Dating
Twenty-five subsamples were selected at 2-cm intervals for the upper
50 cm part of the sediment core and were ground to fine powder (<
63 μm) in an agatemortar. The activities of 137Cs, 210Pb, and 226Ra in
the samples were determined by a low-background well-type
germanium detector (EG and GOrtec Gamma Spectrometry) at
the State Key Laboratory of Lake Sciences and Environment, CAS.
137Cs was detected at 662 keV, 210Pb was determined via gamma
emission at 46.5 keV, 226Ra was measured at 295 keV, and 352 keV
g-rays were emitted by its daughter isotope 214Pb. Standard errors
(2σ) were calculated from the counting statistics. The excess 210Pb
(210Pbex) activity was calculated by subtracting the activity of 226Ra
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from the total 210Pb activity. 210Pbex activity is employed to calculate
a chronology using the constant rate of supply (CRS) dating model
(Appleby and Oldfield, 1978; Appleby, 2001; Swarzenski, 2014). The
calculated equation is as follows:

Ah � A0e
−λt,

where Ah is the cumulative residual unsupported or excess 210Pb
activity beneath sediment of depth h, A0 is the total unsupported
210Pb activity in the sediment column, λ is the 210Pb decay
constant, 0.03114 years−1, and t represents time.

TOC and TN Analysis
Eighty-four subsamples at 1 cm intervals were ground to fine
powder (< 63 μm) in an agate mortar, treated with 1 N HCl to
remove inorganic carbonates, and then rinsed repeatedly with
deionized water to remove soluble salts. The residual samples
were dried for measurement. The total carbon and total nitrogen
contents were determined by an EA 3,000 elemental analyser at
the State Key Laboratory of Lake Sciences and Environment,
Chinese Academy of Science (CAS). The repetitive errors were
less than 3%. The total organic carbon contents were calculated
by subtracting the inorganic carbon contents in carbonates from
the total carbon contents.

The total organic carbon (TOC)/total nitrogen (TN) ratios of
lacustrine sediments are usually used to evaluate the
predominance of autochthonous versus allochthonous sources
of organic matter (Meyers, 2003). In general, carbon-to-nitrogen
(C/N) ratios less than 10 indicate that the organic matter is from
protein-rich and cellulose-poor aquatic organisms (Meyers,
2003), the mean C/N value of benthos is approximately 3, and
algae and phytoplankton have values of approximately 5–12 and
generally less than 10 (Hedges et al., 2002). However, when the
organic matter is from protein-poor and cellulose-rich terrestrial
plants, the C/N ratio is greater than 20 (Meyers, 2003).

Mineral Analysis
Eighty-six subsamples at 1 cm intervals were ground to fine powder
prior to measurement. The mineralogy was measured at the Key
Laboratory of Western China’s Environmental Systems (Ministry of
Education) by a powder X-ray diffractometer (XRD, PANalytical
X’Pert ProMPD). Each sample was spread and leveled onto a 1.5 cm2

× 1.5 cm2 concave glass plate for XRD determinations. XRD employs
the radiation of a Cu target at 40 kV and 40mA to generate X-rays
that irradiate a sample at a scanning angle of 2ɵ (5–75°) with a 0.01°

minimum step size and produce the diffraction peaks of the sample.
Other equipment settings are automatic variable divergence detector
slits. Corundum (α-Al2O3) was selected as the internal standard. The
compositions ofminerals in samples were determined by comparison
of the characteristic diffraction peakswith the standard card spectrum
using the software X’Pert HighScore Plus. The detailed calculation
method of mineral content can be found in Last (2001).

RESULTS
210Pb and 137Cs
In the studied sediment core, the vertical distributions of the
activities of 210Pb and 137Cs are shown in Table 1 and Figure 2A.

The first appearance of 137Cs activity occurs at a depth of 36 cm
with a corresponding activity of 1.83 Bq/kg. The peak of 137Cs
activity is identified at a depth of 30 cm with a corresponding
activity of 18.47 Bq/kg. Above 30 cm, the 137Cs activity gradually
decreased to approximately about 3 Bq/kg (Figure 2A). The
excess 210Pb (210Pbex) activity in the core decreases from
253.39 Bq/kg at the core surface to near zero at 50 cm depth
(Figure 2A).

TOC, TN, and TOC/TN
The TOC and TN contents are very low and constant around
0.1% for TOC and ∼0.05% for TN, and no clear peak is observed
during this period. The C/N ratio is very noisy during this period
except for 1885 A.D., where a very strong peak is observed. The
TOC content increases rapidly at 40–41 cm (1948–1950 A.D.)
and then maintains a higher content (0.40–1.47%), and Figure 3
shows four main peaks compared to the geochemical background
of approximately 0.5% for TOC and 0.15% for TN. These main
peaks correspond to the years 1950–1952 (TOC � 0.85%, TN �
0.10%), 1960 (TOC � 0.8%, TN � 0.12%), 1995 (TOC � 1.47%,
TN � 0.24%), ∼2004–2007 (TOC � 1.13%, TN � 0.18%), and the
highest peak (TOC � 2.01%, TN � 0.35%) observed for
2015–2018. Overall, the TOC/TN ratios are less than 10 with
an average value of 6.25. The C/N ratio during 1950–2018
decreased slowly from 8 to 5, and the noise strongly decreased
compared to the 1880–1950 period (Figure 3).

Mineral Variations
The mineral constituents of core SY-2 at 44–85 cm (1880–1944
A.D.) are detrital minerals, including quartz, feldspars, and mica
and a small amount of clay minerals, such as chamosite and
clinochlore. The upper part (0–40 cm; 1945–2018 A.D.) is still
dominated by detrital minerals but is characterized by various
carbonates, including monohydrocalcite, calcite, and dolomite
and a small amount of halite. In this part, the average content of
carbonates is 9.5%, with two higher phases for 29–36 cm
(1955–1968 A.D.) with a value 11% and 0–16 cm (1998–2018
A.D.) with a value 13%. In carbonates, monohydrocalcite is
predominant, with a maximum content of 26% (Figure 4).

DISCUSSION

Core Chronology
The 137Cs activity versus depth shows no tailing effect, indicating
that the vertical migration of 137Cs can be neglected in Sayinwusu
Lake (Audry et al., 2004). The first appearance of 137Cs activity at
a depth of 36 cm can be dated to the early 1950s (most likely 1952
A.D.) (Jin et al., 2010; Liu et al., 2012). The peak of 137Cs activity
at a depth of 30 cm is assigned to the maximum atmospheric
global fallout corresponding to 1963 A.D. (Robbins and
Edgington, 1975). The CRS dating model suggests an age of
1968 (+11/−16) A.D. at 30 cm and an age of 1955 (+16/−33) A.D.
at 36 cm (Figure 2B). The 137 Cs dating yields ages of 1955 A.D. at
36 cm and 1963 A.D. at 30 cm, which is in general agreement with
the 210Pb dates. However, the Chernobyl accident in 1986 A.D. is
not identified in the studied core, similar to other lacustrine
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TABLE 1 | Measured results and standard errors (2σ) for 210Pb and 137Cs dating.

Sample ID Depth
(cm)

Mass depth
(g/cm2)

137Cs
(Bq/kg)

Errors
(± 2σ)

210Pbex

(Bq/kg)
Errors
(± 2σ)

226Ra
(Bq/kg)

210PbT

(Bq/kg)

SY-2-2 2 0.43 8.52 2.65 253.39 22.60 42.84 296.23
SY-2-4 4 1.21 3.54 1.85 221.00 20.43 35.51 256.51
SY-2-6 6 2.31 2.40 1.22 159.48 12.85 36.30 195.78
SY-2-8 8 3.61 3.22 1.90 148.99 12.04 30.84 179.83
SY-2-10 10 4.96 3.05 2.45 99.54 10.33 32.96 132.50
SY-2-12 12 6.65 5.01 2.84 106.84 10.24 45.12 151.96
SY-2-14 14 7.99 10.88 3.10 54.84 7.67 44.89 99.73
SY-2-16 16 9.29 7.40 2.40 69.47 8.26 44.03 113.49
SY-2-18 18 10.73 5.08 2.14 107.76 10.22 42.91 150.67
SY-2-20 20 11.95 14.91 3.75 74.20 9.65 58.19 132.40
SY-2-22 22 13.53 4.07 1.66 97.94 10.36 35.01 132.96
SY-2-24 24 14.88 14.81 2.78 67.85 8.49 54.98 122.84
SY-2-26 26 16.33 8.09 2.44 78.36 8.69 59.72 138.09
SY-2-28 28 18.03 10.46 2.80 59.49 8.03 43.05 102.54
SY-2-30 30 19.70 18.47 3.51 62.64 8.80 48.31 110.95
SY-2-32 32 21.23 10.54 3.06 38.47 5.05 32.64 71.11
SY-2-34 34 23.02 4.28 1.73 23.32 4.20 34.76 58.07
SY-2-36 36 24.92 1.83 1.41 34.64 5.11 33.92 68.55
SY-2-38 38 26.95 0.00 — 85.83 10.66 34.89 120.72
SY-2-40 40 29.01 0.00 — 14.32 2.87 34.51 48.83
SY-2-42 42 31.91 0.00 — 7.62 2.49 40.44 48.06
SY-2-44 44 34.99 0.00 — 13.15 3.01 35.24 48.38
SY-2-46 46 38.28 0.00 — 12.18 3.33 32.28 44.47
SY-2-48 48 41.92 0.00 — 5.74 2.12 51.04 56.78
SY-2-50 50 45.36 0.00 — 6.74 2.50 41.85 48.60

FIGURE 2 | Age model for sediment core SY-2. (A) 137Cs and excess 210Pb (210Pbex) activity versus depth. (B) Age-depth relation from 210Pb and 137Cs dating.
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sediment records in China and Japan, because of its small impact
on 137Cs activity in these areas (Liu et al., 2012; Zhang et al.,
2012).

Based on the CRS dating model, the sedimentation rate
decreases below 36 cm (Figure 2B). Clearly, this fact does not
accord with the lacustrine sedimentary characteristics, which
indicates that the chronology of the 210Pb CRS dating model is
not reliable in the lower part of the sediment core (> 36 cm, before
1952 A.D.). Considering that: 1) there is no surface runoff
recharge to the lakes in the BJD, and more than 90% of the
lake recharge depends on groundwater (Dong et al., 2016; Wang
et al., 2016); 2) although the lake sediments are from the
surrounding aeolian sand, most of the aeolian sand was
transported to the lake shore by saltation and creep (Wang
et al., 2018), and sand from the shores is eroded by waves and
then distributed in the lake (Li et al., 2018); 3) the locations of
lakes andmega-dunes are relatively fixed (Yang et al., 2011;Wang
et al., 2016); 4) human and animal activities are limited in the
desert, so the lake sediment sequence is considered as formed
continuously; 5) the 210Pb and 137Cs dating of adjacent lakes
indicate that the sediment accumulation rates were relatively
stable in the last century (Herzschuh et al., 2006; Liu et al., 2016);
and 6) the average content of carbonate is only 9.5% in the upper

part of the sediment core SY-2, which has a limited effect on the
deposition rate. Therefore, the age of lower sediments (> 36 cm)
can be dated by the average mass accumulation rate and that of
the upper sediments (< 36 cm) can be determined by the CRS
dating model. Finally, the obtained results show that the sediment
core covers a period of ∼1880–2018 A.D. and that the average
sedimentation rate of the upper sediments is 0.57 (+0.19/−0.20)
cm/a by CRS age model, which is consistent with those of other
lakes in the BJD (Liu et al., 2016).

Proxy Interpretation
TOC, TN, and C/N
The C/N ratios of sediment core SY-2 are less than 10, with an
average of 6.25, indicating that the organic matter of these
sediments is autochthonous, which is consistent with results
from other lakes in the BJD (Dong et al., 2018). The lack of a
relationship between TOC and C/N (Figure 5A) also suggests
that the organic matter of these sediments is autochthonous and
reflects primary productivity (Lu and An, 2010). Due to the high
salinity, no fish are found in the lake, and no animals, such as
camels, drink the lake water. In addition, the administrative
region of Alxa Right Banner was established in 1961. Due to
government policies and the improvement of living conditions,
most herders moved away from the desert in the last 20 or
30 years (based on communications with local herders).
Therefore, grazing and local people have little effect on
primary productivity. The TOC content reflects primary
productivity, which mostly includes endogenous plants in the
lake, such as algae and aquatic plants (Kai et al., 2019).

The significant positive relationship between TOC and TN
(R2 � 0.98, p < 0.001; Figure 5B) observed for SY-2 core
sediments suggests that TOC and TN are mainly
autochthonous in the lake and that inorganic nitrogen from
terrestrial materials is negligible (∼0.05%) (e.g., Liu et al.,
2009). Changes in TN indicate the nutritional status of the
lake, which is strongly subject to changes in water
temperature. Water temperature not only affects the change in
TN but also directly and significantly affects the growth of
plankton in lakes, thus changing the content of endogenous
organic carbon (Lu and An, 2010). Therefore, the significant
positive relationship between TOC and TN indicates that higher
values of TOC and TN represent higher primary productivity and
higher temperatures.

Mineralogy
For the lakes in the hinterland of the BJD, the lacustrine
sediments were mainly from the aeolian deposits around the
lakes (Li et al., 2018). The mineral compositions of surface
sediments in lakes show that detrital minerals compose more
than 90% and that the saline minerals in lakes are autochthonous
(Suhui et al., 2015).

Authigenic carbonate deposition is related to many factors,
such as temperature, salinity, and primary productivity within
lakes (Kelts and Hsü, 1978; Tucker and Wright, 1990). In this
study, the contents of organic matter and carbonate increased
almost simultaneously. Due to the increased productivity, more
CO2 (aq) assimilation occurs by thriving algae photosynthesis

FIGURE 3 | TOC and TN contents and the C/N ratios in sediment core
SY-2.
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(Opitz et al., 2012), leading to supersaturation of CO3
2−, and

promoting the deposition of carbonates via the reaction 2HCO3
−

→ CO2 (aq) + H2O + CO3
2− (Kelts and Hsü, 1978; Zhang et al.,

2010). However, in the studied lake, the TOC and TN contents
are very low, with average values of 0.77 and 0.13% in the
1950–2018 periods, respectively. This indicated that the
primary productivity is very low compared to other lakes,
such as Qinghai Lake (Chen et al., 2021) and Bosten Lake
(Zhang et al., 2010). Therefore, the primary productivity may
be minimal for carbonate precipitation.

Many previous studies suggest that salinity is the most
important factor for carbonate precipitation in arid areas
(Qiang et al., 2005; Wang et al., 2013; Li et al., 2016). The
mineral composition of the surface sediments of the lakes in
the BJD also indicated that the saline mineralogical composition
and content in lake sediments vary with lake water salinity (Suhui
et al., 2015). In core SY-2, the saline minerals are mainly
carbonates, including monohydrocalcite, calcite, and dolomite.
In the natural environment, monohydrocalcite is predominantly
found in water with a high Mg/Ca ratio (high salinity) (Han et al.,

FIGURE 4 | Variations in mineral composition in core SY-2 from the BJD.

FIGURE 5 | Relationships of TOC content with C/N ratio and TN content in the SY-2 core.
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2020), such as in the limestone of Ikka Fjord, Greenland (Mg/Ca
> 5) (Dahl and Buchardt, 2006); Manito Lake sediments, Canada
(Mg/Ca > 40) (Last, 2001); and Namco Lake sediments, Tibet
(Mg/Ca > 10) (Li et al., 2009). High salinity, high Mg/Ca ratio,
and high alkalinity in lake water facilitate the precipitation of
dolomite (i.e., environments with high evaporation intensity)
(Deckker and Last, 1988), and dolomite has also been
considered an evaporative salt mineral in some studies (Qiang
et al., 2005). Therefore, the carbonate content is regarded as an
indicator of salinity in studies of lake change (Qiang et al., 2005;
Wang et al., 2013).

Lake Evolution and Local Climate Records
Over the Past 140 Years
Based on the TOC, TN, and carbonate mineral contents, the
evolution of Sayinwusu Lake since 1880 can be divided into two
periods. The first period dates from 1880 to 1950 (86–43 cm).
During this period, the low contents of TOC and TN and
predominantly detrital mineral composition indicate that the
lake primary productivity and salinity were low (Figures
6A,B). The second period represents the time from 1950 to
2018 (above 43 cm). The contents of TOC, TN, and carbonate
minerals increased rapidly at the beginning of the 1950s,
indicating that the primary productivity and salinity of the

lake increased (Figures 6A,B). Meanwhile, the simultaneous
increases in TOC, TN, and carbonate minerals suggest an
increase in regional temperature and evaporation effects.
During the second period, the TOC, TN, and carbonate
minerals were higher during 1955–1968 and 1998–2018,
indicating relatively high temperatures and evaporation effects.

Due to the special geographical conditions, there have been a
few studies on the reconstruction of regional climate and
environment during the last several 100 years. A palynological
study of Baoritaolegai Lake sediments in the southeastern BJD
over the last 160 years identified three dry periods: the mid 1870s
to the beginning of the 1900s, the beginning of the 1920s to the
late 1930s, and the beginning of the 1960s to the present
(Herzschuh et al., 2006). The tree rings of the shrub
(Zygophyllum xanthoxylum Maxim) were affected by
precipitation during the last 160 years, and three dry phases
were identified: 1840s to early 1850s, early 1890s–1900s, and
late 1970s to mid 1980s (Xiao et al., 2012). However, the salinity
changes from the lake sediment archives in this study do not agree
well with the climatic records of tree rings and palynology in the
desert hinterland. There are two possible reasons for the
differences. One explanation is that the local precipitation in
the desert could not sustain the lakes (Ma et al., 2014). The lakes
in the desert area are mainly recharged by groundwater, and the
recharge source is from adjacent areas and/or other areas (e.g.,

FIGURE 6 | TOC and carbonate contents of the SY-2 sedimentary core and comparisons with other regional climate records. (A)-(B) The TOC and carbonate
contents of the SY-2 sedimentary core in this study. (C)Reconstruction of precipitation at the southern margin of the BJD (Zhang et al., 2015). (D) Temperature changes
in Northwest China (Ding, 2010). (E) Recharge rate of the BJD (Gates et al., 2008b). (F) Solar activity (Muscheler et al., 2007).
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Chen et al., 2004; Ma and Edmunds, 2006; Gates et al., 2008a;
Shao et al., 2012; Dong et al., 2016; Wang et al., 2016). Similar to
the groundwater recharge lakes in the Sahara Desert, lake
evolution has little relevance in terms of the local climate but
much pertinence regarding changes in groundwater recharge
(Creutz et al., 2016). The other explanation is that the climate
records of vegetation in the hinterland of the desert reflect
precipitation before and during the vegetation growing season,
especially the summer (Xiao et al., 2012). The hydrogen and
oxygen isotopes of modern precipitation show that the
precipitation in the desert is mainly from westerly moisture
and that part of the summer is affected by the East Asian
summer monsoon (Cao et al., 2020). Therefore, the climate
reconstructed by vegetation records in desert areas is a mixed
signal of westerly moisture and East Asian summer monsoon
precipitation. Consequently, it is reasonable that there is no
significant relationship between lake evolution and local
precipitation in the BJD.

The Factors Influencing Lake Evolution
In this study, the simultaneous increases in TOC and TN contents
indicate that the regional temperature rose at the beginning of the
1950s. Research integrating ice cores, stalagmites, and lake
records reveals that the temperature of Northwest China
warmed rapidly at the beginning of the 1950s (Figure 6D;
Ding, 2010), which is consistent with the rapid warming trend
in China (Ge et al., 2015). With rising temperatures, precipitation
in the arid region of Northwest China has increased in recent
decades (Chen et al., 2020; Liu et al., 2021). The reconstructed
precipitation from tree rings shows that the annual precipitation
began to increase at the beginning of the 1950s on the southern
margin of the desert and the northeastern Tibetan Plateau
(Figure 6C; Yang et al., 2010; Yang et al., 2014; Zhang et al.,
2015; Liu et al., 2021). Although the recharge source of
groundwater in the BJD is still controversial, previous studies
have suggested that it is mainly the mountain areas in the
southern BJD and/or the northern Tibetan Plateau (Chen
et al., 2004; Ma and Edmunds, 2006; Gates et al., 2008a; Gates
et al., 2008b; Dong et al., 2016). Therefore, the precipitation in
recharge source areas has increased in recent decades. The
recharge rate of groundwater in the southeastern BJD shows a
high value after 1950 A.D. (Gates et al., 2008b), which indicates
that the groundwater recharge amount of the lakes in the BJD
increased (Figure 6E).

Although precipitation is important for lake evolution,
evaporation is also an important control on the water balance,
especially in arid and semiarid regions (Wu et al., 2020). Modern
observations suggest that the evaporation of lakes is closely
correlated with air temperature and water temperature in the
BJD (Han et al., 2018). Due to the warm island effect of lakes in
the BJD, the annual temperature in the lake group region is
approximately 1.6°C higher than those in other regions (Liang
et al., 2020), which may cause a more intense evaporation effect.
When the enhancement of the evaporation effect caused by the
temperature rise is much greater than the increased precipitation,
the effective moisture decreases (Li et al., 2016; Wu et al., 2020).
The salinization of lakes in the BJD at the beginning of the 1950s

and the increased temperature simultaneously suggest that the
increase in evaporation induced by the temperature rise was
greater than that in groundwater recharge (Li et al., 2016; Wu
et al., 2020). Wind speed is another important factor for
evaporation. Due to the high sand mountains, the wind speed
is low in the hinterland of the BJD (Ma and Wang, 2016). The
carbonate content has no obvious relationship with the wind
speed in the last 60 years but has good consistency with the
temperature changes (Figure 7). This phenomenon is consistent
with modern instrumental observations (Han et al., 2018).

Regionally, tree-ring records suggest that the last dry period
was from the beginning of the 1950s to the present in the Hexi
Corridor (Deng et al., 2017). In the long term, the drought periods
in the Hexi Corridor tend to coincide with solar activity, which
may be a possible external driving factor (Figure 6F; Muscheler
et al., 2007; Deng et al., 2017). Several lakes in the northeastern
Tibetan Plateau have also shown salinization resulting from high
temperatures in recent decades, such as Hala Lake (Cao et al.,
2007), Sugan Lake (Chen et al., 2009), and Qinghai Lake (Zhang
et al., 2004). Furthermore, dry basins or shrinking lakes in the
geological period also occurred under the high temperature and
precipitation climate in the northeastern Tibetan Plateau and
Hexi Corridor (Liu et al., 2013;Wang et al., 2014;Wu et al., 2020).
Therefore, for other areas of the world, although there are
differences in the timing of temperature increases, they all lead
to droughts and extreme events (Hegerl et al., 2018; Neukom
et al., 2019; Woolway et al., 2020; Che et al., 2021).

In the context of global warming (Neukom et al., 2019), lake
surface water temperatures have increased worldwide at a global

FIGURE 7 | Relationships between the carbonate contents of the SY-2
core (A) and the annual average temperature (B) and wind speed (C) during
1960–2017.
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average rate of 0.34°C decade−1, and global annual mean lake
evaporation rates are forecast to increase 16% by 2,100 relative to
2006–2015 (Woolway et al., 2020). Arid zones are more sensitive
than other areas to temperature changes during global climate
change, especially desert areas (Chen et al., 2015; Huang et al.,
2016; Liang et al., 2020). Remote sensing data show that the lake
areas in the BJD and central Asia have decreased in recent
decades (Zhang et al., 2013; Che et al., 2021). With ongoing
global warming, our results suggest that lakes in arid areas,
especially in desert areas, will become increasingly salty, and
this issue should have been addressed earlier.

CONCLUSION
210Pb and 137Cs dating, TOC, TN, and mineral content analysis
were used to reconstruct the lake hydrological changes during the
past 140 years. From 1880 to 1950, the primary productivity and
salinity of Sayinwusu Lake were low. From 1950 to 2018, the
TOC, TN, and carbonate minerals increased rapidly at the
beginning of the 1950s, indicating that the primary
productivity and salinity of the lake increased.

At the beginning of the 1950s, the TOC and TN contents
increased synchronously, indicating increases in primary
productivity and temperature. Regional climate reconstruction
data also suggest that precipitation and temperature have
increased in recent decades. However, the enhancement of the
evaporation effect caused by the temperature rise is much greater
than the increased precipitation in arid areas, especially in
desert areas.
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