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Organic matter (OM), composed of various macerals, has a strong influence on the
enrichment of shale gas. Nevertheless, the connection between OM-hosted pore structure
and maceral type is not yet fully understood because of the difficulty to identify the maceral
types by traditional scanning electron microscope (SEM). Using a combination of the
reflected light microscopy, focused ion beam SEM (FIB-SEM), and Raman spectrum, three
maceral types, including alginite, graptolite, and solid bitumen, are identified in the
Longmaxi Shale of the Sichuan Basin. The alginate is characterized by the linear
arrangement of OM-hosted pores due to the inherited biological structure of benthic
algae. Pores in the structureless solid bitumen are randomly distributed with the highest
abundance. The graptolite containing pore rarely is unfavorable for the pore generation but
can be a good proxy for thermal maturity. Variation in thermal maturity levels accounts for
the change of total pore volume in a givenmarcel type in the Longmaxi Shale obtained from
different shale gas fields.
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INTRODUCTION

Shale is a type of unconventional reservoir with micro- and nano-pores as the storage spaces (Zou
et al., 2020, 2017). Organic matter (OM) pores are the most important storage spaces in shale
reservoirs (Loucks et al., 2009; Jiao et al., 2014; Liu et al., 2020a,2020b). Microscopic OM pores have
already been substantially studied (e.g., Loucks et al., 2009; Fishman et al., 2012; Mastalerz et al.,
2013; Chen et al., 2015; Löhr et al., 2015; Ko et al., 2018). Many researchers point out that the OM
contents, types, and distributions strongly affect the shale reservoir quality (Wang et al., 2016; Zhu
et al., 2019).

However, the relationship between different macerals and their OM pores is not clear on the
micro/nano-scale since it is such difficult to catch the micro/nano-pores in the macerals by using an
optical measurement (Hakimi et al., 2012; Liu et al., 2017; Cardott et al., 2018; Guo et al., 2018). Some
tentative studies have been carried out recently through a kind of combined multiple observation
systems. Hackley et al. (2017) employed the integrated correlative light and electron microscopy
(iCLEM) to study different OM types. Liu et al. (2017) compared the OM characteristics under
reflected light and scanning electron microscope. Guan et al. (2019) investigated the OM
characteristics changes under a scanning electron microscope and atomic force microscope.
However, the difficulty of identifying and analyzing pores in different macerals over different
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experiments hinders the further study of the characteristics of
pores in different macerals and their origin.

In addition, the differences between pores in different
macerals in the Longmaxi Formation also need to be
explained. It is well-known that Raman spectroscopy can
characterize the structural orders of carbonaceous materials
in situ micro areas. Then, several Raman parameters have
been used to characterize structural orderings (Jehlička et al.,

2003; Guedes et al., 2012) to explore the functional groups
(Morga et al., 2011) and to detect the marcel structures (Guedes
et al., 2012). Many scholars have focused on the relationship
between the Raman parameters of coal and source rock thermal
maturity (e.g., Zhou et al., 2014; Liu et al., 2018). Some scholars
have also conducted Raman spectroscopy analyses on different
macerals and different types of organisms in shale to obtain
structural information and hydrocarbon generation capacity

FIGURE 1 | (A) The geographical location of the study area, (B) Early Silurian paleogeographic map of the study area (modified from Wang et al., 2015), (C)
Stratigraphic column.
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(Guedes et al., 2010; Bao et al., 2012; Mumm et al., 2016; Ferralis
et al., 2016; Shang et al., 2018).

In this study, two Lower Silurian Longmaxi shale samples
from two shale gas fields of Sichuan were collected and analyzed.
The main objective is to 1) obtain the organic petrology
characteristics and pore structures of different macerals under
the microscope reflected light, 2) analyze the chemical
components of maceral by Raman spectroscopy, and 3)
research the controlling pore structures factors of the different
macerals.

GEOLOGICAL BACKGROUND

The two shale samples were selected from Well YS118 and JY2HF,
which are located in the Changning-Weiyuan area and the Fuling
area with a burial depth of 2,231.0 m and 2,570.3 m, respectively.
These two areas are both located in the main shale gas production
areas in the Sichuan basin (Figure 1). OM types in the Longmaxi
Formation are classified as type II kerogen (Tenger et al., 2017). The
main maceral types of the Longmaxi Formation include alginite,
solid bitumen, and graptolite (Dai et al., 2014; Liang et al., 2014; Ma
et al., 2016). The thermal maturity is at the high-over maturity stage
(Zou et al., 2020; Hu et al., 2017; Chen et al., 2019).

MATERIALS AND METHODS

Two subsamples (subsample 1 and subsample 2) of each sample
(jy2 HF and ys118) were cut parallel to the bedding with a saw
blade at 10 mm intervals, and every subsample was ground into
1 × 1 × 1 cm3 cubes (Figure 2). Then, they were polished by
silicon carbide sandpapers of 300, 600, 1000, and 2000 mesh in
succession. Ultimately, they were polished for about 8 h to
produce a high-quality cross-section by argon ions with a
Leica EM TIC 3X mill using an accelerating voltage of 8 kV
and a current of 2.8 mA.

Maceral Observation
Subsample 1 was observed under the microscope reflected light in
the oil-immersed environment (the magnification of the objective
lens was 50 times) (Figure 2). Different typical macerals of

subsample 1 were identified under reflected light, including
the three macerals of alginite, solid bitumen, and graptolite
(Figure 3). Detailed maceral identification and analysis
methods have been shown by Hu et al. (2020).

SEM and OM Pores Statistics
The imaging was performed at an accelerating voltage of 2 kV
with a working distance of 10 mm. To obtain statistically
significant and representative areal porosity, twenty SEM
images are photographed at random. Pores are visualized in
the SEM images, characterized by the gray value pattern of a
bright rim and a dark pore body. This feature makes it possible to
identify pores with some automatic methods, such as Image-Pro
Plus. The pore parameters are analyzed in this software. The form
factor (ff) is a descriptor of the shape of features and reflects the
circularity and roughness of pore edges. It has a maximum value
of 1.0 (for a circle) or 0.785 (for a square). The complexity of the
pore boundary increases with decreasing form factors. The form
factor is defined as ff � 4·π·S/C2, where S is pore area and C is pore
perimeter (Jiao et al., 2014).

Raman Spectroscopy
Subsample 2 was utilized to analyze the Raman spectroscopy
(Figure 2). During the test, the identified maceral was
photographed first, and then different maceral types (the
identification properties are shown in Maceral section and Pore
Characteristics section) were tested by the Raman spectroscopy.
The Raman spectroscopy analysis was carried out in the laboratory
of the college of chemical engineering and technology, Southwest
Petroleum University. The instrument (MicroTEQ-R1) was made
by an American Oceanoptics company. The wavelength of the
excitation light source is 785 nm. Raman displacement ranges from
200 cm−1 to 2000 cm−1 with a resolution of 4 cm−1. The laser spot
size is about 2 μm and the magnification of the microscope
objective is 40 times.

RESULTS

Maceral
Alginite, solid bitumen, and graptolite are observed under
immersion oil reflected light (Figure 3). Figure 4 shows a

FIGURE 2 | Flow chart of experimental analysis, whichmainly includes the immersion oil reflected light observation and Raman spectrum testing. Subsample 1 was
tested by immersion oil reflected light and SEM, and subsample 2 was tested by Raman spectroscopy.
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predominance of solid bitumen in the samples. The occurrence of
graptolites and alginate is less than 50 vol% within the shales.

Both alginite and graptolite are comprised of granular,
slablike, or irregular bands with sharp and distinct boundaries
(Figures 3A,B,C). However, solid bitumen filling which exists
among mineral grains is non-granular (Figure 3D). Alginite is
easily distinguished due to its unique morphologies, consisting of
ultralaminae network structures with a thickness of about 5 μm
(Figures 3A,B). Commonly, no other biological structures exist

in the solid bitumen except honeycomb OM pores (Figure 3D).
The reflectance of graptolites is higher than those of alginite and
solid bitumen (Figure 3C). Few OM pores are observed in
graptolite, whereas plenty of OM pores are within alginite and
solid bitumen. Also, the honeycomb OM pores are in the solid
bitumen, and petal-like and linear pores are contained in the
alginate (Figure 3).

Pore Characteristics
Based on the color differences between OM pores and OM, a large
number of OM pores are identified for their blackish grey
performances, and OM was grey in SEM (Figure 5). Under the
SEM observations, alginate OM pores are comprised of elongated
pores between lamellar and reticular structures, while the solid
bitumen OM pores are evenly distributed in honeycomb shapes
(Figure 5). The pore structure observed under SEM is similar to
that under the reflected light microscopy (Figure 3).

Table 1 shows the result of quantitative pore structures of
alginite and solid bitumen, including the parameters of areal
porosity, mean pore size, and form factor. Alginite porosity and
solid bitumen porosity in the jy2 HF sample have average values of
16.2 and 14.3%, respectively, while they are 11.7 and 10.5% in the

FIGURE 3 | Maceral optics and structure characteristics, argon ion polished section, immersion oil objective. (A) Alginite, with an ultralaminae network structure
and linear OM pores. (B) Alginite, noting that the alginite is gradually converted to solid bitumen. (C)Graptolite, the mineral particles cut through the graptolite surface (Hu
et al., 2020). (D) Solid bitumen, with homogeneous organic rounded pores. url � “ultralaminae”; SB � “solid bitumen”.

FIGURE 4 | The distribution of macerals in shale samples.
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ys118 sample, respectively. Pore sizes of alginite and solid bitumen
in the jy2 HF sample have average values of 87.4 and 102.3 nm,
whereas they are 74.7 and 63.4 nm in the ys118 sample,
respectively. The form factors of alginite and solid bitumen in
the jy2 sample HF have average values of 0.73 and 0.76, while they
are 0.64 and 0.66 in the ys118 sample, respectively (Table 1).
Generally, the OM pores of the jy2 HF sample have a larger areal
porosity, pore size, and form factor than that of the ys118 sample.

Raman Characteristics
The alginite, solid bitumen, and graptolites all have the first-order
Raman spectrum D band (∼1,350 cm−1) and G band
(∼1,595 cm−1). The D band is caused by disordered structure or

in-plane defects, while the G band is caused by the breathing of the
aromatic ring in amorphous materials (Ferrari et al., 2000). In
addition, other secondary bands probably contain structural
information in the macerals except for the D and G bands
(Figure 6). In this study, the curve fitting method is applied to
decompose Raman spectroscopy (Hinrichs et al., 2014). Five
secondary peaks are obtained by combining the four
Lorentzian/Gaussian methods with D1, D2, D3, D4, and G
bands at around 1,350 cm−1, 1,540 cm−1, 1,230 cm−1, 1,185 cm−1,

and 1,595 cm−1, respectively (Figure 7). D2 band is the vibration
mode of the semicircular aromatic breathing ring. D3 band is aryl-
alkyl ether and para-aromatics. D4 band is a hydrogen aromatic
ring on C-H and C-C stretching vibration (Liu et al., 2018).

FIGURE 5 | OM pores in different macerals. (A) Solid bitumen, jy2 HF sample; (B) alginite, jy2 HF sample (Hu et al., 2020); (C) solid bitumen, ys118 sample; (D)
alginite, ys118 sample.

TABLE 1 | OM pores Parameters in the Longmaxi Shale from the FE-SEM images.

Samples TOCa Marcel Areal porosity
(%)

Pore size
(nm)

Form factor

jy2 HF 4.17 alginite 16.2 87.4 0.73
solid bitumen 14.3 102.3 0.76

ys118 3.72 alginite 11.7 74.7 0.64
solid bitumen 10.5 63.4 0.66

aThe TOC dates quote from Hu et al. (2020).
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To characterize the geochemical differences of three
macerals, the following quantitative parameters are selected
according to previous studies (Tenger et al., 2017; Kelemen
et al., 2001; Sonibare et al., 2010), and these data are shown in
Table 2:

1) Band separation of G and D1 (G-D);
2) Full half-peak width of D and G bands (FWHM-G);
3) Ratio of the full half-peak width of D to that of G bands

(FWHM-D/G);
4) Intensity ratio of G to D band (ID/IG);
5) Area ratio of G to D band (AD/AG).

DISCUSSION

Possible Maceral and OM Pores Sources
The typical structure of alginate is the ultralaminae structure,
which consists of the laminaes with the thickness of about 5 μm
thick and the elongated pores between the laminaes (Figures

3A,B). Alginite is curved, elongated, or irregular plates (Figures
3A,B). Ultralaminae structures with elongated pores are also
found in the Longmaxi Formation (Ma et al., 2016) and the
Cambrian-Neogene amorphous kerogen (Largeau et al., 1990).
Because their thin laminae range between 10 and 60 nm, these
ultralaminae structures macerals are grouped into sapropel and
derive from the accumulation of microalgae or cyanobacteria
(Largeau et al., 1990; Pacton et al., 2006; Ma et al., 2016).
However, the ultralaminae structures of the alginites found in
this study are much thicker than microalgae. At the same time,
the alveolar pores rather than enlarged pores within
cyanobacteria indicate that alginite is not originated from
cyanobacteria because alveolar pores are observed from
cyanobacteria (Pacton et al., 2006). Eventually, we consider
that the maceral might not be formed by microalgae or
cyanobacteria.

Interestingly, macroscopic algal ultralaminae structures
thickness is mostly a few microns in size (Tinn et al., 2015;
Hu et al., 2020), which is the same as ultralaminae structures in
Figures 3A,B. Further, in the Silurian strata, a large number of
macro-benthic algae have been found, such as red algae (Zeng
et al., 2015; Nie et al., 2018), green algae (Tinn et al., 2015), and
other types of algae (Mastik and Tinn, 2017). In addition, Hu et al.
(2020) found the red algae cysts through palynological analysis in
the shale of the Silurian Longmaxi Formation, and these ultra-
laminae structures were mainly related to the central axis and
longitudinal filaments, presenting a long-axis type (Tinn et al.,
2015; Hu et al., 2020). Therefore, ultra-laminae structures in the
Longmaxi Formation are confirmed from the existence of macro-
benthic algae. Alginite predominantly contains interlaminar
pores and secondary bitumen pores. The areal porosity of
alginite is the largest among these three maceral types
(Figure 5; Table 1).

Solid bitumen stems from not only the transformation of
alginite (Figure 3B) but also the degradation of crude oil (Misch
et al., 2019). Then, it is filled in the spaces between minerals of the
shale (Figure 3C). The secondary pores formed in solid bitumen

FIGURE 6 | Raman spectroscopy of alginite, solid bitumen, and graptolites in two samples, in which the blue line is the jy2 HF sample and the red line is the ys118
sample.

FIGURE 7 | Curve fitting of Raman spectrum for a representative
sample.
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are uniform (Figure 5). The areal porosity and pore size were
much poor compared to those of the alginite maceral (Table 2).

Graptolite has been debated in the literature whether there are
a large number of pores (e.g., Ma et al., 2016; Luo et al., 2016,
2018). Almost no pore is ever found in graptolite of this study
(Figure 3), although previous studies observed certain
micrometer-sized fractures and spindle-shaped pores between
cortical fibrils in the cortical of graptolite (Luo et al., 2016, 2018).

Macerals Difference in Terms of Raman
Structure Parameters
Different optical characteristics and OM pores development in
the macerals are attributed to their chemical structure (Jehlička
et al., 2003; Bao et al., 2012). In what follows, Raman spectral
parameters of the three macerals are discussed. Table 2 and
Figure 7 exhibit the variation rules of different macerals in the
two samples. The summary of the observations is as follows:

1) The mean AD/AG and the mean ID/IG values of graptolites
are smaller than those of alginite and solid bitumen (Table 2;
Figures 8A–D), which indicate more carbon content in the
graptolites. The reason is that the AD/AG and ID/IG are a
negative correlation with the size of a planar microcrystal and
the carbon content (Tuinstra et al., 1970; Zhou et al., 2014; Bao
et al., 2012; Mumm et al., 2016). Other results also support the
conclusions. Firstly, the microscope reflected light observation
indicating that the reflectivity of graptolites is significantly
higher than those of alginite and solid bitumen (Figure 3),
indicating the higher carbon content of graptolites. Secondly,
the hard part of graptolite is almost comprised of chitin or
multiple amino acids of hard protein, which are weak in
hydrocarbon generation and are easily degraded (Luo et al.,
2016). Lastly, the content of carbon elements in the graptolite
was close to 100% by the energy spectrum of the Longmaxi
Formation (Ma et al., 2015). In conclusion, the carbonization
degree of graptolite is much stronger than those of alginite and

TABLE 2 | Raman structure parameters of three macerals for the two samples.

Samples Maceral Ro G-D/cm−1 FWHM-G/cm−1 ID/IG AD/AG FWHM-D/G

jy2 HF Alginite 2.48 288.29 76.57 1.26 3.65 2.90
286.52 65.87 1.16 3.63 3.13
288.28 68.86 1.16 3.51 3.03
284.89 76.36 1.10 3.02 2.74
290.54 67.50 1.10 3.48 3.16
287.70 71.03 1.16 3.46 2.99

Solid bitumen 282.25 69.91 1.06 3.22 3.05
286.02 68.65 1.08 3.32 3.07
286.40 69.41 1.07 3.24 3.03
283.38 72.94 1.06 3.15 2.96
286.40 67.22 1.07 3.53 3.14
284.89 69.63 1.07 3.29 3.05

Graptolite 285.00 84.18 1.07 2.81 2.62
286.40 83.39 1.07 3.00 2.81
286.40 81.79 1.04 2.78 2.69
285.65 85.49 1.03 2.45 2.37
286.40 87.31 0.98 2.24 2.29
285.97 84.43 1.04 2.66 2.56
286.19 75.03 1.09 3.14 2.87

ys118 Alginite 2.70 290.17 68.46 1.14 3.40 2.99
286.40 68.41 1.12 3.62 3.22
285.65 67.66 1.11 3.63 3.27
288.28 68.39 1.13 3.67 3.26
284.89 70.39 1.17 3.73 3.20
287.08 68.66 1.13 3.61 3.19

Solid bitumen 286.40 67.84 1.09 3.38 3.12
284.25 66.57 1.10 3.59 3.28
284.90 62.83 1.09 3.73 3.43
284.89 66.68 1.14 3.73 3.27
284.13 67.41 1.10 3.54 3.13
284.91 66.27 1.10 3.59 3.25

Graptolite 286.40 70.25 1.04 3.12 3.02
282.86 69.01 1.04 3.29 3.17
281.50 67.05 1.06 3.34 3.15
284.13 68.65 1.00 3.18 3.17
288.67 71.39 1.00 3.19 3.20
284.71 69.27 1.03 3.22 3.14
285.57 68.07 1.09 3.48 3.19

Note: Bold means the average values of macerals. Slant and bold represent the mean value of this parameter in the sample. Ro values are taken from Hu et al. (2020).
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solid bitumen. Hence, the values of AD/AG and ID/IG were
smaller in graptolite.

2) ID/IG could tell very well between the alginite and solid
bitumen (Figures 8A–B). The ID/IG is usually employed as
a thermal maturity indicator. When bitumen reflectance (BRo)
is smaller than 3, ID/IG presents a negative correlation with
BRo (Zhou et al., 2014). Furthermore, Ferralis et al. (2016)
believed that an increase in thermal maturity would result in a
decrease in the H/C atomic ratio. Therefore, we suggest that
alginite has a greater ID/IG value than solid bitumen because of
the greater hydrogen element content in the alginite.

However, AD/AG and FWHM-D/G are not thoroughly
distinguished between alginite and solid bitumen (Figure 8C–F).
This suggests that other factors may influence the maceral
properties, and the possible reason is that solid bitumen forms
in the many stages, e.g., in the immature, mature, and even over-
mature stages (Misch et al., 2019). The different thermal evolution
stages of the solid bitumen lead to different degrees of solid bitumen

carbonization, resulting in a wide range for values of Raman
structure parameters. Besides, in Figure 3B, it can be observed
that part of the alginite is converted into solid bitumen, leading to a
change of the structure from layered to non-layered. A similar
alginite transformation process is also discovered by Liu et al.
(2017). This process directly indicates that alginite and bitumen can
form the mixtures so that they are not distinguishable by Raman
spectral parameters. As a result, the ability of Raman spectral
parameters for distinguishing solid bitumen and alginite is not
good but still helps to some extent.

The Effect of Thermal Maturity on OM Pores
Table 1 and Figure 5 show that the jy2 HF sample has a greater
areal porosity and form factor than the ys118 sample. The reason
might come from thermal maturity. Raman structure parameter
analyses include G-D bands, AD/AG, FWHM-G, and FWHM-D/
G in the alginite, solid bitumen, and graptolite. Excluding the
G-D displacement difference parameter, the other three
parameters in the jy2 HF sample have larger values compared

FIGURE 8 | Raman structural parameters of three macerals in jy2 HF (left) and ys118 (right) samples.
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to those of the ys118 sample (Figure 9). The FWHM-G value of
the jy118 sample is smaller than the ys2 HF sample since it is
negatively correlated with thermal maturation (Maslova et al.,
2012; Romero-Sarmiento et al., 2014).

FWHM-D/G and AD1/AG are positively correlated with
thermal maturity (Zhou et al., 2014). Thus, the ys118 sample
has a higher thermal maturity than the jy2 HF sample. Some
researchers suggest a critical value of Ro around 2.5% (Wang
et al., 2016; Yang et al., 2016; Chen et al., 2017). When Ro is
greater than 2.5%, the organic porosity decreases (Wang et al.,
2016). In this study, the ys118 sample has a higher thermal
maturity but a smaller porosity. The reason may be attributed to
the Ro of more than 2.5%.

Although thermal maturity may be one of the most important
controlling factors for pore structure in organic matters, as
discussed above, other factors should also be focused on, such
compacted, the depth of buried shale, and coefficient (Jiao et al.,
2017; Liu et al., 2019). The pressure coefficient of well ys118 (1.65
by Wang et al., 2018) is higher than that of well jy2 HF (1.5 by
Feng et al., 2018). It is expected that the areal porosity of OM in
well ys118 is higher than that of well jy2 HF. However, the results
of the areal porosity of the OM from well jy2 HF did not follow
the law that OM porosity is higher at greater pressure (Table 1).
Thus, the pressure coefficient might be an alternative factor that
has an impaction on the development of organic pores.

Compaction related to burial depth also compresses the pores to
reduce the pore sizes and change the pore shapes from round or
elliptical-shaped to slit-shaped (Jiao et al., 2017). When the depth of
buried shale exceed 5,000 m, the pore structure occurs the obvious
changes (Jiao et al., 2017). In this study, the difference of depth is
blowing 5,000 m and only about 340m. Therefore, compaction has
little impaction on the development of organic pores.

CONCLUSION

The following conclusions are drawn from this study:

1) Three macerals are identified in the Longmaxi Formation,
including the alginite, solid bitumen, and graptolite. The
alginite and graptolite can be distinguished by the
parameters of AD/AG and ID/IG.

2) The areal porosity of alginite is higher than the pyrobitumen,
and a lower areal porosity is found in graptolite.

3) Under the condition of high-over thermal maturity, Raman
spectroscopy is utilized to reflect the change of thermal
maturity. AD1/AG and FWHM-D/G are positively
correlated with thermal maturity, while FWHM-G is
inversely correlated with thermal maturity. Therefore,
thermal maturity should be responsible for the differences

FIGURE 9 | Raman structural parameters of three macerals in different mature samples.
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in pore structure between the two shale gas fields (Chen et al.,
2019a; Chen X. et al., 2019; Chen et al., 2020).
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