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The average pore pressure during oil formation is an important parameter for measuring
the energy required for the oil formation and the capacity of injection–production wells. In
past studies, the average pore pressure has been derived mainly from pressure build-up
test results. However, such tests are expensive and time-consuming. The surface
displacement of an oilfield is the result of change in the formation pore pressure, but
no method is available for calculating the formation pore pressure based on the surface
displacement. Therefore, in this study, the vertical displacement of the Earth’s surface was
used to calculate changes in reservoir pore pressure. We employed marker-stakes to
measure ground displacement. We used an improved image-to-image convolutional
neural network (CNN) that does not include pooling layers or full-connection layers and
uses a new loss function. We used the forward evolution method to produce training
samples with labels. The CNN completed self-training using these samples. Then, machine
learning was used to invert the surface vertical displacement to change the pore pressure
in the oil reservoir. The method was tested in a block of the Sazhong X development zone
in the Daqing Oilfield in China. The results showed that the variation in the formation pore
pressure was 83.12%, in accordance with the results of 20 groups of pressure build-up
tests within the range of the marker-stake measurements. Thus, the proposed method is
less expensive, and faster than existing methods.
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INTRODUCTION

Oil reservoirs consist of porous media, and the formation pore pressure refers to the fluid pressure in
the pores of a reservoir. The formation energy, development potential, rock type, and geological
structure are reflected in the formation pore pressure and its variation law. Continental sandstone
oilfield has entered the stage of ultra-high water cut development. With the long-term injection of
foreign fluid and the continuous exploitation of oil and gas, the formation pressure is continuously
supplemented and released, and the seepage law of formation fluid changes all the time. Formation
pore pressure is the representation of reservoir energy and the direct embodiment of reservoir fluid
seepage capacity. It also plays an important role in the adjustment of large-scale well pattern in the
middle and late stage of oilfield development. The average formation pore pressure in a development
block is an important parameter for adjusting the injection–production intensity and measuring the
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injection–production capacity (Gao et al., 2018). Accurate
prediction of the formation pressure is an important
prerequisite for stable and seamless oil field development (Xu
W. et al., 2019; Sheng et al., 2020). During the development of an
oil field, continuous casing damage occurs frequently at the
weakest horizontal structural surface of the reservoir. The
main reason for this phenomenon has been proven to be the
slip of the weak horizontal structural surface caused by the inter-
regional pore pressure. Casing damage severely affects oil field
development, forcing many injection–production wells to shut in.
For instance, at the Daqing Oilfield in China, an area where casing
damage is prevalent, the damage rates are as high as 50–80% (Cui
2015).

The section slip of a standard horizontal fossil layer is caused
by uneven deformation induced by the inter-regional pore
pressure (Hu et al., 2018; Xie et al., 2020; Zhao et al., 2020). It
is necessary to control the difference in average inter-regional
formation pressure to prevent expansion of the casing damage
area in the Daqing Oilfield (Ai et al., 2015). The original cause of
the casing damage was the pressure change of the formation.
Pressure changes can induce stress changes of rock underground
(Guo et al., 2019a). Therefore, monitoring and prediction of the
formation pore pressure are important to ensure daily oilfield
production (Tang et al., 2018; Xu X. Q. et al., 2019; Tang et al.,
2021). However, the average pore pressure during formation
cannot be directly obtained (Shen et al., 2014; Li et al., 2017;
Ameh 2019). Additionally, the formation-pressure gradient near
water injection and oil production wells is excessively large to be
used as the basic parameter for calculating the average formation
pressure (Wang and Sheng, 2018; Zhang et al., 2020). The
technology for predicting formation pore pressure has been
successfully employed in seismic data prediction research since
the 1970s (Tipper 1976). The main forecasting methods include
the equivalent depth formula (Yun 1996), Eaton method (Eaton
1972), ratio method, empirical formula, Fillippone method
(Fillippone 1982), and some other methods (Sun and Sun,
2007; Wei et al., 2007; Yu et al., 2014; Xiong et al., 2019;
Zhang et al., 2021). However, these methods are limited in
terms of their accuracy in calculating the seismic layer
velocity. Therefore, some scholars have proposed a prediction
method for abnormal formation pressure based on acoustic
impedance inversion and multi-seismic attribute joint
inversion (Banik et al., 2013), and based on pre-stack velocity
inversion (Dutta 2002; Dutta and Khazanehdari, 2006).
Moreover, the seismic multi-elastic parameter pore fluid
pressure prediction method has been developed for low
permeability reservoirs, and satisfactory results have been
obtained in practical applications of this method (Hou et al.,
2019). In general, the average pore pressure has been observed to
depend on the results of pressure build-up tests, which are both
cost- and time-intensive. Moreover, the pressure build-up test
data of a single well can reflect the average pore pressure of only
formations near the test well. Consequently, it is difficult to
evaluate the average formation pressure in several oilfields.

Several studies have confirmed that a correlation exists
between surface displacement and formation pore pressure,
which is not a simple linear one-to-one correspondence. In

2009, Rutqvist et al. (2010) conducted a series of rock
mechanics simulation analyses of a reservoir–geomechanical
coupling reservoir and the interaction between pore pressure
and geological stress is considered. They reported that the
surface displacement was consistent with the expansion in the
volume of the injection area and adjacent strata caused by the
pressure change, which was as a result of the change in the
reservoir pore pressure. The surface displacement depended
on the change in the reservoir pressure, volume of the injected
fluid, and elastic properties of the reservoir cap. Xue et al.
(2018) studied the abrupt transition of the coupled gas-stress
behavior at the dilatancy boundary using a strain-based
percolation model. Based on orthogonal triaxial stress
experiments with CH4 seepage, the complete stress–strain
relationship and the corresponding evolution of the
volumetric strain and permeability were obtained. Zhang
et al. (2018) investigated the effect of pore-fluid pressure on
normal deformation through laboratory experiments. The
results indicated that the pore-fluid pressure significantly
affects the normal deformation of a jointed sample.
Moreover, the relative normal deformation of the host rock
during fluid injection has a linear relationship with the pore-
fluid pressure. Guo et al. (2019b) considered the mechanisms
of the mixed responses of unconventional reservoir under inter
well interference, used the finite element method to describe
the poroelastic behaviors of multiphase-fluid diffusivity and
rock deformation, and used the displacement discontinuity
method to describe the numerical simulation work flow of
multi-fracture propagation.

Evidently, past research has focused primarily on changes in
the formation pore pressure to calculate the surface
displacement. Recently, surface displacement has been
predicted based on underground parameters (Qi et al.,
2017). However, the present study represents the first
attempt at calculating the pore pressure of underground oil
reservoirs based on the surface displacement. Although
positive evolution is possible, reverse evolution is
challenging. According to the relationship between the
formation pore pressure and surface displacement, forward
calculation involves an explicit equation, whereas backward
calculation involves a set of equations that cannot be calculated
directly. When the number of grids is large, a large number of
equations will be formed. When the number of equations is
large, the accuracy of the constant term of the coefficient
matrix, or the input of the model, will be improved.

In this study, the convolution method was simplified to a
convolution algorithm based on the convolution characteristics of
the linear-deformation stage. Artificial intelligence can assist in
determining the relationship between two parameters. Machine
learning can play a good role in images, or two-dimensional
matrix; in this regard, convolutional neural networks (CNNs) are
the most effective tool. An improved CNN was established in this
study to determine pore pressure variation from surface
displacement. The accuracy of the model was verified using
marker-stake monitoring data and the average formation-
pressure data obtained from pressure build-up tests conducted
in the Sazhong Development Zone, Daqing Oilfield, China.
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INVERSION OF CHANGES IN AVERAGE
PORE PRESSURE

The relationship between the average pore pressure and surface
displacement is critical for the inversion of the reservoir pore
pressure. The surface deformation occurs only after the formation
pore pressure changes. The calculation of formation pore
pressure by surface deformation is an inverse calculation. The
geological factors of oil layer are complex, and the formation
pressure is influenced by many factors (Cipolla et al., 2018). If the
value of a discrete cell in the forward calculation is the
superposition of multiple equations, the inverse calculation is
to solve these equations, but if the forward calculation is an
iterative calculation, the reverse calculation needs multivariable
iterative solution. Only forward calculation is simple enough, and
inversion calculation can be carried out. The extent of the change
in the reservoir volume caused by the change in reservoir pore
pressure is within the range of linear elastic deformation of
reservoirs. The deformation of the reservoir due to changes in
pore pressure simultaneously causes deformation of the
surrounding strata, and the resulting displacement is
transferred to the surface. In this process, the deformation of
the formation rock is still in the stage of linear elasticity.
According to the superposition principle of stress and strain in
the linear elastic stage, the final surface displacement is the linear
superposition of the change in the pore pressure of each
underground storage grid on the surface displacement
generated by each grid. We assumed that there was no
gradient in the plane and that the mechanical and seepage
parameters were equal in the plane. Thus, if a single grid
changes the surface deformation distribution due to a unit
pressure, the surface displacement caused by any formation
pressure can be linearly superposed based on the formation
deformation generated by the unit pressure of a single grid.
This method can be expressed by the convolution equation:

u(x, y) � k(x, y)* p(x, y), (1)

where u (x, y) is the vertical displacement of the surface at point
(x, y) (m); k (x, y) is the convolution kernel (m), i.e., a storage grid
changes the distribution of the surface displacement caused by a
unit pressure (m/MPa); and p (x, y) is the formation-pore-
pressure distribution (MPa).

The actual measured or calculated formation pore pressure
and surface deformation parameters constituted a plane
composed of limited data point planes. It is necessary to
perform plane discretization in advance and discretize the
stratum plane into a finite mesh with a length of M and a
width of N. The two-dimensional discrete convolution
equation is

u(x, y) � k(x, y)pp(x, y) � ∑
M

i�0
∑
N

j�0
k(i, j)p(x + i, y + j) (2)

.

The convolution kernel k (x, y) represents the vertical
displacement of a formation with changes in the unit pressure
of a single grid, which can be obtained through numerical

simulation. Correspondingly, p (x, y) is the formation pore-
pressure distribution. Therefore, the determination of surface
displacement based on formation pore pressure involves forward
modeling and explicit calculation, that is, for a vertical
displacement u (x, y) at any surface location, there is no
unknown number in the solution process.

To obtain the pore pressure distribution of the p (x, y)
formation based on the vertical displacement u (x, y) of the
surface, it is necessary to solve a large set of equations in which the
number of unknowns is equal to the square of the convolution
kernel. However, the position of the convolution core far away
from the center was almost zero (the value of the far end of the
convolution core caused by the change of unit displacement and
unit pressure is almost zero). Thus, inversion of the equations is
impossible because some unknown coefficients in some of the
equations are close to 0, which significantly affects the solution
accuracy (Hwang et al., 2019; Mohammady et al., 2020).

In the calculation for deconvolution, machine learning can be
used to address the problem of convolution. Because the surface
displacement field is a group of plane data, it is similar to a
blurred image. CNN is the most effective type of machine
learning algorithm, and it uses images as the input layer.
However, the calculation of changes in formation pressure
based on surface displacement inversion is deduced from one
field to another, which requires some changes to the existing
CNN structure. A traditional CNN model is shown in Figure 1.

The model can be explained as equations as:

Convolution: h(1) � Ipk(1) + b(1)

Pooling: p(1) � AF{POOLING[h(1)]}
Convolution: h(2) � h(1)pk(2) + b(2)

Pooling: p(2) � AF{POOLING[h(2)]}

(3)

where h(i) is the i-th hidden image layer; k(i) is the convolution
kernels of i-th layer; b(i) is the biases of i-th layer; I is the model
inputs. AF is the activate function, POOLING is pooling
calculation.

Pooling calculation is a computing method that divides a two-
dimensional data into several regions, calculates a value from all
grids in each region, and then recombines it into new two-
dimensional data.

The same calculation method is used until the last convolution
and pooling operation. Then each pixel of the last group of two-
dimensional images is arranged into a variable hF

(1) in one
dimension as

Convert into one − dimensional : h(1)F (m) � p(L)(x, y)
Full connection : h(2)F � AF{W(1)h(1)F (m) + b(1)F }
Output : Y ’ � AF{W(2)h(2)F (m) + b(2)F }

(4)

where L is the number of hidden layers; hF
(i) is the i-th hidden

layer in full connection; bF
(i) is the biases of i-th layer in full

connection; W (i) is the weights of i-th layer; Y′ is the predicted
values.

Traditional CNNs include an input layer, convolution layer,
pooling layer, full-connection layer, and output layer. Through
continuous convolution and pooling, the input image is
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abstracted into a number of low-pixel two-dimensional
parameters, and the results are output through several fully
connected neural networks. The output results are used for
image recognition and other applications. The convolution
layer is used to increase the thickness (number of images), the
pooling layer is used to highlight features and reduce the number
of intermediate parameters, and the full-connection layer is used
to convert two-dimensional data to one-dimensional data.

For our application, the aforementioned structure must be
modified. As the relationship between the fields of surface vertical
displacement and formation pressure change depends on the
displacement of the formation, the process is smooth and
continuous. The relationship between the fields of surface
vertical displacement and formation pressure change is the
coupling relationship between fluid pressure and rock matrix
stress in porous media. The change of rock matrix stress will
cause the strain of rock, which shows macroscopic deformation
and displacement on the surface. In the Seepage-solid coupling
model of porous media, it can be seen from the compatibility
equation derived from the geometric equation that the
deformation and displacement of each point are continuous in
the process of rock elastic deformation. Hence, no pooling layers
are needed for image collection, and the layer thickness need not
be large either. Since the output layer comprises two-dimensional
data, it is an image-to-image issue, and no full-connection layer is
needed to transform the dimensions of the data. Therefore, the
proposed CNN does not include a pooling layer and or a full-
connection layer. Pooling layer can effectively abstract and
prevent overfitting in machine vision models. However, in this
issue, the two functions of pooling layer are not effective. For

practical physical problems, there are few features that can be
abstracted as the surface deformation field does not have some
contours like the image; The training data of this model comes
from forward calculation, there are unlimited training samples,
the training process will not encounter the same samples, so it will
not overfit. At the same time, pooling computing can reduce the
dimension of intermediate computing process and reduce the
number of variables. However, for this problem, the number of
grids becomes less after pooling, which is equivalent to a sudden
doubling of the grid size, changing the corresponding relationship
between the input and output layers at the same position. The
proposed image-to-image model are shown in Figure 1.

The new model can be explained as:

h(1) � upk(1) + b(1)

h(2) � h(1)pk(2) + b(2)
(5)

where u is the deformation on the ground surface, mm.
The same calculation method is used until the last

convolution. The final predicted pressure change field is the
final output image.

p’(x, y) � h(L−1)pk(L) + b(L) (6)

where p’ is the predicted pressure change field in reservoir, MPa.
In addition to the aforementioned modifications, the loss

function of the model was adjusted. The surface vertical
displacement due to changes in pore pressure at a certain
underground point includes not only the point with the same
plane coordinate but also the area around this point. In contrast,
the vertical displacement of a certain point on the surface is the

FIGURE 1 | Traditional CNN model.

FIGURE 2 | Proposed image-to-image model.
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result of the joint action of pore pressure changes in a certain
range of underground. The influence range of the boundary area
of the underground pore pressure is larger than that of the surface
vertical displacement observation area. Thus, the influence of the
boundary pore pressure in the training sample cannot be fully
reflected in the surface vertical displacement. In the loss function,
the boundary pore pressure grid should be ignored to focus the
CNN training on the relevant grid.

The CNN model requires millions of samples for training. As
the surface vertical displacement can be calculated using the
average formation pressure according to Eq. 2, machine learning
samples can be easily obtained. The convolution kernel k (x, y)
can be obtained using the finite-element method. Hence, when a
certain formation pressure value is assumed, the surface vertical
displacement is obtained using Eq. 2, and the corresponding
average formation pore pressure and surface vertical
displacement constitute a training sample. Thus, infinite
training samples can be obtained by assuming different values
of formation pressure and calculating the corresponding surface
vertical displacements. The proposed CNN can be trained to
handle practical problems using the samples thus obtained.

OILFIELD TEST

Forward Evolutionary Computation
In the Sazhong Development Zone of the Daqing Oilfield, the
vertical displacement of the formation was measured using
marker-stakes arranged on the ground and then by measuring
the changes in the formation pore pressure. The marker-stakes
protruded 1.5 m above the ground and extended 4.0 m into the
stratum. The center of the marker-stakes was made of steel to
prevent the displacement of the shallow soil. The height
difference between two adjacent marker-stakes was measured
using a precision level, and the vertical displacement of the
stratum at each marker-stake position in the plane was
calculated using four benchmark stakes in the
nondevelopment area. One of the marker-stakes is shown in
Figure 3.

The surface-monitoring network included 27 survey marker-
stakes in the development zone and four benchmark stakes
outside the development zone. The spacing between the
marker-stake points was 700–1,000 m, and the stakes were
more evenly arranged in the monitoring area. A Dini03
precision electronic level (Trimble, United States of America)
was used to measure the height difference between two adjacent
marker-stakes; the standard deviation of the round-trip
measurement per kilometer was ± 0.3 mm. The marker-stakes
were built in Block X of the Sazhong development zone. There are
2,499 oil and water wells in this block, covering three series of
development well groups. The block area is 19.28 km2, and the
original formation pressure of the block is 10.13 MPa. The top
depth of the oil layer is approximately 800 m, and the bottom
depth is approximately 1,250 m (the total thickness of the
interlayer between reservoirs is approximately 150 m). The
total effective thickness of the oil layer is approximately
150 m. Figure 4 shows the locations of the marker-stakes.

From November 2017 to April 2018, the vertical displacement
measurement of the marker-stakes and the build-up tests for the
average formation pressure were conducted for Block X
(Figure 4). The vertical displacement, measured twice, was the
surface vertical displacement at the marker-stake locations. The
surface vertical displacement field measured based on the vertical
position change at two time points is shown in Figure 5.

Because of the fewer monitoring times for formation pressure
in the pressure build-up test, the grid size was expanded to
900 m × 900 m when using the formation pressure in the
pressure build-up test. The change in the average pore
pressure obtained from the well pressure build-up test from
November 2017 to April 2018 is shown in Figure 6.

From November 2017 to April 2018, casing damage was
serious in this block, and casing damage was found in most
wells. At that time, it was thought that the casing damage was
caused by over-high water injection amount. Therefore, hundreds
of water injection wells were shut down during this period, but
the oil well production was normal. Such a system leads to the
decrease of injection production ratio. Because of less injection
and more recovery, the average pressure of the formation
decreases and the formation tends to be compacted. To
measure the accuracy of the calculation results, the overall
compliance degree is defined as follows:

C � 1 − ∑
∣∣∣∣p’k − pk

∣∣∣∣
∑
∣∣∣∣pk

∣∣∣∣
(7)

where p’k is the vertical displacement of the surface, as calculated
based on the positive evolution at each marker-stake (mm), and
pk is the measured vertical displacement of the surface at each
marker-stake (mm).

According to Eq. 7, the overall degree of compliance was
82.51%. The main reason for the error was that there were few
recovered logging data, few data points to be calculated, and an
excessively large grid.

The matching relationship between the change in formation
pore pressure and the surface vertical displacement was
investigated. Using the COMSOL finite-element software, a

FIGURE 3 | Marker-stake for surface displacement measurement.
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geomechanical model with dimensions of 10,000 m × 10,000 m ×
5,000 m was established to calculate the surface displacement
caused by the unit grid pressure difference, that is, the
convolution kernel for the test samples. The reservoir
thickness was calculated as the total thickness of the vertical
sandstone of the reservoir, which was 300 m. A geometric view of
the finite-element model is shown in Figure 7.

In the COMSOL simulation, the poroelasticity model was
applied. Poroelasticity describes the interaction between fluid
flow and deformation in elastic porous media like reservoir. In
the poroelasticity model, the relation of stress, strain, and pore
pressure is defined as:

σ � Eε − αBpf I (8)

where σ is the Cauchy stress tensor; E is the Young’s modulus; ε is
the strain tensor; αB is the Biot coefficient, and pf is the fluid pore
pressure; I is the unit tensor.

As the change of pore pressure is not enough to make the
reservoir plastic deformation, the stress-strain relationship
adopts the classical linear elastic physical equation. Navier’s
equations for reservoir in equilibrium under purely
gravitational load is

∇ · σ � (ρfϕ + ρd)g (9)

where ρf and ρd represent fluid and drained densities, respectively,
and ϕ is the porosity of reservoir.

Darcy’s law is used to describe the fluid flowing in reservoir
pores.

FIGURE 4 | Map showing locations of the surface displacement marker-stakes.

FIGURE 5 | Surface vertical displacement field measured based on vertical position change from November 2017 to April 20181.
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∇ · (ρfuf ) � Qm (10)

uf � −K
μ
(∇p + ρfgD) (11)

where uf is the fluid velocity in reservoir; K is the permeability of
the reservoir; μ is the fluid’s dynamic viscosity in reservoir; p is the
fluid’s pressure; ρf is its density; ∇D is a unit vector in the
direction over which the gravity acts.

From top to bottom, the geological model is divided into the
upper stratum (700 m), mud shale horizontal section (0 m, an
interface with continuous vertical displacement and
discontinuous horizontal displacement), a reservoir top layer
(50 m), a reservoir (300 m), and a reservoir bottom layer
(3,950 m). The other parameters are listed in Table 1.

Based on finite-element analysis, the distribution of the surface
vertical displacement caused by the pressure difference in the
center unit grid is shown in Figure 8.

The relationship between the surface displacement and
pressure difference is represented by the convolution kernel k
(x, y) for the analyzed block. For the finite element model, the

FIGURE 6 | Formation pressure change from November 2017 to April 2018.

FIGURE 7 | Geometric view of the finite-element model.

TABLE 1 | Conditions and mechanical parameters of the strata in the
geomechanical model.

Parameters Unit Value

Reservoir Biot coefficient 1 0.95
Side length of per unit grid m 900
Top reservoir depth m 800
Converted reservoir thickness m 5,000
Converted reservoir length m 10,000
Unit pressure difference MPa 1.0
Reservoir Young’s modulus MPa 1,500
Poisson’s ratio in reservoir 1 0.2
Elastic modulus of rock at reservoir top MPa 1,300
Poisson’s ratio at reservoir top 1 0.2
Elastic modulus of rock at reservoir bottom MPa 2000
Poisson’s ratio at reservoir bottom 1 0.2
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surface deformation under the given pore pressure field can be
calculated by changing the pore pressure of the reservoir after
selecting the poroelasticity model to realize the forward
calculation process. But for the inversion calculation, the
software can not calculate the origin of given surface
deformation, or the pore pressure field. Using the convolution
neural network model in this manuscript, the inversion
calculation can be realized, but a large number of forward
calculation results are needed as training samples to train the
convolution neural network. The forward calculation results can
be got by poromechanical mechanism. The relevant part has been
added in the manuscript.

Backward Evolutionary Computation Using
Improved CNN Model
To compare with the average pore pressure variation from the
pressure build-up test, the formation pressure dispersion of a
900 m × 900 m block was conducted. Twenty such blocks (5 in
the x-direction and 4 in the y-direction) in the range of the
marker-stake measurements were used for the inversion of
the formation pore pressure through the vertical
displacement of the surface and of the formation pore
pressure obtained via the pressure build-up test. Blocks
outside the range of the marker-stake measurements were
not considered.

The input and output of the improved image-to-image CNN
are square matrices with the same length and width. Because
the boundary grid was ignored in the training of the CNN
model, the input and output matrices of the model should be
larger than the actual grid. In accordance with the actual
conditions in Block X, a 7 × 7 input and output layer
model was established.

The improved image-to-image CNN model contained 10
hidden layers. There were two channels in the first and last
hidden layers and four channels in the remaining hidden layers.
As the grid sizes of the input and output layers were the same, the

same padding convolutional method was used to calculate the
intermediate results. The convolution kernels in the CNN had a
size of 3 × 3. Thus, the total number of training variables was
1,225, and the number of intermediate variables was 6,468. An
activation function was not used, because a physical causal
relationship exists between the formation pore pressure and
surface vertical displacement. The improved image-to-image
CNN model is shown in Figure 9.

The convolution kernel for forward evolution represents the
surface vertical displacement field of single grid formation pore
unit pressure change, and its value was obtained using the curve
shown in Figure 4. In the convolution kernel, only the grids near
the center possess values, and the values of the three grids outside
the center are all 0. The convolution kernel size for the forward
evolution was 7 × 7. The test data were obtained by assuming a
pressure field and forward calculating the surface vertical
displacement. Each point of the 7 × 7 formation pressure field
sample randomly assumes a pressure value from −0.5 MPa to
+0.5 MPa. The surface vertical displacement field was obtained
via a convolution calculation using Eq. 2. We loaded eight
samples at a time for training. To reduce the time cost of
creating training samples, the training sample batch was
changed per 20 training cycles. An adaptive moment
estimation method was used to train the CNN. The same
method was also used to build 64 samples for testing, and the
testing samples were not used for training; they were only used to
test the accuracy of the predicted pressure field. The learning
efficiency was set to 0.001. The loss function only considers the
error of the 5 × 5 grids in the center and not the error of the
outermost grids.

We used Python 3.6 with TensorFlow 2.14 to develop an
improved image-to-image CNN program. The CNN was trained
100,000 times, and the average error of the formation pressure
change based on the test samples with the number of training
iterations is shown in Figure 10. Figure 11 shows the formation
pressure changes of the first 64 test samples compared with the
prediction results of different training iterations. After 100,000

FIGURE 8 | Relationship between surface displacement and pressure difference in per-unit grid.
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training cycles the average error of the formation pressure is
0.00495 MPa, and the formation pressure change values of each
grid in the figure are not different from the real values. If the
relationship between the underground pore pressure change and
the surface vertical displacement measurement is completely
accurate, an accurate distribution of the formation pore
pressure can be obtained through the improved image-to-
image CNN model.

Using the measured surface vertical displacement between
November 2017 and April 2018 of Block X, we calculated the
average formation pressure change of each grid within the
coverage of the marker-stakes. During the period from
November 2017 to April 2018, 102 wells were tested by
pressure build-up test in this block, and the test was
distributed in different positions in the block. The

formation pressure results were averaged according to the
divided in twenty 900 × 900 m blocks shown in Figure 12.

By comparing the average pore pressure changes shown in
Figures 6, 12 in the same position, we found that the results
were in good agreement; the coincidence rate of the pressure-
change trend was 95%, and the overall coincidence degree was
83.12%.

The accuracy of the change in unit pressure change or
convolution kernel is the most important factor affecting
the final accuracy. In this method, the numerical simulation
is mainly used to simulate the surface deformation field of a
formation grid after changing the unit formation pressure. The
surface deformation field is the convolution kernel used in
forward calculation. The accuracy of the convolution kernel
directly determines the prediction accuracy of the model in

FIGURE 9 | Improved image-to-image CNN model for inversion of surface vertical displacement to calculate underground pore pressure change.

FIGURE 10 | Formation pressure changes of the first sample compared with the prediction of different training iterations. In step 100,000, the formation pressure
change values of each grid in the figure are not different from the real values.
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practical block application. There are inevitable errors in
numerical simulation. One error source is the accuracy of
the finite element model, which can be reduced by increasing
the number of finite element meshes and optimizing the finite
element model. Another error comes from the accuracy of the
stratigraphic model, which can be reduced by the
improvement and fine description of the block geological
model. The lithology distribution and mechanical
parameters of the actual strata were not the same in the
plane. The discontinuous interfaces such as faults in the
formation also affect the convolution kernel. These effects
cause the convolution kernel to vary with the plane
position. However, this effect was not considered in the
present study. This is the main reason for the calculation
error. Furthermore, during this period, the surface
displacement increased. The basic coverage of the marker-
stake measurement parameters was larger, and the
measurement error was much smaller than the

measurement value. In addition, the average pore pressure
difference considered for the correlation was derived from the
pressure build-up test. In this case, the grid area was larger, and
there were only 20 grids. The amount of data used was small.
Nevertheless, such data density is sufficient to meet the needs
of oilfield management. The method of inversion of the
average formation pore pressure via surface displacement is
faster, less expensive, and more accurate.

CONCLUSION

(1) Surface displacement is a reflection of the formation pore
pressure change. The range of formation vertical
displacement due to the change in formation pore
pressure is within the range of linear elastic deformation
of the formation rock, and the displacement per unit grid
pressure difference can be used as a convolution kernel. The

FIGURE 11 | Average error of formation pressure change based on test samples with the number of training iterations.

FIGURE 12 | Comparison of strata pressure change from November 2017 to April 2018 from surface displacement inversion.
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distribution of the surface vertical displacement can be
obtained through the convolution of the formation pore
pressure and convolution kernel.

(2) Through forward evolution, the surface displacement
field can be calculated using any formation pressure
field. Infinite training samples can be obtained by
constantly assuming the formation pressure field and
calculating the corresponding surface vertical
displacement.

(3) The improved CNN method adopts an image-to-image
network mode instead of a pooling layer and a full
connection layer. The new loss function ignores the error
of the boundary grid and focuses the training of the CNN
parameters on adjusting the output results. These model
improvement methods effectively improved the accuracy
of the model calculation.

(4) A field test in the Daqing Oilfield in China showed that the
variation in the formation pore pressure obtained via
inversion was 83.12%, in accordance with the results of 20
groups of pressure build-up tests within the range of marker-
stake measurements. Overall, the inversion method of
average formation pore pressure by surface displacement
has a lower cost and is faster.
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