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It is vital to monitor the post-seismic landslides economically and effectively in high-
mountain regions for the long term. The landslide creep could cause a
subtle change of the overlying vegetation after the earthquake, which will lead to
the change of vegetation spectral characteristics in optical remote sensing data.
The optical remote sensing technique can be used to monitor the landslide
creep areas with dense vegetation in a large range at a low cost because it is
easy to obtain multi-temporal, multiple-scale, and multi-spectral information. We
identified and extracted the vegetation change area before the 2018 Baige landslide
by the high-resolution optical remote sensing data. Firstly, the image fusion method was
used to improve the accuracy of change detection. Then, vegetation coverage before
the landslide was calculated. The vegetation change was identified, and qualitative and
quantitative methods were used to analyze the spatio-temporal changes of vegetation
coverage. Our results indicate that the creep distance of the landslide is about 50 m
and the vegetation in the back scarp area and the main sliding area display a
significant downward trend with time closing to the landslide comparing with that
in the reference area. The vegetation change in the remote sensing image has
an excellent spatio-temporal correlation with the landslide creep. This study
provides a possible way and perspective for monitoring post-seismic landslide
disasters.

Keywords: post-seismic landslides, vegetation change, landslide creep, high-mountain regions, optical remote
sensing technique

HIGHLIGHTS

1. The changes in environmental conditions caused by the landslide creep have an impact on
vegetation growth;

2. The vegetation change has an evident spatio-temporal correlation with the landslide creep;
3. The high-resolution optical remote sensing technology can be used to identify the vegetation

change. For potential landslides in large-scale high-mountain areas, this method can be used for
preliminary investigations economically and effectively.
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INTRODUCTION

The effect of earthquakes on landslides is not only in the seismic
stage but also in several years after the earthquake. The slope
formed some cracks during the earthquake and did not slide
immediately but formed potential landslides. Previous studies
have found that these potential landslides will be in an unstable
state for a long time (years to hundreds of years) after the
earthquake (Khattak et al., 2010). Moreover, due to the seismic
topographical amplification effect (the seismic whiplash effect) (Xu
et al., 2017), cracks mainly formed in the upper part of the slope,
which is hard to be reached by the field investigation. When these
areas are affected by rainfall, the shear strength of the mass will
reduce, and the stability of the slope will decrease. Finally, the slope
becomes unstable and forms a large and destructive landslide (such
as the Xinmo village landslide in 2017). Southwest China is an
earthquake-prone area characterized by high and steep topography
and dense vegetation. So, it is challenging to monitor the potential
landslides in high-risk areas after the earthquake, especially in
remote or poor accessible regions. It is vital to monitor high-risk
areas economically and effectively in the long-term change process
after the earthquake.

Field displacement measurement is the main method for
monitoring landslides. Moreover, the common non-contact
displacement monitoring methods include the global positioning
system (GPS) monitoring method Wang (2011) and the synthetic
aperture radar (SAR) monitoring method (Bianchini et al., 2018).
But the range of GPS monitoring is limited; the monitoring network
of GPS needs to be established in advance; the instruments of GPS
must avoid being sheltered by vegetation during the monitoring
period. The complex environment in the mountain areas will
increase the difficulty of network layout and increase the cost of
operation (Fan et al., 2006). The GPS monitoring method, which
uses the point as the monitoring unit, is difficult to reflect the
continuous change information of the land. For the interferometric
synthetic aperture radar (InSAR) monitoring method, the phase
unwrapping is difficult. Complex terrain and dense vegetation will
cause phase decorrelation of radar data. Therefore, some slopes are
difficult to be photographed (Wang et al., 2010). InSAR monitoring
is not suitable formonitoring landslides in themountain and canyon
areas. The intensity tracking method of offset tracking technology
which is insensitive to the coherence of SAR images is suitable for the
low coherence area with significant characteristics (Yang et al., 2017).
This method has been used in monitoring landslides. It matches
images based on the feature information, also known as feature
matching. This method generally needs bright targets (e.g., buildings
and bare rocks), providing accurate and reliable estimations (Jia
et al., 2020). However, it will be difficult to find buildings and bare
rocks when the slopes are covered by dense vegetation.

The optical remote sensing technique, with the characteristics
of non-contact, large-scale, periodic observation, multiple
archived data, and rich spectral information, is an essential
mean of landslide monitoring. The landslide deformation
monitored by optical remote sensing mainly focuses on
identifying the deformation of the slope or the cracks and bare
land caused by the deformation. Sub-pixel phase correlation of
optical remote sensing images can be used to obtain deformation.

The deformation can be obtained by calculating the offset
between two optical remote sensing images, reflecting the
position deviation of points in the two images. It has been
used in some earthquake cases (Michel and Avouac, 2002;
Dominguez et al., 2003; Binet and Bollinger, 2005). However,
when the deformation, cracks, and bare land are hidden by
vegetation, the method will be helpless.

Vegetation is the first layer of Earth observation. The weak
information of vegetation change can reflect the geological
activities, which has been applied in the investigation of mine
and the identification of the fault (Zhao, 2013). Many slopes have
a slow creep stage before the landslide. Sometimes cracks and
small landslides will form on the creep slopes. The deformation in
this stage will change the rock, soil, water, and other things in the
surrounding areas, influencing the overlying vegetation (Ding
et al., 2013; Du et al., 2013). Finally, it will lead to the change of
vegetation spectral characteristics in optical remote sensing data.
These vegetation change phenomena are common in geological
investigations.

When the landslide deformation is hidden by vegetation, the
vegetation can be considered the monitoring object. The spectral
characteristics of vegetation can be used to indicate landslide
creep. The image fusion can enhance the weak information of
vegetation variations and explore the relationship between the
vegetation change and the landslide in the remote sensing data
before the landslide (Guo et al., 2020). The vegetation spectral
change in optical remote sensing data can be used to identify the
deformation of the land effectively. It can delineate the potential
geological hazards and study the dynamic evolution process and
characteristics of disaster deformation by the multi-temporal
remote sensing data, which is helpful to determine the risk
degree of hidden danger. This monitoring method can make
up for the deficiency of the existing monitoring technique in the
dense vegetation and high-mountain areas and assist in
monitoring the landslide in the long-term change process after
the earthquake. This method can be used to preliminary
investigations of potential landslides economically and
effectively in large-scale areas. Then it can combine with visual
interpretation, SAR, and other techniques for further
confirmation in the key areas. This study focuses on the Baige
landslide in the Jinsha River, SE Tibet, to monitor the landslide
after the earthquake through the vegetation change.

STUDY AREA AND DATA

Study Area
The Baige landslide with a source volume of 23 million m3 on
October 11, 2018, occurred on the western bank of Jinsha River, a
junction of Baiyu County (Ganzi Prefecture, Sichuan Province)
and Jiangda County (Changdu City, Tibet Autonomous Region)
(Figure 1). A second slide occurred at the same location on
November 3, 2018. The second landslide volume was about 3.5
millionm3, and the entrainment volume was about 8.5 millionm3

(Fan et al., 2020). The landslide blocked the trunk stream of the
Jinsha River and formed a barrier lake, which endangered Baiyu
County, Batang County, and Delong County.
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The Baige landslide is located in the Southeastern Tibetan
Plateau, which has steep topography, fierce landform incision,
and broken rocks. Several structures are striking in the NW
direction; significant among them are the Bolou-Muxie, Zhuying-
Gonda, Xuenqing-Longgang faults, and the Shandong-Baba
Anticline. The landslide is located on the edge of the
BolouMuxie fault. The strata outcropping in the landslide area
mainly consist of gneiss (Ptxn

a), granite (γδ52), limestone (T3jn),
and serpentinite (φω4) (An et al., 2021). The landslide headscarp
developed within the serpentinite from Variscan orogeny. The
landslide body is mainly composed of gneiss and serpentinite.
The borehole data show that the rock masses are extremely
broken in the study area. The water in Bogong Gully has
infiltrated the landslide body for a long time (Zhong et al.,
2021). Zhang et al. (2020) think that serpentine in the Baige
landslide was altered into clay minerals, such as montmorillonite
or illite. Clayey altered rock is a weak interlayer, which
significantly reduces the shear strength of the potential slip
zone. It is rich in clay minerals and has good water
absorption. The engineering properties of the altered soft rock,
which shrink/swell with drying and wetting, are weak under the
influence of water (Zhang et al., 2011). It will further deteriorate
the slope rock structure. Finally, the serpentine strata gradually
transformed into a creep zone (Fan et al., 2019).

In history, several strong earthquakes occurred around the Baige
area, such as the 1842Mw7.3 Zongguo earthquake, the 1870Mw7.2
Batang earthquake, and the 1989Mw6.5 earthquake (SSB, 1995;
Ambraseys and Douglas, 2004). In recent years, earthquakes
occurred around this area, including the 2013 Ms6.1 Changdu
earthquake. The Changdu earthquake induced 37 new potential
hazards in Jiangda county and 57 new potential hazards in Baiyu

County (Wang et al., 2019). These earthquakes intensified the
deformation of some potential landslides and promoted the
occurrence of the Baige landslide. Finally, under the rainfall and
the long-term gravity, the Baige landslide loses stability.

Data Description
In this study, the images used for vegetation change detection
need to be of good quality, from the same period each year, and
without clouds. SPOT images have Ortho-Level images, which
have been done ortho-rectification with few geometric
distortion and good quality. According to the geographic
conditions of the Baige landslide and the limited free image
data available, a minimum number of SPOT-6 and SPOT-7
Ortho-Level images were selected. Panchromatic (PAN) band
and multispectral (MS) bands (B, G, R, NIR) of SPOT-6 and
SPOT-7 images were both used in this study. These images
without clouds can provide reliable data sources for acquiring
vegetation growth information before the landslide. These
images come from the same period of 3 years (2014–2017),
which reduces the interferences of the season (including
rainfall, temperature, and other factors) to vegetation
change. The information on remote sensing data is shown in
Table 1.

FIGURE 1 | Topographic and geologic maps of Baige landslide (A) Topographic map (The insert shows the location of the study area in China). (B)Geological map
(modified from Fan et al., 2019). F1: Xuenqing-Longgang Fault; F2: Zhuying-Gonda Fault; F3: Zeba-Xietang Fault; F4: Boluo-Muxie Fault; F5: Gangda-Dizhong Fault; M1:
Shandong-Baba Anticline; T3jn: Upper Triassic Jingu Formation; T3x

2: Upper Segment of Upper Triassic Xianisongduo Formation; T3x
1: Lower Segment of Upper

Triassic Xianisongduo Formation; C2sh: Upper Carboniferous Shengpa Formation; Ptxn
a: Upper Proterozoic Xiongsong Group Gneiss Formation; φω4: Late

Paleozoic Variscan Jinshajiang ultramafic belt and serpentinite; ηγ52: Yanshanian Gepo superunit fine grained monzonitic granite; γδ52: Yanshanian Zeba superunit
Muzha fine-grained granodiorite and quartz diorite.

TABLE 1 | Remote sensing data covering the Baige landslide.

Image source Time of acquisition Spatial resolution/m

SPOT-6 2014/05/18 PAN-1.5, MS (B, G, R, NIR)-6
SPOT-7 2015/05/30 PAN-1.5, MS (B, G, R, NIR)-6
SPOT-7 2017/05/08 PAN-1.5, MS (B, G, R, NIR)-6
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METHODS

The steps to detect vegetation change are listed as follows
(Figure 2): 1) Acquire remote sensing images and interference
factors; 2) select appropriate fusion method; 3) divide Baige
landslide and calculate vegetation coverage; and 4) analyze
vegetation anomaly.

Selection of Image Fusion Method
The recognition ability of vegetation change in remote sensing
images should be enhanced before the landslides. It is necessary to
improve the spatial and spectral resolutions and then integrate
them as much as possible. The remote sensing image fusion
method can integrate the spatial and spectral information of
multiple images, which can provide more abundant and complete
information than that of any single image. It is an important step

in remote sensing image processing, such as information
extraction, change detection, and target recognition. However,
different image fusion methods have different results. Some
results may interfere with vegetation change detection. We try
to guarantee the detected vegetation anomaly caused by the
landslide creep rather than the fusion method. So, we chose
five fusion algorithms for comparative experiments to select the
fusion method with the least interference, including high pass
filtering (HPF) (Ranchin andWald, 2000), principal components
analysis (PCA) (María et al., 2004), Gram-Schmidt (GS)
(Clayton, 1971), Pansharpening (Zhang and Mishra, 2012) and
nearest-neighbor diffusion-based pan-sharpening algorithm
(NND) (Sun et al., 2014).

The Pansharpening method has been used in the SPOT
fusion-level products. So, the SPOT fusion-level product can
be used as the fused result of the Pansharpening method. But
the SPOT fusion-level products are not processed by the
atmospheric correction. Referring to the processing flow of
the SPOT fusion-level products, we do not implement the
atmospheric correction for the experimental images to ensure
the consistency of the image processing flow. The panchromatic
(PAN) and multispectral (MS) images of SPOT were directly
calibrated to the reflectance image. Then, the five fusion methods
were used to fuse the image.

Finally, we evaluated the results of image fusion and chose the
appropriate fusion method. In this study, vegetation and bare land
were the key objects that can reflect vegetation growth on the
surface. Owing to the spectral fidelity of remote sensing data
relating to the monitoring results of vegetation, the quality of
the fused image is evaluated from the visual effect evaluation,
spectral curves of vegetation and bare land, and distributions of
normalized difference vegetation index (NDVI). We select the best
image fusion method which is suitable for monitoring vegetation.

Division of the Baige Landslide
This paper aims to study the vegetation change caused by landslide
creep. Besides, human activities and other factors will also interfere
with vegetation. So, it is necessary to control the environment
variables and obtain a single environment variable zone. The
zoning excludes unrelated factors such as human activities to
ensure the consistency of vegetation growth conditions within
the same physical geographical units. Therefore, we combined the
interpretation of high-resolution remote sensing data to divide the
slope into different units before the Baige landslide.

Firstly, the main sliding area at the back part of the Baige
landslide, with dense vegetation, was identified. In previous
studies, the visual interpretation of historical satellite images
shows that the site has experienced creep deformation in the
last 50 years. Cracks and slight surface disruption had shown in
1966. The slope might have been already deforming and prone to
failure. In this study, the interpretation results of Google Earth’s
high-resolution remote sensing data (Figure 3A) show that the
vegetation area had slipped and formed the back scarp of
the landslide before 2011 (Fan et al., 2019). Since 2011, the
displacement of vegetation area at the back part of the
landslide increased rapidly, and the shear fractures on both
sides formed. The road in the vegetation area was significantly

FIGURE 2 | Procedural flow chart of this study.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 7069984

Guo et al. Detecting Vegetation Change Relating Landslide

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


dislocated at the shear crack. As time went by, the road was
abandoned, and the sliding distance of the road increased
(Figure 3B). Therefore, the vegetation area at the back part of
the landslide was determined as the main sliding area, and the
area shown in the red box (Figure 3A) was determined as the
focus area.

Then, according to the interpretation result of human activities,
this study made a detailed division. In the selected red box area, the
landslide edge was taken as the boundary to divide this area into two
parts: the landslide area (area ①) and the external area of the
landslide. In the external area of the landslide, there were many
communities on the left side, as shown in Figures 3C–E. They may
interfere with the vegetation. However, there were no communities
near the right side. Since the road was abandoned, the right side of
the landslide had few human activities, especially the area drawn by
the white box hardly was disturbed by human activities, as shown in
Figure 3B. This area was on the same slope as the landslide, which
had the same natural conditions as the landslide. It was helpful to
verify the effect of the landslide creeps on vegetation. So, the area in
the white box was regarded as the reference area (area ②).

Vegetation Coverage Information
Acquisition
Vegetation coverage can directly show the surface vegetation
situation and is often used as an evaluation factor in geological
hazard assessment, prevention, and mitigation. We used the
dimidiate pixel model to calculate the vegetation coverage maps.

The dimidiate pixel method assumes that the land in a pixel is
composed of vegetation area and non-vegetation area (soil or bare
land). The spectral information of this land observed by remote
sensing sensor is also composed of these two elements by linear
weighting. The weight of each element is the proportion of their
respective area in the pixel. The vegetation coverage can be

regarded as the weight of vegetation (Leprieur et al., 1994;
Chen et al., 2001; Zribi et al., 2003).

NDVI is also a kind of quantitative value that reflects the
growth of vegetation on the land. It is calculated from the spectral
information of land objects received by remote sensing sensors, as
shown in Eq. 1. Since the atmospheric correction was not
conducted in this study, NDVI can partly eliminate the
atmospheric influence to reduce the atmospheric disturbance
as much as possible. According to the dimidiate pixel model,
the NDVI value of a pixel can be expressed as the information of
NDVIveg contributed by vegetation and the information of
NDVIsoil contributed by non-vegetation (soil or bare land).
Moreover, it is shown that different indicators used to
calculate vegetation coverage have different characteristics,
among which NDVI is the most widely used in previous
studies (Li, 2003). Therefore, the vegetation coverage can be
expressed by the following formulas:

NDVI � ρNIR − ρR
ρNIR + ρR

(1)

where ρNIR is the reflectance of the near-infrared band; ρR. is the
reflectance of the red band.

Fc �
⎧⎪⎨
⎪⎩

0, NDVI ≤NDVIsoil
(NDVI − NDVIsoil)/(NDVIveg − NDVIsoil),NDVIsoil ≤NDVI ≤NDVIveg
1, NDVI ≥NDVIveg

(2)

where Fc is the vegetation coverage value; NDVIsoil is theNDVI of
the area entirely covered by soil; NDVIveg is the NDVI of the area
entirely covered by vegetation.

In theory, NDVIsoil and NDVIveg should be determined by the
field investigation. However, due to the Baige landslide has
already happened, we can not verify NDVIsoil and NDVIveg by
the field investigation. Previous studies usually use the statistics of

FIGURE 3 | The Baige landslide (A) Interpretation map of Baige landslide (modified from State Key Laboratory of Geohazard Prevention and Geoenvironment
Protection, 2018 (http://www.sklgp.cdut.edu.cn/info/1018/2247.htm)) (B) Deformation map of the road (C) Community-1 (D) Community-2 (E) Community-3.
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NDVI to get the cumulative percentage of eachNDVI and then set
the confidence interval of the cumulative percentage to determine
the NDVIsoil and NDVIveg (Li et al., 2014). Therefore, we count
the cumulative percentage of each NDVI value in the remote
sensing image at first. Secondly, we use the visual interpretation of
remote sensing images to determine the vegetation area and the
bare land area. Then, we use different confidence intervals to
obtain the vegetation area and the bare land area. Finally, we
compare the area obtained by different confidence intervals with
the area obtained by visual interpretation to determine the
suitable confidence interval. However, this method relies too
much on visual interpretation. Sometimes there may be a
slight deviation in the confidence interval of the best matching
state obtained by visual interpretation of images in different
phases. To obtain the consistent and best consistent vegetation
coverage, we unify the confidence intervals of the three phases,
getting 2%–98% as the confidence interval.

According to the confidence interval, this study determined
the NDVIsoil and NDVIveg. The NDVI, whose accumulated
percentage was 2% in the Baige landslide, was defined as
NDVIsoil (i.e., The pixel’s NDVI, which was less than
NDVIsoil, was entirely covered by soil). The NDVI, whose
accumulated percentage was 98% in the Baige landslide, was
defined as NDVIveg (i.e., The pixel’s NDVI, which was more
than NDVIveg, was entirely covered by vegetation). Finally, the
vegetation coverage of the Baige landslide was calculated
according to Eq. 2. Besides, the vegetation coverage from
high to low was transformed into the corresponding color
from red to purple by the pseudo-color density segmentation.
The calculation of vegetation coverage and pseudo-color

enhancement can highlight the subtle vegetation changes
related to landslide creep.

RESULTS

Effect of Image Fusion
In the comparative experiment, the originalMS reflectance imagewas
taken as the reference image. The fused images obtained by different
fusion methods were compared. The results of the fused images are
shown in Figure 4. Owing to the PAN and MS images in the fusion
experiment gotten from the same sensor in the same phase, the color
differences of most fused images were inconspicuous. They can
effectively improve image clarity and visual effect.

The spectral fidelity of vegetation and bare land was analyzed
from the shape and scope of the reflectance spectrum curve in
different fused images, as shown in Figure 5 and Figure 6. In
Figure 5, the spectral reflectance curve of the vegetation in the
NND fused image is the most consistent with that in the MS
image, and the fidelity of the NND fused image is the best.
Although the shapes of these spectral reflectance curves of
Pansharpening, HPF, GS, and PCA fused images are not
significantly different from that of the MS image, these
reflectance values of fused images are high and spectral fidelity
is poor. In Figure 6, the spectral reflectance curves of the bare
land in the NND and PCA fused image have the same trend and
good fidelity as that of the MS image. The curve trend of the HPF
fused image is inconsistent with the MS image. Although the
shapes of these spectral reflectance curves of Pansharpening and
GS fused images are not significantly different from that of the

FIGURE 4 | Visual effects of different fusion methods (A)MS image (B) Pansharpening fused image (C)HPF fused image (D)GS fused image (E) PCA fused image
(F) NND fused image.
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spectral reflectance curve of MS image, these reflectance values of
fused images are high, and their spectral fidelity is poor.

This study calculated the NDVI values of the MS image and
fused images. The main objects in the selected study area are
mainly bare land and vegetation, without clouds, water, and
snow. So, the NDVI distribution values range from 0 to 1. The
distributions of NDVI from these images are shown in Figure 7.

The NDVI of the MS image was regarded as the actual value to
compare with otherNDVI values of the fused images (Table 2): 1)
The maximum and minimum values of each NDVI result were
counted. NDVI values are mainly distributed between 0.25 and
0.45 in the MS image. The distribution of NDVI values obtained
by PCA fusion is mainly distributed between 0.25 and 0.5. In the
MS image,NDVI appears most frequently around 0.4. In GS fused

FIGURE 5 | The spectral reflectance curves of vegetation with different image fusion methods (A)MS image (B) Pansharpening fused image (C) HPF fused image
(D) GS fused image (E) PCA fused image (F) NND fused image.

FIGURE 6 | The spectral reflectance curves of bare land with different image fusion methods (A)MS image (B) Pansharpening fused image (C) HPF fused image
(D) GS fused image (E) PCA fused image (F) NND fused image.
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image, NDVI appears most frequently around 0.3. 2) In the
mean NDVI, the approximation ratio of the mean NDVI was
calculated. The approximation ratios of the mean NDVI
obtained by these fused images and the MS image can almost
reach 100%, except HPF fused image. 3) In the distribution of
NDVI, we calculated the root mean squared error (RMSE) of the
NDVI to measure the deviation between the NDVI values of the
fused images and the actual NDVI value. This study compared
the NDVI distribution of the fused images with that of the MS
image. We found that the NDVI distribution of the fused images
is similar to that of the MS image when RMSE is within 50. So,
this study used RMSE as the criteria. The NDVI distribution of
the NND and Pansharpening fused images are the most similar
to the actual distribution.

According to the visual effect, the spectral curve of
vegetation and bare land, and the distribution of NDVI, we

found that the NND fusion method is superior to the other
four fusion methods for this study. It can keep the actual
spectrum of bare land and vegetation and keep the actual
distribution of NDVI. So, it is the best method for bare land
and vegetation and selected as the fusion algorithm of this
study. Moreover, the experiment also proves that calculating
NDVI by suitable fused remote sensing images to monitor the
vegetation is reasonable.

Vegetation Change Related to the Creep
The study obtained the fused remote sensing image (Figures
8A–C), the maps of vegetation coverage (Figures 8D–F), and the
maps of vegetation change (Figures 8G–I) of the Baige landslide.
We can judge whether the landslide is sliding or not through the
visual interpretation of fusion image, qualitative and quantitative
study of vegetation coverage. For landslides with a long creep
distance, we can outline the boundary of the landslide according
to the change of vegetation coverage and judge the creep distance
of the landslide.

The range of bare land and the landslide boundary can be
identified from the remote sensing image. The solid black line in
Figure 3 is the landslide boundary, which is consistent with the
first landslide boundary of the Baige landslide designated by the
State Key Laboratory of Geohazard Prevention and
Geoenvironment Protection (2018) (http://www.sklgp.cdut.edu.
cn/info/1018/2247.htm). Moreover, the creep history can be

FIGURE 7 | NDVI distribution of different fused images (A) MS image (B) Pansharpening fused image (C) HPF fused image (D) GS fused image (E) PCA fused
image (F) NND fused image.

TABLE 2 | NDVI of the fused image.

NDVI MS image Pansharpening HPF GS PCA NND

Mean 0.305 0.305 0.306 0.305 0.305 0.305
Max 0.668 0.645 0.630 0.687 0.724 0.647
Min 0.015 0.014 0.026 0.006 −0.028 0.017
RMSE — 30.474 58.569 65.924 82.298 32.810
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determined according to the road displacement within the
landslide (as shown in Figure 3).

The vegetation coverage change in the study area with time has
significant spatial heterogeneity. It indicates that the vegetation in
the study area is disturbed by the uneven distribution of
influencing factors. We think that the main influencing factor
may be landslide creep, according to the displacement of the road
in Figures 8A–C. Therefore, the vegetation anomaly area at the
middle part of the study area is the landslide-prone area that
needs to be paid attention to. The change of vegetation coverage
on both sides of the study area is complex. Therefore, we further
divided the study area according to Figures 8A–C. The study area
was divided into four zones: A-D. Area A is the back scarp of the
landslide, where the bedrock is exposed because of the previous
sliding. Area B is the main sliding area of the landslide, where the

vegetation is still preserved. There is a significant boundary
between area A and area B. It can be used as a marker for
monitoring the creep distance of the landslide. Area C and area D
are located out of the first landslide area and may be disturbed by
the main landslide area. Area C had been creeping since 2014, and
it slid in the second landslide. There are significant cracks on the
left side of area D caused by the earlier sliding. After that, area D
tends to be stable. There is still no sliding in the second landslide,
which can be used as a reference area for the study of area C.

The change of vegetation coverage can be used to monitor the
landslide creep. As the reference, the vegetation coverage in the
reference area (area②), which is unlikely to slide, decreased from
2014 to 2015 and then increased from 2015 to 2017. It is regarded
as the background value of the vegetation coverage change. Before
the first landslide, the vegetation coverage of area B decreased

FIGURE 8 | Remote sensing data and vegetation coverage map of Baige landslide (A) SPOT-6 image of May 18, 2014 (B) SPOT-7 image of May 30, 2015 (C)
SPOT-7 image of May 8, 2017 (D) Vegetation coverage map of May 18, 2014 (E) Vegetation coverage map of May 30, 2015 (F) Vegetation coverage map of May 8,
2017 (G) Vegetation coverage change map of 2014–2015 (H) Vegetation coverage change map of 2015–2017 (I) Vegetation coverage change map of 2014–2017.
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significantly, and the creep of the landslide can be identified. The
scope of area A gradually expanded with time. It means that area
A and area B, which compose area ① (landslide area), are
dangerous. The vegetation coverage of area C has decreased
before the first landslide. According to the displacement of
roads in area C, this area has crept from 2014. It means that
area C is also dangerous. Then this area slid in the second
landslide. Vegetation coverage change of area D is not
significant before the first landslide, which means the danger
of area D is not high. Area D did not slide in the first and second
landslides (Ouyang et al., 2019).

It is not intuitive to show the creep of landslides only through the
change of vegetation coverage. So, we calculated the vegetation
coverage difference in 2014–2017. The negative value indicates
the increase of vegetation coverage, and the positive value
indicates the decrease of vegetation coverage. According to the
vegetation coverage change in the area ② (reference area), we
think that the vegetation coverage change at 0–0.2 is normal and
reasonable in 2014–2017. Because the area② is in the natural state
and unlikely to be disturbed by landslides, human activities, and
other interference factors, we use a 0.2 reduction of vegetation as the
threshold of the vegetation coverage change in 2014–2017.When the
difference of vegetation coverage is between−1 and 0.2, it means that
the vegetation is in the natural state or vegetation coverage is
increasing. The difference map of vegetation coverage was
counted, and the results are shown in Table 3. As time goes on,
the proportion of vegetation coverage differences between−1 and 0.2
decreases by more than 10%; the proportion of vegetation coverage
difference between 0.2 and 0.8 increased rapidly. In this study, the
difference map was colored with pseudo color at an interval of 0.2.
The areas in the natural state or with increasing vegetation coverage
or are set as colorless. We obtained maps of vegetation coverage
difference in 2014–2015 (Figure 8G), 2015–2017 (Figure 8H), and
2014–2017 (Figure 8I). The vegetation coverage of areas not affected
by landslides increases or remains unchanged (e.g. area ②), while
the vegetation coverage of the landslide area decreases significantly
(e.g. areas A, B, C).

The road construction caused the abnormal decrease of
vegetation coverage in the upper part of the study area
(Figure 8I). Moreover, according to the scope of vegetation
coverage reduction area, the shape of the creeping landslide
can be roughly outlined (Figure 8I). Although area D has bare
land and its vegetation coverage is low (Figures 8D–F), the
vegetation coverage change is similar to that of the

background value, which contrasts with that of area C
(Figure 8I). Area C and D did not slide in the first landslide,
but area C slid in the second landslide. The decrease of vegetation
coverage in 2014–2015 is far smaller than that in 2015–2017.
Therefore, the creep distance of the landslide in 2014–2015 is far
less than that in 2015–2017. At the same time, there are three
significant strips α, β, and γ in the region, respectively
corresponding to the exposed area of the back scarp of the
landslide mass. According to the width of strips α, β, and γ in
the east direction, we estimate that the creep distance of the three
strips is roughly the same, about 50 m.

DISCUSSION

Validation of Vegetation Coverage Change
Related to the Creep
In this study, the displacement of the landslide caused the
vegetation coverage change. With the increase of the
displacement, the vegetation coverage change became more
and more significant. Vegetation coverage change in the
remote sensing data had a spatio-temporal correlation with
the landslide creep before the landslide occurred (Figure 8).

This study is compared with other studies employing multiple
methods for validation. In the Baige landslide, Ding et al. (2021)
identified the active landslide region with a mass advancing
motion from west to east (i.e., from up to down). It is
consistent with the local topography. The spatial heterogeneity
in the displacement velocity field is significant. So, the main
landslide body can divide into several blocks. Area B, where the
vegetation coverage change is significant, is the dominant
deformation area. The State Key Laboratory of Geohazard
Prevention and Geoenvironment Protection (2018) (Figure 6)
also found that the landslide slid intermittently in blocks and
grades since 2011 (http://www.sklgp.cdut.edu.cn/info/1018/2247.
htm). Liu et al. (2020) found that the cumulative deformations of
area B in the satellite line of sight direction and the azimuth
direction reached −60.2 and 12.6 m, respectively. Xiong et al.
(2020) found that area B has the maximum average displacement
velocity, and its largest horizontal deformation rate exceeds 5.
8 m/yr. The sliding speed became faster after January 15, 2017. It
shows that the result of this study is consistent with other studies.
The change of vegetation coverage can be used to identify
potential landslides in the area with dense vegetation.

TABLE 3 | Statistics of vegetation coverage difference.

Vegetation coverage difference Percentage of vegetation coverage difference area/(%)

2014–2015 2015–2017 2014–2017

−1–0.2 93.88 88.00 83.87
0.2–0.4 4.10 9.35 10.92
0.4–0.6 1.82 2.23 4.21
0.6–0.8 0.19 0.42 0.92
0.8–1.0 0.01 0.00 0.08

Note: The positive number means “vegetation coverage decrease”; the negative number means “vegetation coverage increase.“
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Common Vegetation Change in the
Landslide Area
The phenomenons of vegetation change before landslides are
common in the mountainous area of southwest China, such as
the Xinmo village landslide. The Xinmo village landslide is a ridge-
top landslide on June 24, 2017 inMaoxian county, Sichuan Province
(Yin et al., 2017). This area has dense vegetation coverage and may
be affected by the Diexi earthquake in 1933, the Pingwu-Songpan
earthquake in 1976, and the Wenchuan earthquake in 2008. A
previous study found that the vegetation change also exited before
the Xinmo village landslide (Guo et al., 2020).

In the previous study, the inherent relationship between the
vegetation change and the creep of the Xinmo village landslide
was detected by high-resolution optical remote sensing images. In
the upper landslide area, the vegetation coverage affected by the
creep of landslide declined from 2014 to 2016. With the distance
from the bare land edge of Xinmo village landslide increasing, the
smaller the effect of landslide creep is, the better the status of
vegetation gradually becomes. As time goes on, the more
significant the impact of landslide creep is, the worse the
vegetation becomes. In the middle potential impact area, the
vegetation coverage around the springs and gullies declines with
the more significant effect of landslide creep as the landslide time
approaches. The vegetation change of the upper landslide area
and the middle potential impact area has an evident spatio-
temporal correlation with the landslide creep.

It proves that the phenomenon of vegetation change in the
landslide creep stage is universal and can be detected by high-
resolution optical remote sensing images. For potential landslides
in large-scale earthquake-affected areas, this monitoring method
is robust and can be used for preliminary investigations. Then it
can combine with visual interpretation, SAR, and other
techniques for further confirmation in the key areas.

Application Conditions and Potential
The method is mainly used in large-scale surveys after earthquakes,
especially in poor accessible high-mountain areas. The field
investigation and GPS data may not be effectively used in poorly
accessible areas, and even SARdata cannot be obtained in these areas
with dense vegetation. It monitors landslide-prone areas
economically and effectively in the long-term natural evolution,
which applies to the case without significant environmental change,
such as no earthquake event or no rare heavy rain event. This
method will be used in a large range and at a low cost as a valuable
supplement to the GPS and SAR. If there are earthquakes and rare
heavy rain in natural evolution or this is a key area, we will consider
combining it with GPS, SAR, and other methods. The fusion
technology of optical remote sensing images and SAR images can
be used to improve the method.

In the future, Sentinel-2A/B remote sensing images widely
used in the study of landslides (Guo et al., 2021) can also be used
as a new data source. It has the advantages of free access, short
revisit cycle, high spatial resolution, and red edge band, which
usually be used to monitor vegetation. Sentinel-2A/B remote
sensing images have great potential for the application of this
method. Moreover, this method can detect changes over time-

series images in a larger range and a longer time, combined with
the machine learning method.

CONCLUSION

This study can validate the indicative effect of vegetation change
in the landslide creep stage. The changes in environmental
conditions caused by the creep of landslides impact the
vegetation growth, which can be identified by the optical
image fusion of multi-temporal remote sensing data. The
change of vegetation coverage can reflect the landslide creep.

The vegetation coverage in the back scarp area and the main
sliding area of the Baige landslide significantly decreased
compared to that in the normal area. The extent of vegetation
coverage reduction can reflect the degree of creep, and the
reduced area can show the outline of the potential landslide
area. The vegetation change has an evident spatio-temporal
correlation with the landslide creep in the Baige landslide.

This study can provide a new light to monitor potential
landslides in high-mountain regions after the earthquake. For
potential landslides in large-scale high-mountain areas, this
method can be used to preliminary investigations
economically and effectively. Then for the key areas, it can
combine with visual interpretation, SAR, and other techniques
for further confirmation.
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