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The geometric properties of rock mass discontinuities are essential for the evaluation of the
safety of rock masses. Numerous studies have recently been performed on the extraction
of discontinuity information. However, most methods are characterized by poor data
collection and processing efficiency. This paper presents a UAV-based methodology for
the accurate and complete acquisition of rock surface data, as well as the automatic
extraction of discontinuity information. Moreover, a program called Random Sample
Consensus (RANSAC) Discontinuity Detection (RDD) is developed to extract
discontinuity information based on the proposed method. The conclusions of this
research are as follows. 1) RANSAC Discontinuity Detection (RDD) can identify the
feature point set of discontinuities from a raw point cloud, and can calculate the
discontinuity orientation. 2) The boundary of a discontinuity can be precisely depicted
using the improved Graham scan algorithm. 3) The orientations of marked discontinuities
extracted by RDD are compared with those extracted by the three-point method in
CloudCompare. The differences in the orientations extracted by the two methods are
found to be less than 3° for flat discontinuities and only about 4.87° for rough
discontinuities, which are within a reasonable error range in practical engineering
applications. Therefore, the feasibility of the proposed method is verified.
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INTRODUCTION

Research indicates that discontinuities are an intrinsic characteristic of rock masses (Umili et al.,
2013), and they have significant influences on rock mass deformation and stability (Kong et al.,
2020). Therefore, the accurate and comprehensive extraction of rock mass discontinuity information
is critical for the assessment of the safety of rock masses.

Traditional surveys are conducted via a window method or a line-scanning method (Gigli and
Casagli, 2010; Zhang et al., 2018; Kong et al., 2020), and require physical contact with the rock surface
(Gigli and Casagli, 2010; Umili et al., 2013); however, this is time-consuming (Zhang et al., 2018;
Kong et al., 2020) and subject to the expertise of the operator (Kong et al., 2020). With the
advancement of measurement techniques, new non-contact surveying methods have been developed
to acquire three-dimensional (3D) rock mass data, and include the total station method (Feng et al.,
2001), close-range photogrammetry (De et al., 2012; Kaufmann, 2012; Francioni et al., 2019), and 3D

Edited by:
Faming Huang,

Nanchang University, China

Reviewed by:
Yi Li,

Changsha University of Science and
Technology, China

Zuyang Ye,
Wuhan University of Science and

Technology, China

*Correspondence:
Na Chen

cn_research@hbut.edu.cn

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Earth Science

Received: 19 May 2021
Accepted: 22 July 2021

Published: 05 August 2021

Citation:
Chen N, Du C and Ding X (2021)

Intelligent Interpretation of the
Geometric Properties of Rock Mass

Discontinuities Based on an
Unmanned Aerial Vehicle.

Front. Earth Sci. 9:711866.
doi: 10.3389/feart.2021.711866

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 7118661

ORIGINAL RESEARCH
published: 05 August 2021

doi: 10.3389/feart.2021.711866

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.711866&domain=pdf&date_stamp=2021-08-05
https://www.frontiersin.org/articles/10.3389/feart.2021.711866/full
https://www.frontiersin.org/articles/10.3389/feart.2021.711866/full
https://www.frontiersin.org/articles/10.3389/feart.2021.711866/full
https://www.frontiersin.org/articles/10.3389/feart.2021.711866/full
http://creativecommons.org/licenses/by/4.0/
mailto:cn_research@hbut.edu.cn
https://doi.org/10.3389/feart.2021.711866
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.711866


laser scanning (Deliormanli et al., 2014; Monsalve et al., 2019;
Wichmann et al., 2019; Jiang et al., 2020). These techniques have
been rapidly utilized in slope monitoring (Kromer et al., 2019;
Giacomini et al., 2020), rock mechanics and stability analysis
(Firpo et al., 2011; Assali et al., 2014), and geomorphology
(Brodie et al., 2015; Boothroyd et al., 2016), as well as the
geological and geotechnical research fields (Giordan et al.,
2018). While 3D laser scanning and close-range
photogrammetry have made great development progress, these
two survey means are characterized by the following
disadvantages: 1) under unique and complex terrain
conditions, it is difficult to find a suitable observation point at
which to set up instruments; 2) scanning devices are expensive,
and the prices of mainstream scanners on the market are more
than 1 million yuan; 3) some rock mass data will inevitably be
missing due to the scanning direction. Due to the conspicuous
cost reduction of vehicles and sensors, as well as the recent
progress in data processing software over the past decade
(Manfreda et al., 2018), the application of unmanned aerial
vehicles (UAVs) in the collection of rock mass information
has been ensured. UAV photogrammetry has many benefits,
such as light and flexible equipment, strong adaptability to
various terrains, and wide coverage (Wang et al., 2020). In
addition, a multi-rotor UAV can take images from different
positions and in different directions, thereby avoiding possible
shadows or vertical deviations in high and inaccessible rock
surfaces (Salvini et al., 2020). Therefore, the use of a light and
small UAV to acquire rock mass information is superior to 3D
laser scanning and close-range photogrammetry in terms of the
equipment cost, portability, efficiency, and integrity of data
collection.

The UAV technique has been applied in slope monitoring
(Rodriguez et al., 2020; Wang et al., 2020), the failure mechanism
analysis of landslides (Xu et al., 2017; Zhang et al., 2018),
photogrammetric inspection (Zhang et al., 2020), and
topographic reconstruction (Agüera-Vega et al., 2018).
However, it is rarely utilized in the extraction of rock mass
discontinuity information. Yathunanthan et al. (2014)
conducted the imaging analysis of a data set generated from
UAV photography to map geological structures, after which the
3D feature coordinates corresponding to the pixel coordinates of
two-dimensional (2D) feature points were calculated from the
digital elevation model (DEM), and the best-fit plane coefficients

were computed. Finally, the discontinuity orientation was
extracted (Yathunanthan et al., 2014). However, in this
method, the geological analysis of the images requires the
acute intuition and deductive and inductive reasoning of
interpreters. Jia et al. (2018) manually selected the exposed
discontinuities from a 3D point cloud generated from UAV
images, and then extracted discontinuity information using the
least-squares plane-fitting algorithm (Jia et al., 2018). It is evident
that the degree of automation of these methods remains to be
increased.

To overcome the low efficiency of the existing methods for
rock mass data acquisition and the low degree of automation in
discontinuity identification, a UAV-based approach for the
automatic identification of rock mass discontinuities is
proposed in this paper. Efficient and comprehensive image
acquisition can be realized by employing a multi-rotor UAV,
and images collected by the UAV can be converted to a point
cloud model of the rock mass via 3D model reconstruction.
Moreover, rock mass discontinuities can be automatically
recognized based on an improved random sample consensus
(RANSAC) algorithm. The proposed method includes the
following steps: 1) 3D model reconstruction; 2) Normal vector
calculation; 3) Discontinuity extraction; 4) Boundary delineation;
5) Discontinuity orientation calculation.

UNMANNED AERIAL VEHICLES
MEASUREMENT SYSTEM AND
WORKFLOW
The survey was conducted using a four-rotor DJI Phantom 3
Professional UAV (Figure 1), which is equipped with a 20-mm
low-distortion wide-angle camera, a GPS/GLONASS dual-mode
system, and an automatic return function. Moreover, the aircraft
supports 4 K video capture at 30 frames per second, and the two
photo formats of JPG and Raw. In addition, the aircraft has the
ability to capture smooth and stable video pictures, and can
actively record all the details of each flight, including the course,
flight time, and other information. The specific parameters of the
UAV are listed in Table 1.

FIGURE 1 | The phantom 3 professional UAV.

TABLE 1 | The parameters of the Phantom 3 Professional UAV.

UAV model Phantom 3 professional

Camera model GL300 B
Image sensor 1/2.3-inch CMOS
Camera resolution 4,000 × 3,000
Effective pixel 12.4 million
Field-of-view angle (FOV) 94°C
Maximum flight height 500 m
Maximum flight altitude 6,000 m
Maximum ascent speed 5 m/s
Maximum descent speed 3 m/s
Maximum horizontal flight speed 16 ms−1

Takeoff weight <1,280 g
Maximum flight time ∼23 min
Working environment temperature 0–40°C
Satellite positioning module GPS/GLONASS bimodal
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A scene survey is the foremost step of, and lays a solid
foundation for, data acquisition. After surveying the site
conditions, the measurement range was determined, and the
easily measured discontinuities were selected and marked. The
DJI GO App, a mobile route-planning software, was used to plan
the route. The flight path should exceed the survey range to shoot
the whole area. The flying height was selected to be beyond the
highest obstacle in the flying area to avoid a collision. It should be
noted that it is necessary to balance the flying height with the
flight time, as the battery consumption caused by an excessive
flying height will exceed the battery capacity. Ultimately, the slope
was photographed from left to right and from top to bottom. The
flight speed was selected as the maximum value, and the camera
angle was set to 45°. To maintain the integrity of the measured
data, some overlaps were maintained between the images. An
overlap of 80% and a side-lap of 50%were respectively used. After

the field investigation, a 3D point cloud was generated from the
photos taken by the UAV.

MATERIALS AND METHODS

The proposed method is divided into five steps, as illuminated in
the flowchart in Figure 2.

3-Dimensional Model Reconstruction
Feature Point Extraction
Due to the strong distortion of photos taken by UAVs, it is
difficult to effectively apply the traditional extraction method
based on geometric and texture features to extract feature points.
The scale-invariant feature transform (SIFT) algorithm is
characterized by the three properties of scaling, rotation, and

FIGURE 2 | The flowchart of the proposed method.
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affine invariance, via which it is capable of resisting certain
illumination changes and viewpoint transformation. Hence,
the SIFT algorithm is adopted for feature point extraction in
the proposed method. The main concept of the SIFT algorithm is
that the scale-space representation of UAV aerial images is
established, after which the extreme points of images are
searched in the scale space and extracted as feature points.

Image Matching
Imagematching is conducted to reconstruct 3D information from
multiple 2D images. However, the process of image matching
using only SIFT feature points is slow. The location data of GPS
coordinates in the images collected by the UAV and the attitude
angle data provided by the inertial measurement unit (IMU) can
assist in the construction of the topological structure between
images. Next, the nearest-neighbor method is utilized to find the
corresponding relationships between the feature points of images
and establish a set of matching feature points that meet the
geometric constraints. A large number of coordinate points
constitutes a 3D point cloud of the target object in space.

Structure From Motion
The image points in the photo are projected into spatial
coordinates according to the principle of camera imaging.
The error function is defined as the sum of squares of the
reprojection errors. The objective function is defined as
follows:

g(Cp,X) � ∑n

i�1∑m

j�1vijf (P(Ci,Xj), qij)2 (1)

where Cp � {C1,C2,C3, ...Cn} are camera parameters, X �
{X1,X2,X3, ...Xm} are the coordinates of space points, the
variable vij represents the visibility of space point Xi in camera
Ci, n is the number of images, m is the number of feature points

obtained by precise matching, and the function f (P(Ci,Xj), qij)2
represents the projection error of point Xj in camera Ci.

Finally, sparse beam adjustment is used for step-by-step
iteration to minimize the reprojection error between the
projected points and the points on the observed images,
thereby calculating coordinates of the 3D point cloud in an
optimal camera pose and camera scene.

Normal Vector Calculation
Considering that normal vector calculation is a necessary process
for the extraction of discontinuities, the next step after obtaining
the point cloud is to calculate the normal vector.

The normal vector calculationmethod consists of two key steps,
namely 1) finding the k-nearest neighbors of each point Pi and
creating the point setQi (Figure 3), and 2) conducting plane-fitting
for each point set Qi and calculating the surface variation.

Nearest-Neighbor Search
A point cloud model commonly includes massive target points in
a 3D region, and lacks topological information. Therefore, the
principal problem of processing point cloud data is to establish a
topological relationship among discrete points and realize the fast
search of the nearest adjacent points.

A k-d tree (referred to as a k-dimensional tree) is a data
structure that represents spatial partitions, and is mainly applied
to search key data in multidimensional space (such as range
searches and nearest-neighbor searches). In this study, the
k-nearest neighbors are searched by the k-dimensional tree.

Surface Variation Calculation
The problem of determining the normal of a point on a surface is
similar to the problem of estimating a section of a normal of a
surface. Therefore, the problem can be transformed into one
concerned with least-squares plane-fitting estimation. In this
study, the surface normal is evaluated by analyzing the
eigenvectors and eigenvalues (or principal component analysis,
PCA) (Riquelme et al., 2014; Robson et al., 2016; Guo et al., 2017)
of the covariance matrix created from the nearest points. The
covariance matrix C corresponding to each point Pi can be
defined as

C � 1
k
∑k

i�1(Pi − P).(Pi − P)T ,C.Vj
→ � λj.Vj

→
, j ∈ {0, 1, 2}, (2)

where k is the number of the adjacent points of Pi, P represents
the 3D centroid of point sets, and λj and Vj

→
are the eigenvalue and

eigenvector of the covariance matrix, respectively. The normal
vector can be determined by the eigenvector that corresponds to
its minimum eigenvalue. After all the normal vectors are
obtained, the subsequent step is to extract rock mass
discontinuities.

Rock Mass Discontinuity Extraction Based
on the Improved Random Sample
Consensus Algorithm
The RANSAC algorithm is an iterative computational algorithm,
which determines the parameters of a predefined mathematical

FIGURE 3 | Qi is the subset of Pi , and α is the normal vector of Pi .

FIGURE 4 | (A) Inliers and outliers are included in the two-dimensional
point set. (B) The line extracted by RANSAC.
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model by randomly selecting a subset sample, and then calculates
the distance from all points to the model. A point is defined as an
inlier if the distance between a point and the model is less than the
threshold; otherwise, the point is regarded as an outlier. The
number of inliers in each iteration is recorded, and the model
with the largest number of inliers is considered as the optimal
model (Uhercík et al., 2010). Figure 4 presents the simple
application of the RANSAC algorithm to 2D data. Figure 4A
displays a set of points that includes inliers and outliers, and in
Figure 4B, the blue line is the generated mathematical model, and
the inliers are indicated in red.

For rock discontinuity extraction (the mathematical
model is a plane), the RANSAC algorithm has two
advantages: 1) it can be directly applied to raw point cloud
data without triangulation gridding, and 2) it has strong
robustness and can process more than 50% of the outliers.
Based on these advantages, the RANSAC algorithm has been
studied for the extraction of planes or discontinuities (Wang
et al., 2019). However, due to the large number of points of a
rock mass, most approaches are inefficient. Therefore, an
improved RANSAC algorithm is proposed to greatly improve
the accuracy and speed of the original algorithm.

Overview of the Improved Random Sample
Consensus Algorithm
Given a point cloud set P � {P1, ..., PN } and the normal vector
N � {n1, ...nN} of all points, the output result is a series of
parameters ψ � {ψ1, ...ψN } of the plane model. In this paper,
local sampling is proposed to acquire new candidate planes in
each iteration. The RANSAC algorithm is then applied to
determine the parameters of the plane model with the highest
score (i.e., the largest number of inliers). All the candidate
planes are placed in the set C, and a new evaluation method is
used to calculate the score m of the best plane. Moreover, |m|
is the number of points in a candidate plane, |c| is the number
of candidate planes, and p(|m|, |c|) is the probability of
ignoring the planes with a higher score. When p(|m|, |c|) is
large enough, the extracted plane is the best, and the
remaining points will be used for the subsequent iteration.
When p(τ, |c|) is sufficiently large, the iteration process is
terminated. Finally, τ (default) is the number of minimum
points on a plane.

Probability Calculation
Consider a point cloud with N points and a plane with n points,
and k is the number of points in theminimum point cloud set that
determines a plane. Provided that any subset with k points will
generate a planemodel, then the probability of detecting the plane
model in one iteration is as follows.

P(n) � ( n
k
)/(N

k
) ≈ (n

N
)k

(3)

When s candidate planes are detected, the probability of
detecting the plane Ψ is as follows.

P(n, s) � 1 − (1 − P(n))s (4)

The threshold value pt is artificially set. The number of planes
T that meet the requirement P(n,T)≥ pt can then be obtained by
solving s, as follows.

T ≥
ln(1 − pt)

ln(1 − P(n)) (5)

Because the value of P(n) is commonly small, its logarithm
ln(P(n)) can be expanded by its Taylor series:
ln(1 − P(n)) � −P(n) + O(P(n)2). The substitution of
ln(P(n)) into Eq. 5 yields the following.

T ≈
−ln(1 − pt)

P(n) (6)

Sampling Method
The complexity of an algorithm is closely related to the sampling
method. The sampling method used in this study is detailed as
follows. Shape is a local phenomenon, and the closer two points
are, the more likely they belong to the same plane. The sampling
efficiency can be greatly improved by utilizing this characteristic.
Research has revealed that it may be effective to increase the
number of inliers within the model by utilizing the locality of the
shape to the sample (Myatt et al., 2002). Generally, in random
sampling, a circle with a given radius is used to randomly select
sample points, but the radius needs to be determined in advance
according to the density and distribution of the points. However,
the density and distribution of outliers vary greatly for different
models; even at different locations on the same model, the density
of outliers can vary dramatically. Therefore, a method is
presented in this paper to adapt to the density of outliers.

The octree structure is an effective method by which to
establish spatial proximity between sampling points. First, the
point p1 is chosen without restriction to create the candidate
plane, and then a set C that includes p1 is randomly selected from
the structural layers of the octree structure. Finally, the remaining
K − 1 sample points are selected from the set C. The probability of
finding the plane ψ containing n points in this manner can be
calculated as follows:

Plocal(n) � P(p1 ∈ Ψ)P(p2...pk ∈ C) (7)

where n/N is the first probability value, and the second
probability value relies on the choice of the elements in the set
C. The set C is considered to be an optimization if abundant
points on the plane ψ are included in the set. Most points on a
plane, excluding boundary points and edge points, have
neighbors that belong to the plane. Generally speaking,
although the adjacent points on a plane cannot be determined
by the element set of the octree structure, the candidate plane
model includes a large number of points to ensure that it is more
representative of the actual data. Therefore, the number of these
neighbors must be as large as the number of elements in the
octree structure, excluding a few points. To facilitate the analysis,
it is assumed that the set C embodies all points pi on the plane ψ
(pi ⊂ ψ), the number of all points on the plane ψ is half of the
number of points in the set C, and the other half of the points in
the set C contains outliers or noise points. The probability of
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choosing a large set C is conservatively evaluated to be 1/d, where
d refers to the depth of the octree structure. Therefore, the
conditional probability of choosing points p2 and
p3 (p2, p3 ⊂ ψ) from the set C set can be calculated by Eq. 8.
Then, by introducing Eq. 8 into Eq. 7 and Eq. 9 can be obtained.

( |C|/2
k − 1

)
( |C|
k − 1

) ≈ (1
2
)k−1

(8)

Plocal(n) � n
Nd2k−1

(9)

Evaluation Method
The evaluation function σp is utilized to evaluate the
extracted candidate plane model. This evaluation function
mainly includes the following three aspects. 1) After the
selected plane is created, the points whose distance to the
plane is less than the distance threshold value ε are regarded
as the points on the candidate plane. 2) The points that meet
the distance requirement will be further filtered. When the
angles between the normal vectors of the detected points and
the normal vectors of the candidate planes are less than the
angle threshold value α, these points will be selected as the
points in the plane. 3) A new threshold value β, which
represents continuity, is added to the proposed method.
For the points that have met the first two requirements,
only those satisfying the continuity requirement can be
selected as inliers on the plane.

In short, for a plane ψ, its evaluation function σp can be
expressed as follows.

σp(Ψ) �
∣∣∣∣Pψ

∣∣∣∣ (10)

For example, points Pψ on a plane model ψ can be defined in
two steps:

PΨ � {p∣∣∣∣p ∈ P∩d(Ψ, p)< ε∩arccos(∣∣∣∣n(p).n(Ψ, p)∣∣∣∣)< α} (11)

Pψ � maxcomponent(Ψ, Pψ) (12)

where d(ψ, p) is the Euclidean distance from point p to plane ψ,
n(p) is the normal vector of point p, n(ψ, p) is the relationship
between the normal vector of the plane model ψ and the
projection of the normal vector of point p on the plane
ψ, and maxcomponent(ψ, pψ) refers to the point set where the
projected points on the plane ψ can form the largest
connected part.

Modified Graham Scan Algorithm
Rock mass discontinuities are generally not standard, and
even very irregular planes. Hence, a new approach is
presented to accurately depict the boundary of the
discontinuities. Feature points of discontinuities extracted
by the method in this paper are normally distributed on two
sides of the vertical direction of extracted discontinuities.
Thus, this 3D issue can be transformed into a problem of
searching the optimal contour of a 2D point cloud by
projecting points onto the fitting plane.

The Graham scan algorithm is a straightforward and efficient
convex hull algorithm (Ferrada et al., 2020), the general concept
of which is to remove points that are not part of the convex hull.
Given a point cloud set S, the point p0 is obtained from S with
the minimum y-coordinate, and the points are then sorted
counterclockwise. By scanning from p0, if p0, p1, and p2 are
on the convex surfaces, they must meet the following property:
p2 is on the left of the vector 〈p1, p2〉; otherwise, p1 should be
removed.

However, the disadvantage of the Graham scan algorithm
is that the first boundary obtained by the algorithm is
convex. Therefore, optimization should be conducted to
tackle this issue. Given the boundary points Mk and non-
boundary points Nj, and provided that there are the two new
lines M1 − N1 and N1 −M2, N1 will be regarded as a new
boundary point if the triangle formed by the two new lines
and M1 −M2 does not include the new boundary point and
the angle formed by M1 − N1, and N1 −M2 conforms to the
tolerance requirement of a concave angle. In addition, the
two new sides can be used to calculate the new boundary
points by utilizing a recursive algorithm. The results of the
Graham scan algorithm and the modified Graham scan
algorithm are respectively presented in Figures 5A,B.

After calculation, all the boundary points with concave-
convex features are acquired. Figure 6 displays the extraction
results of a set of points; Figure 6A presents the result of
the fitting plane, and Figure 6B depicts the boundary of
the fitting plane detected by the improved Graham scan
algorithm.

FIGURE 5 |Boundary detection with the (A)Graham scan algorithm and
(B) modified Graham scan algorithm.

FIGURE 6 | (A) The fitting plane result; (B) the boundary delineation of
the fitting plane.
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Discontinuity Orientation Calculation
Orientation Calculation
The discontinuity of a plane can be represented as follows.

Ax + By + Cz + D � 0 (13)

The normal vector of the plane is as follows.

N � (Nx,Ny ,Nz) � (A,B,C)/ �����������
A2 + B2 + C2

√
(14)

The orientation of the discontinuity can be calculated by the
following equations.When Nz > 0,

β � cos−1(Nz) (15)

If Nx ≥ 0,

α � cos−1
Ny�������

N2
z + N2

y

√ (16)

If Nx < 0,

α � 2π − cos−1
Ny�������

N2
z + N2

y

√ (17)

When Nz < 0,
β � cos−1( − Nz) (18)

If −Nx ≥ 0,

α � cos−1
−Ny�������
N2

z + N2
y

√ (19)

If −Nx < 0,

α � 2π − cos−1
Ny�������

N2
z + N2

y

√ (20)

CASE STUDY

Data Description
The study site was a rock mass slope located in Guishan Park in
Wuhan City, China. The first task was to investigate the field

FIGURE 7 | The 3D model of the slope.

FIGURE 8 | The point cloud model of the slope.

FIGURE 9 | A dialog box for the parameters of the RDD plug-in.
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conditions to determine the survey range and mark the easily
measured discontinuities. The course was then planned, and the
slope was photographed. Ultimately, twenty-six consecutive
images were collected. Each image taken by the UAV was
attached with geotags to provide a geographic reference for
the point cloud, thereby producing highly detailed landform
information (Rodriguez et al., 2020).

Subsequently, images from the survey were used to generate a
point cloud. The 3Dmodel (Figure 7) and point cloud data of the
slope were automatically generated via 3D reconstruction with
Smart3D software. There were 52,639,008 points in the point
cloud data, which rendered it difficult to extract discontinuities in
the later step. The point cloud model of the slope was acquired
(Figure 8) by setting the point spacing of 16 mm in
CloudCompare to down-sample the numerous point clouds.

Discontinuity Information Results
A new extraction procedure called RANSAC Discontinuity
Detection (RDD) was developed to automatically extract rock
mass discontinuity information. The dialog box of RDD is
presented in Figure 9, where ε is the distance from the point
to the discontinuity, α is the angle between the normal vector of a
point and the normal vector of the plane, and β is the distance
between the points that make up a continuous plane.

The slope point cloud presented in Data description Section
was employed to analyze the extraction effect of RDD. Figure 9

exhibits the parameter settings when RDD is used to extract
discontinuities information of rock mass from the slope point
cloud. As shown in Figure 10, most relatively smooth rock mass
discontinuities were entirely detected by RDD, as were some
small and fragmented discontinuities, even when the surface was
rough or there were too many crushed pieces. It should be noted
that the colors of these discontinuities were randomly assigned by
the plug-in.

The results of the three-point method were compared with
those of the proposed RDD to quantitatively analyze the effect of
RDD in identifying discontinuities. Thirteen planes from the
slope model were marked (Figure 11). Similarly, these 13 planes

FIGURE 10 | The extraction result of slope discontinuities.
FIGURE 11 | The discontinuities extracted using the three-point
method.

FIGURE 12 | The discontinuities extracted with RDD.

TABLE 2 | Comparison between the discontinuity orientation results of the three-point method and RDD.

Discontinuity Orientation by the
three-point method (°)

Orientation
by RDD (°)

Difference value of
orientation (°)

Plane 1 83/67 85.36/66.27 0.73
Plane 2 18/48 19.48/52.10 1.48
Plane 3 36/86 35.67/89.54 0.33
Plane 4 14/316 10.90/319.06 3.06
Plane 5 61/275 62.54/273.45 1.54
Plane 6 10/299 11.25/300.98 1.25
Plane 7 89/174 87.82/352.85 1.15
Plane 8 22/12 23.77/11.68 0.32
Plane 9 10/349 15.06/345.40 3.60
Plane 10 27/316 24.21/310.37 2.79
Plane 11 17/323 20.96/324.48 1.48
Plane 12 28/352 26.21/356.85 1.79
Plane 13 28/311 23.13/305.41 4.87
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were marked in the calculation results of RDD (Figure 12).
Table 2 reports the comparative results of the orientations
extracted by the three-point method and RDD. As shown in
the table, when the discontinuities were flat enough, the
difference between the two methods was less than 3°.
Moreover, even for the rough discontinuities (such as plane
12), the difference in orientation was only 4.87°, which is
within the reasonable error range in practical engineering
applications.

CONCLUSION

In this paper, a UAV-based approach was proposed for the data
acquisition of rock masses and the automatic extraction of
discontinuity information, which increases the automation
level of discontinuity extraction and overcomes the
disadvantages of close-range photogrammetry and 3D laser
scanning, such as insufficient data.

Via the proposed method, discontinuity information can be
extracted from the raw point cloud data, and the discontinuity
boundary can be described with high precision.

A new procedure, RDD, was also developed to realize the
automatic extraction of rock mass discontinuities. The
orientations of the marked discontinuities calculated by the
three-point method and the proposed RDD were compared,
and the experimental results demonstrate the following: 1)
RDD can completely detect most relatively smooth
discontinuities, and therefore exhibits a good discontinuity
detection effect; 2) the difference in the values of orientations
calculated by the RDD and the manual three-point method was
less than 3° when the discontinuity was smooth enough. Even for
relatively rough discontinuities, the error was within an

acceptable range for practical engineering applications.
Therefore, the practicability of the proposed method was proven.

Nonetheless, this research was characterized by some
disadvantages. For example, the extraction results of rock mass
discontinuity information do not include the discontinuity
spacing, roughness, degree of weathering, etc. Therefore, future
research will be conducted to systematize the information
extraction of rock mass discontinuities.
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