AUTHOR=Chen Xi , Meng Xianqiang , Song Yinxian , Zhang Bin , Wan Zhiwei , Zhou Bingqing , Zhang Enlou TITLE=Spatial Patterns of Organic and Inorganic Carbon in Lake Qinghai Surficial Sediments and Carbon Burial Estimation JOURNAL=Frontiers in Earth Science VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2021.714936 DOI=10.3389/feart.2021.714936 ISSN=2296-6463 ABSTRACT=

Lake carbon burial is of vital significance in global carbon cycle and carbon budget, particularly in the large deepwater lakes. However, carbon burial in large deepwater lakes is hard to estimate due to the difficulty in obtaining high spatial-resolution samples. In this study, we investigated distributions of total organic carbon (TOC) and inorganic carbon (TIC), two main carbon components in lake sediments, based on dozens of surficial sedimentary samples (n = 26) covering whole Lake Qinghai, the largest saline lake in China. The results showed that the TOC content, with a range of 1.4–4.8%, was significantly higher in the lake area near the northern lakeshore where human activities are concentrated and lower in the lake areas near the Buha River mouth and the eastern lake area. In contrast, the TIC content, ranging from 1.5 to 3.8%, increased from the northwestern and southeastern lake areas toward the lake center, and mainly depended on hydro-chemical and hydraulic characteristics. The inorganic carbon burial (47.77 ± 19.73 Gg C yr−1) was approximately equal to organic carbon burial (47.50 ± 22.68 Gg C yr−1) and accounted for about 50% of the total carbon burial (95.27 ± 37.74 Gg C yr−1), suggesting that saline lakes constitute a large inorganic carbon pool in addition to an organic carbon pool. Because of saline water body type in arid and semiarid regions and alpine Qinghai–Tibet Plateau, lakes in these regions have huge inorganic carbon burial potential and important contributions to the global carbon budget.