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Shale oil is a vital alternative energy source for oil and gas and has recently received an
extensive attention. Characterization of the shale oil content provides an important guiding
significance for resource potential evaluation, sweet spot prediction, and development of
shale oil. In this paper, the mechanism, evaluation and influencing factors of oil retention in
shales are reviewed. Oil is retained in shales through adsorption and swelling of kerogen,
adsorption onto minerals and storage in shale pores. Quite a few methods are developed
for oil content evaluation, such as three-dimensional fluorescence quantitation, two-
dimensional nuclear magnetic resonance (2D NMR), solvent extraction, pyrolysis,
multiple extraction-multiple pyrolysis-multiple chromatography, logging calculation,
statistical regression, pyrolysis simulation experiment, and mass balance calculation.
However, the limitations of these methods represent a challenge in practical
applications. On this basis, the influencing factors of the oil retention are summarized
from the microscale to the macroscale. The oil retention capacity is comprehensively
controlled by organic matter abundance, type and maturity, mineral composition and
diagenesis, oil storage space, shale thickness, and preservation conditions. Finally, oil
mobility evaluation methods are introduced, mainly including the multitemperature
pyrolysis, 2D NMR, and adsorption-swelling experiment, and the influencing factors of
movable shale oil are briefly discussed. The aim of this paper is to deepen the
understanding of shale oil evaluation and provide a basis for further research.
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INTRODUCTION

Compared to conventional petroleum systems, shale strata exhibit the characteristics of low porosity
and ultralow permeability, and shale oil and gas have received insufficient attention for a long time
due to the great difficulty of exploitation (Jarvie, 2012; Chen L. et al., 2019b; Soeder and Borglum,
2019). However, in recent years, with the progress of horizontal drilling, multistage hydraulic
fracturing and other engineering techniques, shale oil and gas have become resources with an
appreciable development potential (Wang et al., 2015a; Kumar et al., 2017; Zou et al., 2017; Zhao
et al., 2018; Chen L. et al., 2019b; Ghanizadeh et al., 2020; Chen et al., 2021). The large-scale
development of shale oil in the Permian Basin, Gulf Basin and Williston Basin has provided a new
perspective for oil exploration and development (Bai et al., 2020). In 2019, the proven reserves in key
shale oil exploration areas in the United States reached 232.40 × 108 bbl, shale oil production yielded
22.78 × 108 bbl (US Energy Information Administration, 2021), and shale oil exploitation is
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conducive to energy security and economic growth (Soeder and
Borglum, 2020; Solarin, 2020). Russia, Argentina, Canada and
other countries also possess a colossal shale oil resource
potential, with recoverable shale oil resources of 746 × 108 bbl,
270 × 108 bbl, and 88× 108 bbl, respectively (US Energy Information
Administration, 2015). Inspired by the success of shale oil
exploitation in the United States, these countries have launched
shale oil exploration and development projects. The daily output
of shale oil in Canada and Argentina is approximately 40 × 104 bbl/d
and 5 × 104 bbl/d, respectively (Yang and Jin, 2019), the shale oil
contained in the Mesozoic Bazhenov-Abalak Formations has been
experimentally exploited in Russia, and the average horizontal well
production reached 55.13 bbl/d in 2016 (Liang et al., 2019).

China contains abundant shale oil resources, the geological
resources are estimated to be 27195 × 108 bbl (Yang et al., 2019),
and the recoverable reserves of shale oil are 367.5 × 108 bbl (Zou
et al., 2019b).With the deepening of petroleum exploration, shale oil
has been found in the Ordos, Sichuan, Bohai Bay, Songliao, Junggar,
Santanghu and other petroliferous basins, and notable exploration
production has been documented from the Permian Lucaogou
Formation in the Junggar Basin and Santanghu Basin, the
Triassic Yanchang Formation in the Ordos Basin, the Cretaceous
Qingshankou Formation in the Songliao Basin and the Paleogene
Kongdian Formation in the Bohai Bay Basin (Wang et al., 2019a;
Yang et al., 2019; Zhao W. Z. et al., 2020; Hu et al., 2020).

In recent years, an increasing number of studies on shales has
been performed on their evolution of hydrocarbon generation,
retention and expulsion (Shao et al., 2020; Song et al., 2021a; Sun
J. et al., 2021; Hou et al., 2021b; Song et al., 2021b; Stockhausen
et al., 2021), oil retention mechanism (Ritter, 2003; Tian et al.,
2014; Li et al., 2016; Qiu et al., 2016; Han et al., 2017; Tian et al.,
2017; Hou et al., 2020), influencing factors of shale oil enrichment

(Han et al., 2015; Zou et al., 2019a; Sun et al., 2019; Chen et al.,
2020; Zhao X. Z. et al., 2020; Milliken et al., 2021) and geological
evaluation (Lu et al., 2012; Kumar et al., 2017; Hu et al., 2018;
Qian et al., 2018; Wang et al., 2019b; Yang and Zou, 2019; Li J. B.
et al., 2020b; Wang B. Y. et al., 2021). Literatures on shale oil are
increasing year by year, shale oil has become a hot topic, and
Chinese scholars have carried out much shale oil research work
and achieved outstanding contributions (Figure 1).

In contrast to conventional petroleum systems (oil migrates from
source rocks to high-porosity reservoirs), shale oil is directly produced
from shale strata and its associated fine-grained or organic-lean
interlayers (Wang et al., 2019a). The more hydrocarbons are
generated and retained, the higher the shale oil exploration
potential (Wang E. Z. et al., 2021). Therefore, it is urgent to
understand the oil and movable oil retained in shales. Although
there have been many studies on shale oil, there is a lack of systematic
investigation and summary on the mechanism of oil retention in
shales and the influencing factors of oil-bearing properties.

Starting from the mechanism of shale oil retention, this paper
compares various methods to quantify the total oil content in shales,
summarizes its influencing factors frommicrocosmic tomacroscopic
perspectives, and then examines some available methods to estimate
the movable oil in shales and discuss its influencing factors. It is
anticipant that this paper could deepen the understanding of shale oil
geology and provide a theoretical basis for shale oil resource
evaluation and favorable exploration area prediction.

RETENTION MECHANISM OF SHALE OIL

Organic-rich shales were generally considered as source rocks in
conventional petroleum systems. The relative research has

FIGURE 1 | Statistical histogram of literature on shale oil research. The data of English articles come from ScienceDirect, the blue column represents total data, the
red column represents researchers from Chinese research institutions, and the data of Chinese articles (orange column) comes from CNKI. The search methods are all
through title, abstract and keywords.
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focused on the mechanism (Tissot andWelte, 1984; Huang, 1996;
Kelemen et al., 2006; Zhang et al., 2006; Zhang et al., 2011; Wang
et al., 2012; Liu et al., 2015; Spigolon et al., 2015; Nie et al., 2016;
Burnham, 2017), characteristics, evaluation (Chen et al., 2004;
Pang et al., 2005; Han et al., 2015; Hadad et al., 2017; Li J. et al.,
2018; Wang et al., 2020), and influencing factors of petroleum
generation and expulsion (Lewan and Stephanie, 2011; Eseme
et al., 2012; Chen et al., 2014; Ma et al., 2016; Su et al., 2020;
Stockhausen et al., 2021). With increasing attention given to shale
oil exploration and development, research on the mechanism and
influencing factors of oil retention in shales has gradually become
another focus (Zou et al., 2019a; Zhao X. Z. et al., 2020; Shao et al.,
2020; Hou et al., 2021b; Sun J. et al., 2021).

There may be a sizable capillary pressure causing oil to be
drawn into and become stored in kerogen (Alfi et al., 2014). The
dissolution of oil in kerogen causes kerogen volume expansion,
which is similar to the swelling of organic polymers (Sandvik
et al., 1992). The kerogen contained in an organic-rich shale
exhibits a high cross-link density, and hydrogen bonds do not
play a significant role in the intermolecular bonds of the network
(Larsen and Shang, 1994; Larsen and Shang, 1997; Larsen et al.,
2002; Ertas et al., 2006). The kerogen swelling behavior is
controlled by the available free volume of kerogen and the size
and shape of the adsorbed molecules (Stainforth, 2009). When
hydrocarbon molecules are dissolved in kerogen, the interaction
between the molecules and kerogen decreases, and the kerogen
volume increases. Previous studies indicated that various solvents
impose different swelling effects on kerogen (Larsen and Shang,
1997; Ritter, 2003). Therefore, as a multicomponent mixture, the
swelling capacity of liquid petroleum depends on the contribution
of each component (Pathak et al., 2017). Moreover, kerogen
absorbs different components according to its preference, and
oil components with similar values of Hildebrand parameter (δ)
are more easily absorbed by kerogen (Ritter, 2003; Wei et al.,
2012). The influence of kerogen swelling on the oil retention
capacity of shales cannot be ignored. The swelling capacity of
different types of kerogen varies. Tian et al. (2014) calculated that
the swelling capacities of type I, II1 and II2 kerogens (Ro � 0.5%)
are 141.7, 119.2, and 94.9 mg hydrocarbons/g TOC, respectively.
Adsorption of kerogen is an important retention mode of oil
(pepper, 1991), in which active kerogen provides the most active
adsorption sites (Han et al., 2015). Kerogen in shale can absorb oil
on the basis of satisfying the swelling effect of oil (Tian et al.,
2014), with the increase of maturity, the specific surface area of
kerogen gradually change and are capable of adsorbing
hydrocarbons on their surface (Zhang S. J. et al., 2020). Tian
et al. (2020) calculated that the adsorbed oil and the specific
surface area of kerogen increased first and then decreased, the
adsorbed oil content reaches its peak at Ro � 1.0%.

The shale is dominated by nanosized pore system, therefore,
the interaction of fluids and pores is prominent, in other words,
the influence of the adsorption of mineral particles on shale oil
retention is of importance (Liu and Zhang, 2019; Wu et al., 2021).
Generally, the adsorption between oil and mineral surfaces is
attributed to physical interactions (such as van der Waals forces,
and hydrogen bonds) or chemical interactions (Yusupova et al.,
2002; Dudášová et al., 2008; Cui and Cheng, 2017; Cao et al.,

2020). According to hydrocarbon-solution adsorption tests, it is
believed that the asphaltene adsorption capacity of feldspar
(7.0 mg/g) is higher than that of quartz (4.5 mg/g), which is
related to differences in the crystal structure and chemical
composition between quartz and feldspar (Ribeiro et al., 2009).
The maximum adsorption capacity of calcite for extracted shale
oil-asphaltene reaches only 2.16 mg/g (Mohammadi and Sedighi,
2013), and the adsorption capacity is relatively low, which may be
related to the fact that calcite (a neutral mineral) generally
exhibits no electric charge (Zhang et al., 2015). Among
inorganic mineral components, clay minerals provide the main
adsorption surfaces for shale oil (Li et al., 2016; Ning et al.,
2020).Due to the difference in cation substitution mechanism,
charge and layer charge among clay minerals, the adsorption
capacity of various clay minerals or even different surfaces within
the same clay minerals for oil is different: 1) Al3+ in the
montmorillonite crystal layer is replaced by divalent cations to
generate a negative charge, which can attract Ca2+ or Na+, while
Si4+ ions in the illite crystal layer are located on the lattice surface,
and the negative charge due to Al3+ substitution generates a
greater attraction force to K+ so that illite can adsorb more
negative organic macromolecules (Zhang et al., 2015); 2)
kaolinite with an octahedral-tetrahedral structure, which is
different from that of other clay minerals, contains oil-wet
silicate surfaces and water-wet alumina surfaces, and the
adsorption capacity of oil components per unit area is 2.47
and 1.44 mg/m2, respectively (Tian et al., 2018). Moreover,
different types of clay minerals have various specific surface
areas, which may also affect adsorbed oil content (Zhu et al.,
2012). However, Li et al. (2016) obtained the oil adsorption
capacity of clay minerals (18 mg/g), quartz (3 mg/g) and
carbonate minerals (1.8 mg/g) based on oil adsorption
experiments of shale minerals. Compared to the adsorption
capacity of kerogen, the oil adsorption capacity of these
minerals may not be dominant in organic-rich shales. Zhao
et al. (2019) reported that only 5–10% of hydrocarbons are
adsorbed onto the surface of mineral particles. Considering the
water-bearing capacity of shale reservoirs, the oil adsorption
capacity in the water-bearing state is mainly controlled by
kerogen (the remaining oil per unit of TOC is approximately
179 mg/g), which may be related to the hydrophilicity of mineral
particles in shales (Wang et al., 2019b).

Nano- and micron-sized pores and microfractures are widely
developed in shale oil reservoirs, constituting the reservoir space of
shale oil (Zou et al., 2013; Su et al., 2018; Jin et al., 2021). The
occurrence states of shale oil in pores of different scales are distinct.
Free oil occurs in microfractures (Cui and Cheng, 2017; Song et al.,
2020) and large pores (for example, the threshold of free oil
enrichment is 30 nm, based on Liu H. M. et al. (2019), such as
intergranular, intergranular and dissolution pores. The oil contained
in smaller nanoscale pores coexists in the free and adsorption states
(Wang et al., 2015a). With decreasing pore size, the oil in pores
increasingly exhibits the adsorption state (for example, the threshold
is 5 nm, based on Wang et al. (2019b)).

For a sum up from above discussion, the swelling of kerogen,
adsorption of kerogen and mineral particles, and pore and fracture
storage are the critical reasons for shale oil retention (Figure 2).
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EVALUATIONOFRETAINEDOIL IN SHALES

Oil content in shales is one of the key indexes to evaluate shale oil
enrichment. The characterization and evaluation of the shale oil
content involve various methods, including the three-dimensional
quantitative fluorescence method, two-dimensional nuclear
magnetic resonance (2D NMR) method, extraction method,
pyrolysis method, multiple extraction-multiple pyrolysis-multiple
chromatography method, logging calculation method, statistical
regression method, pyrolysis simulation experiment method and
material balance method. These methods exhibit distinct
characteristics (Table 1). The three methods of the pyrolysis,
thermal simulation experiment and material balance will be
futher presented, which are commonly adopted to evaluate the
shale oil conten based on geochemical data.

Pyrolysis Method
The free hydrocarbon content (S1) based on Rock-Eval pyrolysis is
considered to determine the oil content in shales quickly. However,
light hydrocarbon losses inevitably occur in the sampling and
experimental processes (Jarvie, 2012; Jarvie, 2014). The heavy
components present in kerogen, micropores and disconnected pore
systems in the adsorption state can only be released at higher
temperatures or when the pyrolysis temperature of organic matter
is reached (Jarvie, 2012; Li M. W. et al., 2020). Zink et al. (2016)
proposed that the amount of extractable S2 component is
2.2–3.6 times the measured S1 amount, and if this part of high-
carbon number alkanes and aromatic hydrocarbons is ignored, the
shale retained oil content is much underestimated. Jarvie (2012)
pointed out that the oil content can be obtained according to S1
and S2 before and after extraction as presented in Eq. 1. It formed tha
basis to calculate the shale oil content.

Han et al. (2015) found that the extracted S1 (S1x) component
mainly comprised the extraction solvent, which suggested that the
amount of shale oil should be the sum of the S1 before and the S2
difference before and after extraction.However, LiM.W. et al. (2018)
reported that S1x might be isolated hydrocarbons in nanopores,
which could be regarded as part of the adsorbed hydrocarbons. In
order to describe the oil content of shales more accurately, some
improved pyrolysis methods have been applied (Jiang Q. G. et al.,
2016; Abrams et al., 2017; Romero-Sarmiento, 2019; Gentzis et al.,
2021). These oil content evaluationmethods do not consider the light
hydrocarbon loss attributed to sample collection and preservation
and experimental operation. Cooles et al. (1986) considered that light
hydrocarbons (C14-) accounted for 35% of the total oil, but most of
these light hydrocarbons were lost. Jiang C. Q. et al. (2016) analyzed
the light hydrocarbon loss of samples via Rock-Eval analysis and
thermal desorption-gas chromatography-mass spectrometry (TD-
GC-MS)/flame ionization detection (FID) and reported that the S1
loss for organic-rich shales could reach 15% after 360 h of open
storage. Chen J. Q. et al. (2018) found that the loss rate of
hydrocarbon evaporation ranged from 11 to 89% when analyzing
the shale of the Middle Permian Lucaogou Formation in the Jimusar
Sag. Therefore, it is necessary to correct the light hydrocarbon loss for
the accurate evaluation of the shale oil content (Beti et al., 2020).
Based on light hydrocarbon loss correction, Abrams et al. (2017)
added a S1 loss term (Eq. 2) to the original oil content equation.

With increasing maturity, the light components in shales that are
easily lost in the process of core preservation and experimental analysis,
and the light hydrocarbon loss exhibits an increasing dynamic trend
(Zhu et al., 2015; Li J. B. et al., 2020b). Based on the above reasons,
according to the difference in pyrolytic hydrocarbons between sealed
freezing treatment and conventional preservation treatment (Zhu et al.,
2015), newly proposed oil formation volume factor (FVF) (Chen Z. H.

FIGURE 2 | Shale oil retention patterns. Shale oil is mainly in adsorption and free states (modified from Zou et al., 2013; Hu et al., 2021).
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TABLE 1 | An overview of determination of retained oil content in shales.

Method Operation step Parameter Characteristics Reference

Three-dimensional
quantitative fluorescence
method

Shale particles with a mass of M (g) are placed in
a solvent with a volume of V (L). The immersion
solution is collected and detected via quantitative
three-dimensional fluorescence. The
fluorescence oil concentration C (mg/L) can be
converted into the fluorescence oil content Co

(mg/g)

Co � C × Vsolvent/M The method is fast and
efficient, but the
experimental results are
affected by the particle size,
extraction time, ultrasound
assistance and calibration
curve

Liu B. et al. (2019); Qian et al.
(2020)

Two-dimensional
nuclear magnetic
resonance (2D NMR)
method

2D NMR experiments are carried out on shale
samples

The total amount of 1H
compounds multiplied by the
percentage of the adsorbed
oil and free oil signals in the
total signal

The oil and free oil contents
can be determined, but the
boundaries of the different
fluid distribution intervals are
difficult to define

Bai et al. (2019); Li J. B. et al.
(2020a)

Extraction method Chloroform
extraction
method

An amount M (g) of shale is
heated and extracted with
chloroform, and the extract is
concentrated. The content of
chloroform bitumen A is
calculated according to the
weight M1 (g) of the weighing
bottle and the weight M2 (g)
of chloroform asphalt.
Correction coefficient Ka is
calculated according to the
light hydrocarbon (C6-C14)
content in chloroform
bitumen A (K1, %), the light
hydrocarbon content in
alkanes of crude oil (K2, %),
and the alkane content in
chloroform bitumen A
(sat, %)

Total oil � chloroform
bitumen A × Ka � chloroform
bitumen A × (1 + K1) �
chloroform bitumen A × [1 +
(sat × K2)]

The experimental results are
easy to obtain, but there is a
severe loss of light
hydrocarbons (C6-C14) in the
process of sample
preparation and solvent
evaporation. The correct
result of C14- light
hydrocarbons depends on
the matching between the
components of crude oil and
chloroform bitumen A and
the thermal maturity of the
samples

Zhu et al. (2015)

Sequential
extraction
method

Shale samples are extracted
with different polar solvent
systems, including weak
polar solvents, strong polar
solvents or highly polar
solvents

Total oil � cumulative amount
of solvent extraction (mg/g
rock)

The content of shale oil in
different occurrence states
can be determined.
Sequential extraction does
not completely separate
soluble organic matter with
different occurrence states,
and the change in solvent and
extraction mode may cause a
change in experimental data

Qian et al. (2017); Zhang H.
et al. (2020)

Pyrolysis method Rock-Eval
pyrolysis
method

The amount of
thermovaporized free
hydrocarbons (S1, mg
hydrocarbons/g rock) can be
obtained by heating shale samples
in an open pyrolysis system

Total oil � S1 The experimental results are
easy to obtain, but there are
light and heavy hydrocarbon
losses

Behar et al. (2001); Lu et al.
(2012)

Single routine
Rock-Eval
experiment

The temperature threshold
(TOK) is determined by the
cumulative amplitude of shale
and solvent-extracted shale,
and cracking hydrocarbons
(S2K) and heavy
hydrocarbons (S2oil) are then
rapidly separated

Total oil � S1+ S2oil Conventional pyrolysis data
sets can be employed to
directly calculate the total oil
production based on the
temperature threshold, but
the light hydrocarbon loss
should be considered

Li J. B. et al. (2019)

Multistep on-
column thermal
extraction
method

Shale samples can be
analyzed in a multi-step
thermal extraction system to
obtain a high-resolution
thermal extraction curve, and
the thermal peak areas can
be analyzed to evaluate the
oil content

Total oil � total multistep
thermal extraction system
(MiSTE) ∑(P200°C + P250°C
+ P300°C + P350°C)

The experimental method is
inexpensive, fast and
efficient, and it can measure
the oil in place. However, the
evaluation results should be
corrected for light
hydrocarbons

Abrams et al. (2017)

(Continued on following page)
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TABLE 1 | (Continued) An overview of determination of retained oil content in shales.

Method Operation step Parameter Characteristics Reference

Multistep
pyrolysis
method

The component contents in
the different temperature
ranges are obtained via
programmed step-by-step
pyrolysis experiment

Total oil � pyrolytic
hydrocarbon peaks of
nonkerogen cracking

The method is easy to
operate, but it is difficult to
determine the heat release
temperature limit of
hydrocarbons in different
occurrence states in shale,
and it is necessary to recover
the loss of light
hydrocarbons

Jiang Q. G. et al. (2016);
Romero-Sarmiento (2019);
Ghanizadeh et al. (2020);
Gentzis et al. (2021)

Multiple extraction-
multiple pyrolysis-
multiple
chromatographic
analysis method

The total oil in shale is calculated through low-
temperature immersion of cores, multiple
extractions (dichloromethane and chloroform
solutions), multiple pyrolysis steps, and multiple
chromatographic analyses

Total oil � WO1 (amount of
C5–C7) + WO2 (amount of
C6+ and weight of the
residual evaporation solution)
+ WO3 (amount of
dichloromethane extraction)
+ WO4 (amount of
chloroform extraction) +
WO5 (hydrocarbons retained
in shale after chloroform
extraction)

The operation steps and
process of this method are
complex, but the loss of
hydrocarbons is fully
considered in this
experimental method, and
the analysis result is reliable

Hou et al. (2021a)

Logging calculation
method

Based on logging data of the resistivity and
porosity, a variable-coefficient ΔlogR model is
applied to calculate the oil content

S1 � a × ΔlogRS1 + b The data for this method are
easy to obtain, and the
model is easy to apply and
can obtain continuous oil
content analysis data.
However, the influence of the
data quality on logging
model predictions cannot be
ignored. The calculation
results must be corrected for
light hydrocarbons and/or
heavy hydrocarbons

Liu et al. (2014); Li J. B. et al.
(2020b)Chloroform bitumen A � c ×

ΔlogRA + d (a, b, c and d are
fitting coefficients of the
equation)

With the use of NMR logging and the factor
analysis method, oil saturation index (OSI) and
S1 are estimated by using the bin porosity (33 ≤
T2cutoff < 80) corresponding to hydrocarbon
production

S1NMR � (120 × bp6 + 100) ×
TOC/100

Continuous oil content
analysis data can be
obtained, but the signals of
the different fluids overlap,
and the prediction results
may contain errors

Piedrahita and Roberto
(2017)

Statistical regression
method

A regression statistical model can be established
according to the relationship between oil
retention and TOC, mineral composition and
other control factors

S1
cal � 0.320 × TOC + 0.062

× quartz
There may exist collinearity
among the control factors,
which leads to distortion of
the regression model

Han et al. (2015)

−0.007 (for the second
interval)

Thermal simulation
experiment method

Shale samples are tested via thermal simulations The oil content in shale
samples is determined
corresponding to different
temperature points

The experimental results are
intuitive, but the
experimental conditions
(whether water occurs, open
vs. closed vs. semiopen
systems, and sample
conditions) exert an impact
on the results

Peng et al. (2018); Shao et al.
(2020)

Material balance method The principle of carbon mass (component)
conservation is applied to determine the retained
oil content

Total oil � hydrocarbon
generation quantity-
hydrocarbon expulsion
quantity

The method is easy to
calculate, but its accuracy
depends on the satisfaction
of certain assumptions and
the quality of data

Pang et al. (2005); Wang E.
Z. et al. (2021)
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et al., 2019; Li M.W. et al., 2020), and hydrocarbon generation kinetics
calculations (Wang et al., 2014) consider the recovery method of S1loss
at differentmaturities, the recovery coefficient of light hydrocarbon loss
becomes larger as the maturity increases (Figure 3), which means the
light hydrocarbon calibaration is necessary in the mature and high-
mature stage of shale.

Total oil �(S1whole rock − S1 extracted rock)
+ (S2whole rock − S2 extracted rock) (1)

Total oil � (S1 whole rock − S1 extracted rock)
+ (S2 whole rock − S2 extracted rock) + S1 loss (2)

Material Balance Method
The mass of organic matter in shales that can be converted into
petroleum should be constant during thermal evolution if there is not
material exchange with the external environment. According to this
idea, Pang et al. (2005) proposed the hydrocarbon generation potential
method of rock pyrolysis, which is a statistical method based on the
principle of mass balance, to calculate the hydrocarbon generation,
retention and expulsion of shales. For a specific shale sample, its
hydrocarbon generation potential index (Qg � 100 × (S1+S2)/TOC)
should remain unchanged. The only reason for its change is
hydrocarbon expulsion. Hence, the difference between hydrocarbon
generation and expulsion is the amount of retained hydrocarbons in
the shale (Figure 4A). However, this method does not consider the
data error caused by light hydrocarbon evaporation (Chen J. Q. et al.,
2018), and does not provide a clear limit on the recovery coefficient of
the hydrocarbon generation potential.

Chen and Jiang (2016) statistically fitted an empirical model of the
hydrocarbon index (HI) and Tmax based on themeasured data of shale
samples (Eq. 3), converted this empirical relationship into the
hydrocarbon conversion rate (Tr) (Eq. 4) and further clarified the
hydrocarbon expulsion efficiency (Eq. 5). On this basis, Wang et al.
(2020) thought that S1 could be regarded as being wholly derived from
S2 via transformation, so the original hydrogen index (H0

I ) was selected
to define the maximum value of the hydrocarbon generation capacity

of the different types of kerogen, and the hydrocarbon generation,
retention and expulsion processes of shaleswere characterized, then the
shale oil resource potential can be evaluated by the hydrocarbon
retention potential (Qr) (mg HC/g TOC) (Figure 4B).

In the above previous methods, the determination of the
hydrocarbon expulsion threshold depends on the inflection
point of the hydrocarbon generation potential index, and the
determination of the hydrocarbon expulsion threshold may not
be accurate. Li C. R. et al. (2020) adopted a hydrocarbon generation
statistical model to simulate the changes in the hydrogen index and
Qg during the evolution of shales and proposed a quantifiable
hydrocarbon expulsion efficiency (Er) (Eq. 6), and shale oil
resources can be calculated by the difference between Tr and
Er, which was applied to the Qingshankou Formation in the
Songliao Basin and achieved a reasonable result (Figure 4C).

HI � H0
I
⎡⎣1 − exp

⎧⎨⎩ − (Tmax

β
)θ⎫⎬⎭⎤⎦ + c (3)

Tr � (1000/α) × (H0
I −HI)

H0
I ((1000/α) −HI) (4)

Er � 1 − s1 × (1 − Tr)
s2Tr

(5)

Er �
(1000/α) × (Qgo − Qg)
Qgo × ((1000/α) − Qg) (6)

where β and θ are variables related to the type of kerogen, c is the error
correction factor, α is the weight fraction of carbon relative to the
generated hydrocarbons, its average value is considered to be 83.3%,
Qgo(GPIo) represents the original hydrocarbon generation
potential index.

Thermal Simulation Method
Because it is challenging to collect shale sample from immature to
overmature stages, the hydrocarbon generation, retention and
expulsion evolution profiles of shales can be established through
thermal simulation experiments (Ma et al., 2018). Thermal

FIGURE 3 | Relationship between light hydrocarbon correction coefficient and maturity for shales. (A) From Li J. B. et al. (2020b); (B) from Wang et al. (2014).
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simulation systems can be divided into open, closed and semiclosed
systems, and they produce different results (Ghanizadeh et al., 2020).
Under geological conditions, petroleum generation, retention and
expulsion follow a kinetic evolution process. In a semiclosed system,
thermal simulation products are allowed to be discharged during
generation, which may be more suitable for uses of geological
evaluation (Li J. et al., 2018; Ma et al., 2018; Zhang D. W. et al., 2020).

Thermal simulation results cannot be directly applied to the
geological evaluation and prediction. According to simulation
experimental data on hydrocarbon generation in low-maturity
shales, kinetic parameters such as activation energy (Ea) and
frequency factor (A) can be obtained, and the hydrocarbon
generation, retention and expulsion characteristics of shales under
geological conditions can be obtained via extrapolation of these
parameters. A series of kinetic models of hydrocarbon generation,
such as the overall reaction model, series reaction model and parallel
reaction model, have been proposed. Wang et al. (2011) compared
different kinetic models and considered that the discretely distributed
parallel first-order kinetic model might be the most suitable model to
describe the hydrocarbon generation process. At present, it is widely
accepted that the thermal decomposition process of kerogen is similar
to a series of independent parallel first-order chemical reactions
(Wang et al., 2011; Chen et al., 2017). Although Stainforth (2009)
suggested that the assumption of independent first-order reactions
may be too simplistic, the prediction of a hydrocarbon generation
kinetics model controlled by first-order chemical kinetics seems to be
supported by actual maturity measurements (Peters et al., 2018). The
vitrinite reflectance corresponding to different temperatures can be
calculated with Easy%Ro (Sweeney and Burnham, 1990), PresRo™
(Carr, 1999), Pa%Ro (Xiao et al., 2005), Basin%Ro (Nielsen et al.,
2017) and Easy%RoDL (Peters et al., 2018) at various heating
temperature and duration, combined with thermal simulation
results, to determine the oil generation, retention and expulsion
characteristics of shales at different maturation stages.

INFLUENCING FACTORS OF OIL
RETENTION IN SHALES

Shale oil is the oil remaining in shales during oil generation
and expulsion, which is influenced by various factors. To
explore the influencing factors more clearly, we examines
the influencing factors of oil retention from the microscale
to the macroscale. Microscopically, the oil retention in TOC
per unit weight is chosen as the subject, and the influence of the
organic matter type and thermal maturity on the shale oil
content is investigated. Semimicroscopically, the research
object is the oil retention in unit rock weight and micron-to
centimeter-scale deposition structure, and the effects of
organic matter abundance, pore development and rock
mineral composition on oil retention are compared.
Macroscopically, the shale section is selected as the research
object, and the influence of the shale thickness and
preservation conditions on shale oil retention and resource
evaluation is clarified.

Restriction of Organic Matter Properties on
Oil Retention
Shales with oil potential mainly contains sapropelic organic
matter, with a kerogen type of I or II, which exhibit a high
effective organic carbon ratio and good oil generation potential
(Chen and Jiang, 2015; Ma et al., 2018; Li M. W. et al., 2019b;
Zou et al., 2019b; Zhao W. Z. et al., 2021). The kerogen type in
shales exerts apparent control over their oil-bearing properties.
Generally, type I kerogen retained more oil than type II kerogen
(Bai et al., 2017; He et al., 2019). Sun J. et al. (2021), also vertified
that the retained content of shales exhibits growing trend with
the increase of their original HI within the “oil window” stage
through thermal simulation experiments. However, some

FIGURE 4 | Hydrocarbon generation potential model of rock pyrolysis. (A)Modified from Pang et al., 2005; (B)modified fromWang et al., 2020; (C)modified from
Li C. R. et al., 2020.
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geological observations indicate that shales containing type II
kerogen may contain more considerable shale oil resources
compared to shales with type I kerogen (Li J. J. et al., 2015;
Hu et al., 2018). This may occur because the better the type of
organic matter is, the greater the hydrocarbon expulsion
amount per unit of organic carbon (Chen et al., 2014; Huang
et al., 2017; Ma et al., 2018; Sun J. et al., 2021), resulting in a
lower retainded oil content. Tian et al. (2014) analyzed shales in
the Qingshankou Formation in the northern Songliao Basin and
reported that for Ro > 0.9%, the oil content per unit mass of
TOC of type II kerogen is higher than that of type I kerogen,
which seems to be related to the faster reduction in volume of
type I kerogen per unit mass of TOC (Figure 5). In addition, a
shale containing type II kerogen exhibits a high oxygen content,
which facilitates the formation of organic acids, and the
hydrocarbon expulsion efficiency is lower than that of a shale
containing type I kerogen, thereby its shale oil content is higher
(Li J. J. et al., 2015).

The oil content in shales is relatively low at the immature stage.
Nevertheless, if the thermal maturity is too high, this leads to the
so-called secondary cracking of oil into gas in shales, and oil is not
effectively retained (Zhang P. Y. et al., 2021). Exploration
practices of shale oil revealed that the Ro value in the shale oil
palys broadly ranges from 0.5 to 1.6% (Cardott, 2012; Zhao W. Z.
et al., 2020). Maturity affects the shale oil content based on the
amount of oil generated and affects the hydrocarbon expulsion
ability according to the composition of evolution products. With
increasing thermal maturation, the density and viscosity of oil
generally decrease, which encourages the flow and expulsion of
oil (Wang et al., 2019b; Zhao W. Z. et al, 2021). The adsorption-
swelling oil amount per unit of organic carbon is negatively
correlated with increasing thermal maturity (Zhao X. Z. et al.,
2021). When the oil storage space remains fixed, this inevitably

leads to the expulsion of oil. Moreover, Panahi et al. (2019)
proposed that the formation, opening of hydrocarbon expulsion
microfractures and fluid expulsion rate are related to thermal
maturity levels based on experiments. Therefore, a moderate
degree of thermal evolution is conducive to shale oil
enrichment. Yang and Zou (2019) pointed out that the
amount of retained oil in shales with Ro values between 0.9
and 1.3% reaches a maximum (Figure 5).

Control of TOC Content, Oil Storage Space
and Mineral Composition on Oil Retention
Organic matter enrichment constitutes the basis of shale oil
accumulation, and shales with a certain shale oil potential
often exhibit a higher TOC content (Zou et al., 2013). When
the type and maturity of organic matter are fixed, the TOC
content determines the oil generation capacity of shales (Ma et al.,
2018). Although a high TOC content suggests an increase in
hydrocarbon expulsion efficiency (Sun J. et al., 2021), analysis
data from shale oil plays and thermal simulation revealed that the
TOC content is usually positively correlated with the shale oil
content (Figure 5) (Li J. et al., 2015; Han et al., 2015). Hou et al.
(2020) noted that shales with a high TOC content still yield a
notable advantage in oil retention due to their high oil generation
efficiency. An increase in TOC content also increases the content
of adsorbed oil (Cao et al., 2017; Wang et al., 2019b). In addition,
studies have demonstrated that a higher TOC content indicates
that more organic acids are produced during the hydrocarbon
generation process, which facilitates the development of
dissolution pores and recrystallized intergranular pores (Liang
et al., 2017; Hu et al., 2019) and provides essential oil storage
spaces (Zhang et al., 2016). Therefore, an increase in organic
matter abundance is conducive to shale oil enrichment. As shown

FIGURE 5 | Retention pattern of shale oil under different influence factors (modified from Tian et al., 2014; Li J. et al., 2015; Li J. et al., 2018; Yang and Zou, 2019;
Zhao X. Z. et al., 2020).
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in Figure 6A, the oil content per unit mass of rock becomes larger
as the organic matter abundance increases.

Shales comprise terrigenous detritus, clay minerals, carbonate,
pyrite and other inorganic minerals and organic matter (Chen L.
et al., 2019a). Inorganic components (clay minerals, pyrite, etc.)
affect the shale oil content through oil generation and retention
capacity. Clay minerals can influence the hydrocarbon generation
process and mechanism through a carbon ion mechanism and/or
participate in the desorption and hydrogenation/decarboxylation
of solid acids (Du et al., 2021; Song et al., 2021a). Transition group
elements such as Fe, Co and V in shales impose a catalytic effect
on organic matter hydrocarbon generation, which can generate
more oil and gas in organic-rich shales at the early burial stage (Xi
et al., 2020). Studies have shown that local cementation can
reduce the discharge of shale oil via compaction inhibition,
and carbonate minerals can react with organic acids to
increase oil storage spaces (Hu et al., 2019; Milliken et al.,
2021). Although the wettability of shale surfaces exhibits
mixed characteristics (Gao et al., 2019), clay minerals still
provide considerable oil adsorption surfaces, and the increase
in the clay mineral content is beneficial to the increase in oil
content to a certain extent (Li Z., 2020). Furthermore, laminae are
widely developed sedimentary structures in shales, representing
the directional arrangement of organic matter or inorganic
minerals. Shales containing laminae exhibit a high
hydrocarbon generation ability, and shales containing fine
laminae formed via biochemical deposition exhibit a more
pronounced hydrocarbon generation ability (Zeng et al., 2017;
Su et al., 2019). The interbedding of micron-to centimeter-scale
laminae composed of different components reflects the
microscale source-reservoir configuration of shales (Han et al.,
2021; Liu B. et al., 2021). Shales with well-developed laminae
often attain a higher oil expulsion efficiency (Wang Y. et al., 2016;
Du et al., 2019) (Figure 6B). A considerable amount of oil
migrates into feldspar-quartz laminae or carbonate laminae at
the semi-to microscale after meeting the oil retention

requirements of organic-rich laminae, resulting in relatively
high oil-bearing properties (Xi et al., 2020; Han et al., 2021).

Oil is adsorbed onto kerogen and mineral particles and occurs
in pores and fractures in shales. The development of shale pores
exerts an important control on the oil content (Li J. J. et al., 2018;
Zhao X. Z. et al., 2020) (Figure 6C). Chen G. H. et al. (2018)
reported that 80% of shale oil is distributed inmacropores. In fact,
with increasing pore size, pore volume and porosity, the oil
content in shales usually increases (Wang et al., 2019b; Song
et al., 2020; Wang B. Y. et al., 2021). Because the density of the
generated oil and gas is lighter than that of kerogen, the volume
expansion and the overpressure phenomenon occurs in shales,
resulting in the generation of oil expulsion fractures (Sun L.
D. et al., 2021). Although shale microfractures form effective oil
migration channels and oil storage spaces, when the scale of
microfractures reaches a certain extent, this may reduce the shale
oil content. Liu B. et al. (2021) pointed out that a higher fracture
density resulted in a vertical migration of shale oil, which does not
promote shale oil enrichment. Zhao X. Z. et al. (2020) indicated
that natural fracture development limited to the shale interior is
relatively favorable to the seepage and preservation of retained oil
in shales.

Influences of Shale Thickness and
Preservation Conditions on Oil Retention
The thickness of organic-rich shales macroscopically controls the
shale oil content. A thick shale, especially at its center part, does
not facilitate oil expulsion (Leythaeuser et al., 1984). It seems that
there is an effective petroleum expulsion thickness in geological
conditions, and the shale beyond the thickness would have a weak
oil expulsion (Jiang et al., 1986; Wang et al., 2005; Hou et al.,
2017). Based on the pyrolysis experiment and geological model,
Hou et al. (2017) found that the increase of the shale thickness
during the oil generation stage would significantly reduce the oil
expulsion efficiency. The thinner a single shale seam in a shale-

FIGURE 6 | (A) Relationship between oil content and TOC of organic-rich shale (data fromWangM. et al., 2015; Li X. N. et al., 2017; Hu et al., 2018; Xu et al., 2019;
Li C. R. et al., 2020). (B) relationship between lamina development and oil expulsion rate (modified from Wang Y. et al., 2016) (C) relationship between oil content and
pore volume (modified from Zhao X. Z. et al., 2020).
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sandstone interbedding stratum, the more frequent the shale-
sandstone configuration and the lower the retention of oil in the
shale (Fan and Shi, 2019), while the oil-bearing properties of the
interlayers (i.e., the sandstone seams) within the shale seams are
improved (Raji et al., 2015). Exploration practices have verified
that fault systems impart complementary control effects on both
conventional and shale reservoirs, the retained oil in the shale
may migrate to the shallow layers along the faults remaining
active, which is unfavorable for shale oil enrichment (Fu et al.,
2020; Liu B. et al., 2021). However, thick shales are not easily
broken through (Fu et al., 2018). Microfractures extending only in
the interior of a shale increase the shale oil storage space and
fluidity, which is more benefit to shale oil enrichment (Zhao X. Z.
et al., 2020). Therefore, the shale thickness plays a positive role in
the oil-bearing capacity (Fan and Shi, 2019; Zhao W. Z. et al.,
2021).

Preservation conditions are also important for shale oil
enrichment. Lin et al. (2020) calculated that the decisive
tectonic action in the Miquan area of the Junggar Basin
caused a loss of 78.9% of the original shale oil resources. A
relatively stable tectonic environment and high-quality top and
bottom seal layers of a shale seam play positive roles in the
preservation of shale oil (Liu et al., 2018; Li M. W. et al., 2019b;
Liu B. et al., 2021).

EVALUATION AND INFLUCEING FACTORS
OF MOVABLE OIL IN SHALES

Themovable oil content in shales is the key to a high yield of shale
oil (Jarvie, 2012; Li J. Q. et al., 2018; Li M. W. et al., 2019a; Li H.
et al., 2020; Hu et al., 2021). It is highly important to determine
the amount of movable oil and its influencing factors for shale oil
prediction. This section mainly introduces three feasible and
realistic methods to evaluate the shale movable oil content,
including the pyrolysis, 2D NMR and adsorption-swelling
calculation methods. In addition, the influencing factors of
movable oil in shales are also discussed.

Evaluation of Movable Oil
Pyrolysis Method
According to available empirical data of shale oil production,
Jarvie (2012) proposed the oil crossover effect, i.e., OSI > 100 mg
hydrocarbons/g TOC as the indicator of movable oil in shales
(Figure 7A). Quite a few authors have applied this standard to
evaluate movable shale oil because it eliminates the influence of
organic matter adsorption (Wang M. et al., 2015; Cao et al., 2017;
Hu et al., 2018; Zhao X. Z. et al., 2020). Zhao X. Z. et al. (2020)
indicated that the movable oil content is equal to the difference
between the amount of retained oil and the oil crossover effect
value (Figure 7B). However, the OSI method may not be fully
applicable in lacustrine shales (Xue et al., 2015; Huang et al.,
2020), and the OSI value and oil crossover effect dynamically
change with the maturity. With increasing maturity, the OSI
values gradually increase until a maximum retention capacity is
reached, and then a subsequent decrease is show (Figure 7C)
(Han et al., 2017).

The light components contained in macropores and
connected pore systems in the free state can be released at
lower temperatures. In contrast, the heavy components in
kerogen, and micropores and disconnected pore systems in the
adsorption state can only be released at higher temperatures or
when the temperature of organic matter cracking is reached
(Jiang Q. G. et al., 2016). Therefore, the amount of movable
shale oil can be evaluated by the thermally released hydrocarbon
peak obtained under the constant-heating rate mode. Maende
(2016) noted in the HAWK Petroleum Assessment Method that
the movable oil content is the sum of Oil-1, Oil-2, Oil-3 and Oil-4
(Figure 8A). Jiang Q. G. et al. (2016) and Li J. B. et al. (2020a)
considered that the thermally released hydrocarbon peak (S1-1) at
200°C could represent the actual movable oil content, and the
maximum movable oil content is the sum of S1-1 and S1-2 (at
350°C) (Figure 8B). Romero-Sarmiento (2019) proposed that
sorbed liquid hydrocarbons is adsorbed on the residual solid OM,
and thus the movable oil content of shales can be determined
according to the area difference of thermal peaks (Sh0 (at
100–200°C) and Sh1 (at 200–350°C)) of whole rock sample
and the corresponding isolated OM (Figures 8C,D). Chen Z.
H. et al. (2019) and Li M. W. et al. (2020) applied the thermally
released hydrocarbon peak (S1a) at or below 300°C to represent
the residual free hydrocarbons (Figure 8E) and believed that the
shale oil discounted by the critical saturation is not limited by
adsorption forces and nanopore bonds but exhibits fluidity (Eq.
7). Gentzis et al. (2021) thought that L1, L2 and a part of L3
represented movable oil, whereas the remaining L3 and L4
containing heavy n-alkanes, resins, asphaltenes and NSO
compounds represented immovable oil (Figure 8F). Multistep
pyrolysis method has low cost and easy operation, but it should be
pointed out that the recovery of light hydrocarbon loss is
necessary.

∅mob � { 0, S1c ≤ T̃OC
S1c − T̃OC, S1 > T̃OC

(7)

where S1c is total free hydrocarbons after light hydrocarbon
correction, T̃OC represents the amount of adsorption discount
(mg HC/g TOC), which is equivalent to the percentage content of
TOC in the sample.

NMR Method
A shale is characterized by complex porous media and multiple
fluid occurrences (oil, gas, water and kerogen). The standard T2

relaxation time distribution obtained by 1D NMR provides
limited information, and signal overlap between the different
fluids is severe (Birdwell and Washburn, 2015). Although T2-D
can be used to distinguish the fluid phase (oil, gas and water) in
shales, the solid-like organic matter signal and kerogen signal in
micro/nanopores cannot be effectively distinguished (Li J. B.
et al., 2018; Bai et al., 2019; Song and Kausik, 2019). In
contrast, 2D NMR, especially high-frequency 2D NMR, can
improve the detection ability of trace signals and can more
efficiently distinguish light oil, heavy components, kerogen,
bound water and other fluids in shales. Specifically, kerogen
(with high T1) and structural water have shorter T2 and wider
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T1, oil generally has a higher T1/T2 ratio than water (with low T1),
and the T2 value of adsorbed oil is lower than that of movable oil
(Li J. B. et al., 2018; Khatibi et al., 2019; Song and Kausik, 2019;
Zhang P. F. et al., 2020) (Figure 9A). Based on the principle that
2D NMR can effectively distinguish hydrogen nuclei of fluids in
different occurrence states, researchers have combined 2D NMR
with geochemical experiments, such as rock pyrolysis, solvent
extraction, and quantitative grain fluorescence on extract, to
comprehensively analyze the content of movable shale oil (Bai
et al., 2019; Liu B. et al., 2019; Li J. B. et al., 2020a; Gentzis et al.,
2021). For example, Li J. B. et al. (2020a) extracted organic
hydrogen T2 spectra of kerogen, adsorbed oil and free oil at
T1 intervals corresponding to the original samples, samples
pyrolyzed at 350°C and extracted samples. Their accumulative
amplitude determined the T2 cutoff values of free oil and
adsorbed oil, and a nondestructive method for the direct
evaluation of the free oil content was then provided (Figures
9B,C). However, it should be noted that the threshold value of the
T1-T2 spectrum is related to the echo interval and frequency of
the instrument itself (Nicot et al., 2016; Song and Kausik, 2019).
The temperature and state of the samples and the magnetic
minerals in shales would change the distribution of signal
response interval (Bai et al., 2019). Furthermore, it is difficult
to define the boundary of the T1/T2 ratio of movable and
nonmovable fluids, which may lead to uncertainty in movable
oil evaluation. Overall, for different testing method, they both
have advantages and limitations, for accurate desripting movable
oil content, various methods should be using synthetically.

Adsorption-swelling Calculation Method
The shale oil adsorbed onto minerals and kerogen is usually
immovable, and the movable oil content can be regarded as the
difference between the total oil content and the adsorption-

swelling oil content. Because the adsorption capacity of
kerogen is much higher than that of minerals for shale oil,
previous studies have mainly focused on the calculation of the
adsorption and swelling capacities of kerogen (Wei et al., 2012;
Tian et al., 2014), but this has caused an overestimation of the
movable oil content. Therefore, Li et al. (2016) proposed the
adsorption potential Sp model (Eq. 8) to calculate the oil
adsorption amount in shale, and the difference between Sp and
S1 is suitable within a broader range of TOC and maturity levels
(Zou et al., 2018). The adsorption-swelling oil quantity (Qa-s) can
also be calculated via molecular dynamics simulations (Eq. 9)
(Tian et al., 2017; Tian et al., 2020). The swelling capacity of
kerogen (QS) is calculated according to the shale oil density curve
for kerogen. According to the density curve and specific surface
area of shale oil in kerogen and mineral pores, the adsorbed oil
quantity (Qa) can be deduced. However, the adsorption-swelling
calculation method is primarily a simplified model of shale under
geological conditions. There may be differences between the
premise and assumed parameters and the geological
conditions, which results in insufficiently accurate calculations
of adsorption-swelling oil content. Optimization of this model is a
future research direction.

Sp � poxo + [ φ

φ0

]2/3 ∑n
i�1

pixi (8)

Qa−s � Qs + Qa � ∫
L02

Lo1

SkoρkodL + ∫
Lk1

Lk2

SkoρkodL + ∫
Lm1

Lm2

SmoρmodL (9)

where pO and xO are the proportion and adsorption capacity of
OM respectively; pi and xi are the proportion of the ith mineral
and its adsorbed oil amount respectively; po +∑n

i�1 pi � 1; φ and
φo is porosity and shale initial porosity respectively; Lo1 and Lo2

FIGURE 7 | Relationship between oil saturation index and TOC (A) (modified from Jarvie, 2012), movable oil content (B) (modified from Zhao X. Z. et al., 2020) and
maturity (C) (from Han et al., 2017).
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are the starting and ending positions of the intersection of
kerogen density curve and shale oil density curve
respectively; Lk1 and Lk2 are the starting point and end of
kerogen adsorption layer respectively; Lm1 and Lm2 are the
starting point and end of mineral component adsorption
layer respectively; Sko is the cross-sectional area of swelling
and adsorption model of shale oil in kerogen, ρko is the density
curve of shale oil, Smo is the adsorption model area of shale oil in
mineral pores, and ρmo is the density curve of shale oil in
mineral pores.

Influencing Factors of Movable Oil
Great effort has been made to explore the influencing factors of
the shale oil mobility through various means of production and

experimental analysis methods. It is recognized that occurrences
of retained oil in shales have a great influence on its fluidity.
Adsorption-swelling oil occurs in the form of high-density solid-
like or embedded kerogen on the surface of organic and inorganic
pores (Wang et al., 2015b), and it is immovable without
additional forces (Zhao X. Y. et al., 2021). The shale organic
matter abundance exerts two impacts on the shale oil mobility.
Even considering shale hydrocarbon expulsion, a high TOC is still
beneficial to an increase in the shale oil and movable oil contents
(Lu et al., 2012; Hu et al., 2021; ZhaoW. Z. et al., 2021). However,
in shales with the same oil content, an increase in the TOC
content suggests a decrease in the movable oil content (Wang
et al., 2019b). The relationship between the organic matter type
and movable oil indicates that a higher oil generating capacity per

FIGURE 8 | A schematic diagram of multi-step pyrolysis method. (A) is modified fromMaende (2016); (B) is modified from Li J. B. et al. (2020a); (C,D) are modified
from Romero-Sarmiento (2019); (E) is modified from Li M. W. et al. (2020); (F) is modified from Gentzis et al. (2021).
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unit of organic carbon means a higher movable oil content (He
et al., 2019). It has been reported that the proportion of movable
oil will increases with increasing burial depth. This phenomenon
is related to the decrease in oil viscosity and density due to
increasing temperature and light components (Wang et al.,
2019b; Scheeder et al., 2020; Zhao W. Z. et al., 2021), which is
conducive to a reduction in the oil film thickness and a relative
increase in free oil in pores with the same pore size (Liu Y. S. et al.,
2021). The increase in thermal maturity also leads to a decrease in
the adsorption and swelling capacities of kerogen (Song et al.,
2015; Wang et al., 2015b; Wang et al., 2019b). Li J. Q. et al. (2017)
reported that the decrease in adsorption capacity could be
attributed to the reduction in TOC content with increasing
maturity. Wang et al. (2015b), based on molecular dynamics
simulation analysis, proposed that with increasing maturity, the
number of carbonyl in kerogen gradually decreases, which leads
to the weakening of the adsorption capacity of kerogen for
alkanes. Zhao X. Z. et al. (2020) conducted thermal simulation
and kerogen swelling experiments on Paleogene shales obtained
from the Huanghua depression of the Bohai Bay Basin and
observed that an middle thermal maturity is the superior
evolution stage for movable oil enrichment in lacustrine shale,
which was attributed to the optimum matching of hydrocarbon
generation and organic matter adsorption-swelling.

Mineral particles and composition play specific roles in
controlling movable shale oil. Overall, although intergranular
pores can be formed among clay minerals, tiny intergranular
pores and the high surface adsorption capacity of clay minerals
hinder the storage of movable liquid hydrocarbons (Su et al.,
2018; Ning et al., 2020). The adsorption affinity of quartz and
carbonate minerals for oil is low (Raji et al., 2015; Li et al., 2016),
and the increase in their contents promotes the development of
microcracks (Ougier-Simonin et al., 2016) and the preservation of
macropores (Zhang P. L. et al., 2021), which facilitate the
occurrence of mobile liquid hydrocarbons. However, Hu et al.
(2021) analyzed the lacustrine shale of the Paleogene Shahejie

Formation in the Dongpu Sag of the Bohai Bay Basin. Their
results revealed that the movable oil content first increases and
then decreases with the content of clay minerals (25% as the
inflection point) and quartz minerals (15% as the inflection
point), which depends on the coupling effect of the mineral
content on the porosity, adsorption capacity and TOC content. In
addition, due to the petroleum fractionation effect, feldspar-
quartz or carbonate laminae interbedded with organic-rich
laminae at the microscale and interbedded shale, sandstone,
carbonate, and mixed rock layers in shale strata at the
macroscale contain more light oil components that easily flow
(Jarvie, 2014; Li J. Q. et al., 2018; Fan and Shi, 2019; Pan et al.,
2019; Liu B. et al., 2021).

Shale reservoir conditions are fundamental to the flow ability
of shale oil. Bao (2018) speculated that shales within the oil
generation window and a porosity higher than 6.5% promoted the
storage of movable oil through the relationship between the OSI
and porosity for the Paleogene shale in the Dongying Sag. The
shale pore structure is a crucial factor controlling the shale oil
mobility (Davudov et al., 2020; Jiang et al., 2020; Liu et al., 2020;
Ning et al., 2020). Zou et al., 2015 found that oil cannot flow
through pores below the lower limit of the flow threshold (20 nm)
through simulations of a nanoporous template with a controllable
pore diameter. Wang et al. (2015a), through adsorption
simulations of alkanes onto a graphene surface (oil-wet),
proposed that alkanes only flowed after exceeding the critical
pore size. Conversely, they all occurred in the adsorption state.
The pore size of shale reservoirs should exceed the flow threshold,
which is a necessary condition for movable shale oil. The
proportion of movable oil gradually increases with increasing
pore size (Zhang P. F. et al., 2020) because the pore connectivity
of macropores is higher and provides a considerable pore volume
for movable oil (Li T. W. et al., 2017; Jiang et al., 2020; Ning et al.,
2020), and the diffusion coefficient of oil increases with increasing
pore diameter (Wang H. et al., 2016; Zhang et al., 2019). When
the pore throat radius is large, the diffusion motion of

FIGURE 9 |Determination of shale movable oil and adsorbed oil according to T1-T2 spectrum (modified from Li J. B. et al., 2020a). AR is the original sample, P350 is
the sample after pyrolysis to 350°C, EX is the sample after solvent extraction, T2CF is the T2 cut-off value of movable oil, T2CA is the T2 cut-off value of adsorbed oil.
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hydrocarbon molecules of different sizes in throats is not restricted
by the diffusion energy barrier (Jiang et al., 2018). Cui and Cheng
(2017) suggested that movable shale oil was also related to the
porosity and pore size of organic pores, and themovable oil content
decreased with increasing organic porosity ratio. The porosity and
permeability of shales are low, and fractures can effectively improve
the seepage capacity of shale reservoirs (Soeder and Borglum,
2019). Microfractures in shales are conducive to increasing the
shale movable oil proportion and effective production (Song et al.,
2020). Moreover, flow experiments have demonstrated that the
shale oil fluidity is related to the fracture strength and direction, and
bedding microfractures play an essential role in shale oil migration
(Xie et al., 2019).

CONCLUSION

(1) The oil generated from organic-rich shales can be partly
retained in themselves via through adsorption and swelling of
kerogen, adsorption onto minerals and storage in pores.
These mechanisms have been applied to explain to oil
retention in shales under geological conditions, while the
relative thermal dynamics is looked forward to further
development.

(2) Quite a fewmethods have been developed to characterize and
evaluate the oil in shales. The pyrolysis, thermal simulation
experiment and material balance methods are most common
use to quantify the oil content in shales.

(3) The shale oil retention capacity is bascially controlled by the
organic matter abundance and properties (type and
maturity), mineral composition, oil storage space, shale
thickness and preservation conditions, but inconsistent

recoginitions exist, and are mainly from different scale
research. It is necessary to strengthen a comprehensive
study from the microscale to the macroscale.

(4) The study on the movable oil in shales still remains at the
exploratory stage.

Although a few method are believed to be effective to estimate
the movable oil content in shales, their limitations indicate needs
for the supplement and verification of geological data. Especially,
the influencing factors of shale movable oil are complex and
variable. More accurate evaluation parameters and correction
methods on this topic will become a research focus.
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