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Landslide disaster risk reduction necessitates the investigation of different geotechnical
causal factors for slope failures. Machine learning (ML) techniques have been proposed to
study causal factors across many application areas. However, the development of
ensemble ML techniques for identifying the geotechnical causal factors for slope
failures and their subsequent prediction has lacked in literature. The primary goal of
this research is to develop and evaluate novel feature selection methods for identifying
causal factors for slope failures and assess the potential of ensemble and individual ML
techniques for slope failure prediction. Twenty-one geotechnical causal factors were
obtained from 60 sites (both landslide and non-landslide) spread across a landslide-
prone area in Mandi, India. Relevant causal factors were evaluated by developing a novel
ensemble feature selection method that involved an average of different individual feature
selection methods like correlation, information-gain, gain-ratio, OneR, and F-ratio.
Furthermore, different ensemble ML techniques (Random Forest (RF), AdaBoost (AB),
Bagging, Stacking, and Voting) and individual ML techniques (Bayesian network (BN),
decision tree (DT), multilayer perceptron (MLP), and support vector machine (SVM)) were
calibrated to 70% of the locations and tested on 30% of the sites. The ensemble feature
selection method yielded six major contributing parameters to slope failures: relative
compaction, porosity, saturated permeability, slope angle, angle of the internal friction, and
in-situmoisture content. Furthermore, the ensemble RF and AB techniques performed the
best compared to other ensemble and individual ML techniques on test data. The present
study discusses the implications of different causal factors for slope failure prediction.

Keywords: slope failures, causal factors, machine learning, ensemble techniques, feature selection, landslides,
laboratory and field investigation

INTRODUCTION

Slope failures, the soil or debris movements along sloping surfaces, have significantly impacted the
infrastructure and life in hilly areas (National Institute of Disaster Management, 2016; Parkash
2011). For example, according to Yilmaz (2009), in the 1990s, slope failures constituted about 9% of
all disasters. In the Himalayan region, slope failures have occurred due to rainfall, earthquakes, and
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geological and anthropogenic factors, causing nearly 200 deaths
per year and about $82 million in infrastructure-related damages
(Chaturvedi and Dutt 2015; Chaturvedi et al., 2018). Slope
failures and associated landslides have affected nearly 0.49
million square kilometres of area in India (National Institute
of Disaster Management, 2016). Some attempts to monitor these
slope failures have relied on a number of conventional and low-
cost methods (Fell et al., 2005; Joyce et al., 2008; Guzzetti et al.,
2012; Thiebes et al., 2012; Calvello et al., 2015; Dikshit et al., 2017;
Kumar et al., 2019; Park et al., 2019; Ma et al., 2020). These
methods have helped generate slope movement estimates at
deployment sites (Kumar et al., 2021).

The relative probability of landslide occurrence in any specific
area can be represented using susceptibility models, which help to
produce hazard zonation maps. These zonation maps are
subjective and prepared based on deterministic models. These
models include the mathematical relationships between the
driving and resisting forces, engineering characteristics of the
rock and soils, slope geometry, and hydrological conditions
(Yilmaz 2009; Ohlmacher and Davis, 2003; Alimohammadlou
et al., 2014). A critical review of the literature reveals a set of
regional, zonal, and local geotechnical factors as potential
candidates for causing slope failures (see Table 1). As shown
in Table 1, several factors may include: porosity, particle size
distribution, dry density, saturated permeability, shear strength
parameters, and fines content.

As shown in Table 1, Dijkstra et al. (1994) determined the
influencing factors for the slope instability. The results
revealed that the in-situ moisture content played a vital role
in slope failure occurring in North-Central China. Although
Dijkstra et al. (1994) determined the geotechnical properties
and their influence for slope instability considering the
physics-based models; however, individual and ensemble
machine learning techniques were not explored. Ahmad

et al. (2006) determined the influencing factors for slope
instability using the statistical approach in Penang Island,
USA; however, individual and ensemble feature selection
techniques were not explored.

Similarly, as shown in Table 1, Yalcin (2011) revealed the
factors influencing the failures occurring in the Turkey area
employing a physics-based approach. However, the individual
and ensemble feature selection techniques were not explored.
McKenna et al. (2012) performed a linear discriminant analysis to
determine the slope failures in Oregon and Colorado, USA.
However, individual and ensemble-based machine learning
algorithms were not explored for determining the influencing
factors for slope failures. Mugagga et al. (2012) performed a
physics-based approach for determining the factor of the safety
for the slopes and determined the influencing factors for slope
failures in Eastern Uganda, Africa. Although Mugagga et al.
(2012) utilized the physics-based models for obtaining the
safety factor for the slopes, individual, predicting slope
failures, and ensemble feature selection techniques were not
explored.

Kim and Song (2015) determined the factors influencing the
slope instability and employed a physics-based approach using
GIS application. However, the individual and ensemble-based
machine learning techniques were not explored. Tofani et al.
(2017) developed physics-based models whereas, Bicocchi et al.
(2019) performed a statistical approach for determining the
factors influencing the slope failures in Italy. However, the
application of individual and ensemble-based machine learning
techniques was not explored. Yates et al. (2018) revealed the factors
influencing the failures occurring in New Zealand employing a
physics-based approach. However, the individual and ensemble
feature selection techniques were not explored.

Shepheard et al. (2019) performed a statistical approach for
determining the factors influencing the slope failures in Saint

TABLE 1 | Contributing geotechnical factors reported in the literature.

Author Study Area/ country Technique
implemented

Contributing/affecting geotechnical factors
for slope failure occurrences

Dijkstra et al. (1994) North-Central China Physics-based models In-situ water content, Cohesion, angle of internal friction, and fine content
Ahmad et al. (2006) Penang Island, USA Statistical methods In-situ water content, fine content, liquid limit, plastic limit, plasticity index, dry density,

cohesion, and angle of internal friction
Yalcin (2011) Turkey Physics-based models Liquid Limit, Plastic Limit, Plasticity Index, saturated unit-weight, dry density, porosity, in-situ

water content, void-ratio, cohesion, and angle of internal friction
McKenna et al.
(2012)

Oregon and
Colorado, USA

Linear Discriminant
analysis

Porosity, saturated permeability, fine content, and dry density

Mugagga et al.
(2012)

Eastern Uganda, Africa Physics-based models Liquid limit, Plastic limit, Plasticity Index, dry density. Cohesion, and angle of internal friction

Kim and Song
(2015)

Korea Physics-based models Porosity, saturated permeability, dry density, and angle of internal friction

Tofani et al. (2017) Central Italy Physics-based models Cohesion, saturated permeability, dry density, porosity, in-situ water content, and angle of
internal friction

Yates et al. (2018) New Zealand Physics-based models Liquid limit, Plastic limit, Plasticity Index, fine content, in-situ water content, angle of internal
friction, and cohesion

Bicocchi et al.
(2019)

Italy Statistical methods Porosity, dry density, angle of internal friction, and saturated permeability

Shepheard et al.
(2019)

Saint Lucia Statistical methods In-situ water content, cohesion, fine content, Liquid limit, Plastic limit, Plasticity Index, and
angle of internal friction, Saturated permeability

Park et al. (2019) Korea Physics-based models cohesion, dry density, and angle of internal friction
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Lucia. However, the application of individual and ensemble-
based machine learning techniques was not explored.
Similarly, Park et al. (2019) revealed the factors influencing
the failures occurring in New Zealand employing a physics-
based approach. However, the individual and ensemble feature
selection techniques were not explored. The geotechnical factors
assessment has been confirmed mostly by physical-based models
or statistical analysis. It was felt that less or no emphasis on the
slope failures from the site has been given in the literature
concerning the use of individual and ensemble techniques for
slope failures.

The geotechnical factors are characterized by both uniform
and continuous spatial distributions due to intrinsic
inconsistency, and these factors may be prone to other
uncertainties due to sampling errors and measurements
(Aloetti and Chowdhury 1999; Phoon and Kulhawy 1999;
Akbas and Kulhawy 2010). Physical models may involve
different geotechnical factors, which may help these models
generate forecasts about slope failures (Tofani et al., 2017;
Bicocchi et al., 2019). However, physical models involving
different geotechnical factors may be constraint by the
underlying mechanics explaining slope failures (Yalcin 2011;
Igwe, 2015; Tofani et al., 2017; Bicocchi et al., 2019;
Shepheard et al., 2019). Amidst constraints in physical models,
data-driven machine-learning (ML) techniques may provide an
alternate approach for predicting slope failures (Aloetti and
Chowdhury 1999; Kavzoglu et al., 2014; Huang et al., 2017;
Park et al., 2019; Asheghi et al., 2020; Moayedi et al., 2021).
These ML techniques may learn about the underlying
relationships between geotechnical factors and their role in
causing slope failures using statistical approaches (Phoon and
Kulhawy 1999). Thus, the ML techniques may help predict slope
failures and aid in determining the contributing geotechnical
factors responsible for slope failures (Pham et al., 2017).

Among the ML techniques, Shahri et al. (2019) developed an
artificial neural network (ANN) model for determining landslide
susceptibility in Sweden due to 14 different causative factors
extracted from geological, hydrological, hydrogeological,
topographic, and geomorphological characteristics. However,
only one ML technique (ANN) was proposed. Ma et al. (2020)
provided a review of ML techniques that have been proposed for
landslide detection based upon images, landslide susceptibility
assessment, and the development of warning systems. Although
Ma et al. (2020) provided a large set of ML and other approaches;
however, a review of different factors and their influence on slope
failures were not provided. Nhu et al. (2020) provided a case study
for landslide susceptibility mapping using AdaBoost (AB) and
decision tree (DT) techniques. These authors found that the AB
technique performed better than the DT technique and an
ensemble of AB and DT techniques. However, a
comprehensive evaluation of a large class of geotechnical
factors was not performed and only a small number of ML
techniques were explored. Ahmad et al. (2006) proposed a
number of ensemble techniques (random forests and gradient
boosting trees) and individual techniques (linear regression and
multi-layer perceptron (MLP)) for predicting landslides in
southeast Bangladesh. However, these authors did not propose

the investigation of factors important for landslides and relied on
a small class of ML techniques. Shahri and Maghsoudi, (2021)
proposed a hybrid block-based neural network model (HBNN)
for producing landslide susceptibility mapping. The HBNN was
compared against an MLP generalized feed-forward neural
network (GFFN). However, these authors did not understand
the relative importance of different factors. Pham et al. (2019)
proposed hybrid machine learning techniques (bagging, random
subspace, and random forest) with alternating decision trees for
predicting landslides in Uttarakhand, India. Ten different
conditioning factors were extracted from geomorphological
characteristics. However, only the land cover was the most
influencing factor. Madawala et al. (2019) developed an
ensemble approach combining support vector machine and
Naïve Bayes approach to predicting landslides in Sri Lanka.
However, different considered factors had a relatively similar
positive correlation with the slope failure.

Similarly, Bui et al. (2012) relied upon support vector machine
(SVM), decision tree (DT), and Bayesian ML techniques for
landslide susceptibility mapping in Hoa Binh province,
Vietnam. Although Bui et al. (2012) proposed several ML
techniques; however, a review of different geotechnical factors
and their influence on the slope failures were not explored. Chen
et al. (2018) proposed SVM, random forest (RF), and logistic
model tree (LMT) techniques for landslide susceptibility mapping
in the Long County area, China. Results showed that the RF
algorithm outperformed the other two algorithms. However, the
causal factors and their influence on the slope failures was not
explored. Agrawal et al. (2017) compared logistic regression, DT,
SVM, RF, and multilayer perceptron (MLP) techniques for
landslide susceptibility mapping using the rainfall and
previous landslide instances 2011 to 2015 on National
Highway NH-21 between Mandi and Manali, India. The best
performing technique included RF, followed by DT and logistic
regression. Although Agrawal et al. (2017) proposed several ML
approaches; however, geotechnical factors and their influence on
slope failures was not explored. Kumar et al. (2019) compared
ensemble and individual machine-learning algorithms to predict
the weekly debris flow at Tangni (India) between 2013-17.
However, different causal factors and their influence on slope
failures was not explored.

Although some literature is available on adopting ML
techniques for landslide susceptibility mapping and debris flow
predictions; however, the development of novel ML techniques
for identifying the causal factors for slope failures and the
subsequent prediction of slope failures has lacked in literature.
Also, to the authors’ best knowledge, ML techniques for slope
failure assessment with emphasis on geotechnical factors have not
been explored for the Indian part of the Himalayan mountains.

The current study overcomes these literature gaps by
performing slope failure assessment in the Mandi, India,
which falls in the mid-Himalayan range of the Indian
Himalayas. The area has been selected based on the numerous
failures found at the site. Although prior literature in ML has
proposed some feature selection methods (Guyon and Elisseeff
2003; Guyon et al., 2006), this study offers a novel ensemble
feature selection method that involves a weighted combination of
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some feature selection approaches. Another novelty of this study
is that it compares state-of-the-art ensemble ML techniques with
individual ML techniques for predicting slope failures. This study
also proposes a new approach for identifying a combination of
causal factors for slope failures.

One of the study objectives is to evaluate a set of geotechnical
factors for causing slope failures via a novel ensemble feature
selection method. Further, this study intends to develop ensemble
and individual ML models for slope failure prediction by relying
upon causal factors. Based on prior literature (Kumar et al., 2019;
Pathania et al., 2020; Kaushik et al., 2020), the ensemble feature
selection is expected to yield a combination of relevant
geotechnical factors for slope failure assessment than the
individual techniques.

In what follows, first, the methodologies involved in
determining the geotechnical factors for the collected soil
samples are detailed. Further, the working of different
ensemble and individual ML techniques for predicting slope
failures are discussed. Next, the ranking of different

geotechnical factors involved in slope failure is performed via
an ensemble feature selection method. Finally, the results
obtained from the ensemble and individual ML techniques are
presented, and the importance of a combination of geotechnical
factors for slope failure studies is discussed.

Study Area Description
The study was performed in the Mandi, Himachal Pradesh, India.
The township is situated in the mid-Himalayan region (see
Figure 1). Specifically, the investigated area (along the road
between Mandi to Kamand) is located between 31°42’25″N
and 31°46’26″N latitudes and between 76°55’54″E and
76o59’42″E longitudes. The elevation range of the study area is
between 850 m and 1,250 m. A reason for choosing the Mandi
township for this study is due to several slope failures in the past
in this area (Kahlon et al., 2014). A triggering factor for these
slope failures in the study area could be the rainfall, with an
average annual precipitation of 1,380 mm (Gupta and Shukla
2018).

MATERIALS AND METHODOLOGY

Samples of soil were collected in the Mandi township over a
15 km road stretch across different slope failure sites. Soil samples
were collected from sixty locations in the study area at depths of
up to 0.5 m along the sloping surfaces. The soil samples were
collected from both slope failures and no-slope failure locations.
The samples included field inventory data, including in-situ
moisture content (ASTM D 2216-19, 2019), location
coordinates (in latitude-longitude and elevation), and whether
slope failures had occurred recently at the investigated site. To
obtain soil samples, stainless soil sampler (diameter � 10 cm,
height � 13 cm, and area ratio <10%) was employed. Soils,
0.3–0.5 m deep, were removed by driving a soil sampler into
the sloping surface using a plastic-coated hammer. The in-situ
soil sampling helped determine the in-situ bulk density and in-
situ water content (wn) of the respective sample. Soil samples of
about 40 kg were collected via a trowel at places with boulders and
rocky strata. The soil samples collected were packed, marked
carefully, and transported to the laboratory for further analyses.

Among the 60 sites in the study area, 43 sites had experienced
slope failures, and 17 sites had not experienced slope failures.
Computation of 21 geotechnical factors was done across the 60
sites. These data were then used for the identification of different
geotechnical factors as well as for making slope failure
predictions.

Methods
The geotechnical factors were analyzed using different test
procedures. The specific gravity test (ASTM D 5550-00, 2000)
was conducted using a gas pycnometer. The gradation analysis
was carried out for the soil samples as per ASTM D 422-63, 1994.
The liquid and plasticity limits along with the plasticity index
were determined as per ASTM D 6913 (2009), ASTM D 4318 -
17e1 (2010). The standard proctor test (ASTM D 698 - 12e2,
2012) was conducted to determine the dry density and optimum

FIGURE 1 | Locations of sites where data were collected for the study in
India. (A)Map of India showing Himachal Pradesh state. (B)Map of Himachal
Pradesh showing Mandi district. (C) The sites in Mandi district where soil
samples were collected. Red dots show the soil samples were collected
from the landslide locations, and green dots show the soil samples were
collected from the no-landslides locations.
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moisture content. The saturated permeability was determined
according to ASTM D2434-19, 2019. The relative compaction of
soil was calculated by computing the ratio of the dry density (in-
situ) and the dry density (laboratory). The porosity was calculated
based on the in-situ density.

Machine Learning Techniques
Machine learning (ML) techniques deal with the development of
algorithms that rely upon data to learn patterns present in data
(Bishop 2006; Awad and Khanna 2015; Mali et al., 2019). ML
techniques learn patterns present in data, and researchers can
develop ML techniques for several applications, including those
in the geotechnical areas. Thus, ML techniques could be
developed for factor analyses (feature engineering) and
predicting slope failures due to different geotechnical factors.
Some of the ML techniques that have been developed in this
paper are discussed next.

Individual Techniques
Support Vector Machines
Vapnik (1995) proposed the SVM technique. This technique uses
a statistical approach to achieve an optimal hyperplane dividing
two classes (Ballabio and Sterlacchini 2012). If × � (×1,×2, . . .×n)
represents the vectors corresponding to the slope-failure
contributing factors and let Yj is the vector classifying data
into the slope failure and no-slope failure classes (Kavzoglu
et al., 2014), then the optimal dividing hyperplane is
established by:

f( × ) � sign ⎡⎣∑n
i�1

αiYjk(×,×i) + a⎤⎦ (1)

where ‘a’ is the offset from hyperplane’s origin, ‘n’ is the number
of geotechnical factors, αi is the ith positive constant, and k(×,×i)
is the kernel function. For binary classification (slope failure or
no-slope failure), the conditions for solving the Eq. 1 become the
following:

Yj[ωT×i + c]≥ 15{ωT×i + c≥ 1, if Yj � +1(slope failure)
ωT×i + c≤ 1, if Yj � −1(no − slope failure)

(2)

where, ‘k’ separates one space into a second space with more
dimensions, and ‘ω’ is the weight vector.

Multilayer Perceptron
A MLP is an artificial neural network, which includes input,
hidden, and output layers (Zare et al., 2013). The training
processes in an MLP involves the following procedure: 1)
feeding the input data into the hidden layers, where the
resulting values are checked against the actual values to
estimate the error; and 2) amending connection weights
based upon the error propagated backwards (Bishop 2006;
Tien et al., 2016). A MLP was developed where the affecting
factors for slope failures were considered as inputs, and the
class (slope failure or no-slope failure) was considered the
output. The hidden layers helped transform inputs into
outcomes.

If t � ti and i � 1 to n are the corresponding vectors of affecting
factors, and ϕ � ϕj for j ε {0, 1} represents the two classes, then,

ϕ � g(t) (3)

where, g(t) represents an unknown function in the MLP, where
the necessary weights are amended to train the technique.

Bayesian Network
The BN mostly employs algorithms adapted for complex systems
modeling (Friedman et al., 1997; Pham et al., 2016a). In BN, the
probability of slope failure and no-slope failure classes is analyzed
given the value of geotechnical factors. The BN technique relies
upon the Bayes’ theorem for a given set of factor values (Bishop
2006). Let X � xi for i � 1 to n represent the vectors
corresponding to the contributing factors. Using the BN
technique, the unique joint probability of a slope failure (SF)
event can be represented as (Pham et al., 2016b):

P (Ck

A
) � P( A

CK
)*P(Ck)
P(A) (4)

where, P(Ck
A ) represents the posterior, i.e., the conditional

probability of a class Ck for the given factors A.
P( ACk

) is the likelihood, representing the probability of factors A
given a class Ck. P(Ck) is the prior probability of the class Ck in the
given data, and P(A) is the probability of the factors A.

Decision Tree
A DT is an entropy-based classification technique (Catani et al.,
2013). In DT, a tree is developed based on binary classification
(slope failure or no-slope failure), and the tree includes root,
internal, and child nodes (Tien et al., 2012a). In DT, one of the
several factors is considered on a tree edge emanating from a
node. The DT technique involves: 1) building a tree based on
information theory and 2) trimming the developed tree to reduce
its height (Tien et al., 2016). Identification of different factors is
performed at different nodes. The selection of a factor on edges
emanating from a node is based on the highest information gain.
Finally, a data point’s classification (slope failure or no-slope
failure) is determined based upon the DT’s traversal.

Ensemble Techniques
Ensemble methods are specific techniques, which are usually
created by a combination of multiple individual techniques. As
ensemble methods combine several unique techniques, these
methods are expected to possess better performance than
individual techniques (Kavicky et al., 2017; Kumar et al.,
2019). The ensemble models tried in this research are
discussed in the following sections.

Random Forest (RF)
The RF technique was proposed by Breiman (2001), and it is an
aggregate tree-based approach that relies upon a collection of
decision trees created through bootstrapping. The RF technique
assumes a combination of many trees in which a random subset
of causal factors is considered for generating different trees
(Breiman 2001; Pham et al., 2017). A single tree’s classification
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could be unstable, and different trees are developed to minimize
classification errors. For this reason, the RF method makes use of
an ensemble of trees (the so-called “forest”), thereby ensuring
model stability (Agrawal et al., 2017). Furthermore, the developed
trees are based upon a randomized subset of the contributing
factors. Randomization helps to estimate the importance of
contributing factors and their impacts on the classification
(Catani et al., 2013).

AdaBoost (AB)
The AB technique was developed by Freund and Schapire (1997).
It is a dominant boosting technique that involves enhancing the
simpler techniques’ performance by combining them (Tattar
2018). Generally, AB uses short decision trees, each with a
root node. In AB, a preliminary model is first constructed.
Each data point is weighted, and weights are changed based
on the model’s overall accuracy and whether a specific data point
is classified correctly or not (Tattar 2018). Different decision tree
models are weighted and added until no further improvements in
the overall accuracy are possible (Tattar 2018). Furthermore, AB
can assess the significance of factors by investigating how often
the simpler/weak learning techniques are selected.

Bagging
Bagging (or bootstrap aggregation) is an ensemble method in
which random samples are selected repeatedly with replacement
(Breiman 1996a; Boehmke and Greenwell, 2019). Each time a
random training data sample is selected, a machine-learning
model is built (Boehmke and Greenwell, 2019). The algorithm
builds some such machine-learning models and then averages
these models’ predictions to generate its prediction (Boehmke
and Greenwell, 2019). In this research, the random forest
technique was employed as the machine-learning model in
bagging. This made the bagging algorithm comparable to
other chosen methods.

Voting
According to Bonaccorso (2018), voting is the simplest ensemble
technique where a majority of the classifiers help estimate the
final-predicted class of the target variable. The class obtained
from the highest votes is to be the final prediction of the ensemble
voting technique. To make it comparable to other individual
techniques in the present study, individual algorithms reported in
the section above were used in voting.

Stacking
Stacking (or stacked generalization;Wolpert 1992; Dangeti, 2017)
is a modified voting technique. Unlike in voting, where an
unpretentious majority may decide the ensemble’s prediction,
in stacking, the predictions of the individual techniques are fed
into another meta-model, which then determines the prediction
of the ensemble. The RF classifier was implemented as a meta-
model to compare with the individual techniques.

Ensemble Feature Selection Methods
Feature (factor) selection performs a selection of a subset of
relevant features (factors) from all features present in data

(Bishop 2006; Wang and Tang, 2009; Micheletti et al., 2014).
A novel ensemble-based feature selection method was formulated,
which combines some particular feature selection methods. The
motivation behind ensembling different feature selection methods
was to take the best of the different individual feature selection
approaches. The average of the feature ranks from different
individual methods in the ensemble feature selection method was
assumed. The feature selection methods include the following:
correlation-based feature selection (CFS), information–gain ratio
(IGR) based feature selection, gain ratio (GR)-based feature
selection, relief-F feature selection, and OneR selection. Next, the
following feature selection methods were detailed.

Correlation-Based Feature Selection
The CFS is an efficient and popular technique for causal factor
identification (Hall 1999; Bishop 2006; Pham et al., 2016a). The
recognition of different factors is based on the Pearson
correlation between various factors and the class variable
(Nguyen et al., 2010).

Information Gain Ratio
Information gain (also known as entropy) is based on information
theory, and it quantifies the amount of information possessed by
factors. The information gain (or entropy) is computed as:

I(Y) � −∑2
i�1

n(Li,Y)
[Y] log2

n(Li,Y)
[Y] (5)

where, for a given training data Y containing input samples n, n
(Li, Y) is the number of samples in training data Y that belong to
the class Li (slope failure or no-slope failure). The information
amount that splits Y into (Y1, Y2, . . . , Ym) regarding the slope
failure affecting factor X is estimated as:

I (Y, X) � ∑m
j�1

Yj

[Y] I(Y) (6)

The IGR for a certain slope failure-influencing factor A is
computed as:

IGR(Y,X) � I(Y) − I(Y,X)
SpI(Y,X) (7)

where, SpI(Y,X) represents the potential information
generated by dividing the training data Y into m subsets. It
is deduced as:

SpI(Y,X) � −∑m
j�1

[Yj]
[Y] log2

[Yj]
[Y] (8)

Gain Ratio
The GR is a modified version of the info-gain ratio feature
selection method (Han and Kamber 2001). The GR considers
different branches in a tree, and it computes the information gain
based upon the information of a split. The split information is
based upon the instances’ entropy, where information’s value for
an attribute decreases based on the increase in split information
(Han and Kamber 2001). The GR is defined as:
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GR � Gain(attribute)
Split info(attribute) (9)

where Gain(attribute) is the information gain for an attribute, and
Split info(attribute) is the split information value for the same
attribute.

Relief-F
The relief-F is a filter method that evaluates an attribute’s
worth by sampling values repeatedly (Kira and Rendell 1992;
Urbanowicz et al., 2018). Generally, it is desirable to apply
this method in binary classification problems. According to
Urbanowicz et al. (2018), the method determines the relief
feature score for an individual feature and finally takes the
high-scoring features. Generally, the feature differences
between the nearest neighbouring instance pairs
determine the score. The feature score is decreased or
increased based upon the feature value difference being a
hit or a miss.

OneR
The OneR feature-selection method uses the OneR classifier to
determine the feature importance. For each feature in data, it
generates one rule and then chooses the rule of the feature that
produces the largest accuracy for the class variable (Holte
1993). The OneR algorithm is known to produce rules that
compete well with other state-of-the-art algorithms in the
literature.

Validation and Comparison Methods
The employed ML techniques’ performance in terms of
sensitivity, specificity, accuracy, and kappa (k) statistics
were computed (Tien et al., 2016). The formulae used and
the description of different performance measures have been
reported in Table 2. The area under the ROC curve (AUROC)
was also used as an evaluation metric (Bradley 1997). The
AUROC is formed by plotting false-positive rates (i.e., 1-
specificity) against true-positive rates (i.e., sensitivity). The
AUROC ranges between 0.5 (an inaccurate classification
technique) and 1 (a perfect classification technique) (Pham
et al., 2016a; Tien et al., 2016).

Construction of the Slope-Failure Inventory
for Model Training and Testing
The results obtained from the field and laboratory investigations
served as input data into different ML techniques. The inputs
were kept at their original values and not scaled or normalized in
analyses. All the identified geotechnical factors were considered
as the affecting factors for the current study (seeTable 3 for a list
of affecting factors and their range of measured values). As
shown in Table 3, the factors considered were gravel; sand; fines
content; diameter corresponding to different particle sizes (D10;
D30; D50; D60); liquid limit (LL); plastic limit (PL); plasticity
index (PI); specific gravity; saturated unit weight; saturated
water content; optimum moisture content; porosity; saturated
permeability; in-situ water content; relative compaction;
elevation; slope angle; cohesion; and angle of internal
friction (ϕ).

Out of the 60 data points (one from each site), 70% 42)
randomly selected data points (slope failure � 31; No-slope
failure � 11) were used for training different ML techniques
and the remaining 30% 18) data points (slope failure � 12; No-
slope failure � 06) were used for testing the ML techniques.

Machine Learning Techniques’
Configurations and Implementation
In the current study, both individual and ensemble ML techniques
detailed above were evaluated for slope-failure prediction. Table 4
details different hyperparameters in different ML techniques and
their range of variation. All hyperparameters were varied in a grid
search, where the grid points were the values of different parameters
in a model as specified in Table 4.

Individual Techniques
Multi-Layer Perceptron
The MLP possessed five different hyperparameters, which
included: hidden layers (varied as 1, 3, 6); the number of the
nodes in each hidden layers (varied as 50, 100, 150, 200); the
number of the epochs (the number of times the weight change
took place; varied as 50, 100, 150), and the activation functions
present in the hidden layers (varied as rectified linear, linear, and

TABLE 2 | Description of performance measures for evaluating ML models.

No Name Formula Description

1 Sensitivity (SST) SST � TP
TP+FN Sensitivity is the proportion of slope failure data points that are correctly classified as “slope failures”. It indicates how the

predictive capability of the slope failure model is for classifying slope failure data points (Pham et al., 2016b)
2 Specificity (SPF) SPF � TN

FP+TN Specificity is the proportion of no-slope failure data points that are correctly classified as “no-slope failures” (Pham et al.,
2016a). It indicates how good the predictive capability of the slope failure model is for classifying no-slope failure data points

3 Accuracy (ACC) ACC � TP1+TN2

TP+TN+FP3+FN4 Accuracy is the proportion of slope failure and no-slope failure data points which are correctly classified (Bennett et al., 2013;
Pham et al., 2016a). It indicates how good the performance of the model is

4 Kappa (k) k � P5
0−P6

c
1−Pc

Kappa is used to evaluate the reliability of models (Bennett et al., 2013; Pham et al., 2016a). Its value ranges from -1 (non-
reliable) to 1 (reliable)

aTP (True Positive) is the number of data points that were correctly predicted as “slope failures”.
bTN (True Negative) is the number of data points that were correctly predicted as “no-slope failures”.
cFP (False Positive) is the number of the data points that were predicted incorrectly as “slope failures”.
dFN (False Negative) is the number of data points that were predicted incorrectly as “no-slope failures”.
eP0 is the proportion of the data points classified correctly as slope failures/no-slope failures.
fPc is the proportion of the correctly identified data points by chance.
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TABLE 3 | Range of values of the geotechnical factors across 60 locations.

Geotechnical factors Minimum value Maximum value

Gravel (%) 0 65
Sand (%) 21 88
Fine content (%) 5 73
D10 (mm) 0.000 0.770
D30 (mm) 0.005 2.878
D50 (mm) 0.000 3.270
D60 (mm) 0.000 4.690
Specific Gravity, Gs 2.52 2.67
Liquid Limit, LL (%) 8 35
Plastic Limit, PL (%) 4 25
Plasticity index, PI (%) Non-plastic 17.850
Saturated Unit Weight, γsat � (G+e)γw

1+e (kN/m3) 20.66 21.81
Optimum Moisture content OMC, (%) 8.50 14.72
Saturated water content, wsat (%) 11.41 16.75
Porosity, n � e

1+e; e � G.γw
γd

− 1 0.33 0.43
Saturated Permeability ks, (cm/s) 6.39E-04 6.28E-02

Data collected from field investigations

In-situ water contentwn(%) 8.50 25.70
Relative CompactionRc � γf

γd
× 100(%) 81.83 95.43

Elevation (m) 745.00 1,307.00
Slope angle (°) 11 53

Strength Properties of soil

Cohesion, C (kPa) 5.00 51.67
Angle of Internal friction, ϕ (°) 6.7 24.0

TABLE 4 | Hyperparameters across different models along with their values.

Type of the models Model Parameters Value

Individual methods BN No hyperparameters -
DT No hyperparameters -
SVM Calibrator logistic

Polynomial degree From 1 to 8 in steps of 1
MLP Number of hidden layers 1, 3, 6

Number of nodes 50, 100, 150, 200
Number of Epochs 50, 100, 150
Activation functions Rectified Linear (ReLu), Linear, Sigmoid

Ensemble methods RF Sample with replacement True
Handling of unordered factors of covariates True
Number of trees From 25 to 220 in steps of 5

AdaBoost Classifier RF
Number of iterations 2, 5, 10
batch size 50, 100

Bagging Classifier RF
number of iterations 2, 5, 10
batch size 50, 100

Stacking Classifier RF
Number of iterations 2, 5, 10
batch size 50, 100

Voting batch size 50, 100
combination rules the average number of possibilities
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sigmoid). Furthermore, the output layer possessed one node with
a sigmoid activation function.

Bayesian Network
In this model, there was no hyperparameters present that needed
to be varied.

Decision Tree
In this model, no hyperparameters present needed to be varied.

Support Vector Machines
In this model, the polynomial kernel degree was varied as 1, 3, 5,
8. The calibrator used was logistic.

Ensemble Techniques
Random Forest
The following were the hyperparameters varied for training the
RF model: the number of trees (varied as 25, 50, 75, 100, 150,
200, 210).

AdaBoost
In the AB model, the base classifier selected was Random Forest.
Furthermore, the different hyperparameters varied included: the
batch size (varied as 1, 2, 5, 7, 10) and the iterations (varied as 1,
10, 25, 50, 75, 100).

Stacking
In this model, the base classifier selected was Random Forest.
Furthermore, the following hyperparameters were varied: the
batch size (varied as 1, 2, 5, 7, 10) and the number of the
iterations (varied as 1, 10, 25, 50, 75, 100).

Bagging
In this model, the base classifier selected was Random Forest.
Furthermore, the following hyperparameters were varied: the
batch size (varied as 1, 2, 5, 7, 10) and the number of the
iterations (varied as 1, 10, 25, 50, 75, 100).

Voting
In this model, the base classifier selected was the Random Forest
technique, and only one hyperparameter varied for training the
model: batch size (varied as 1, 2, 5, 7, 10).

Figure 2 depicts the sequence of steps to identify the
influencing factors for slope failures. Initially, the
geotechnical dataset was obtained by performing laboratory
tests on data collected from the field investigation. Out of the
collected dataset, 70% of data were used to train different ML
techniques, and the remaining 30% of data were used to test
different ML techniques. The influencing factors for slope
failures were obtained using the ensemble feature selection
method, which considered several individual feature selection

FIGURE 2 | The methodology adopted in this study for ranking geotechnical factors and performing machine-learning for slope-failure predictions.

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7018379

Mali et al. Causal Factors for Slope Failure

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


methods. Next, the contributing factors were used in the ML
techniques for predicting slope failures. For obtaining the best
hyperparameters in the employed ML technique, the different
hyperparameters were calibrated using training data.
Furthermore, different ML techniques with calibrated
parameters were validated using the test dataset. The
ensemble feature selection and ML techniques were
analysed using the WEKA 3.9.0 tool (Frank et al., 2016).

RESULTS

Slope Failure Prediction
First, the ensemble and individual ML techniques with all 21
geotechnical factors were evaluated for their ability to predict
slope failures across different sites. Table 5 represents different
ensemble and individual ML techniques in the training dataset
based upon the statistical indices such as sensitivity, specificity,
accuracy, and the kappa statistic. These statistical indices were the
highest for the RF, AB, and Bagging ensemble techniques and the
MLP individual technique. The individual DT, SVM, and BN
techniques and the ensemble stacking and voting techniques,
respectively, followed these techniques’ performance.

Overall, based upon accuracy, the RF, AB, and Bagging
ensemble techniques and the individual MLP technique
performed better than other ensemble and individual
techniques. Also, results revealed that a larger number of
ensemble techniques performed optimally compared to the
individual techniques.

To explore the performance of ensemble and individual
techniques, the ROC curves for these techniques were
investigated. Figure 3 depicts the ROC curves for individual

techniques in the training dataset. The highest AUROC value
for the individual methods belonged to the MLP technique
(AUROC � 1.00). The next highest AUROC values were as
per the following sequence: The DT technique (AUROC � 0.975),
the BN technique (AUROC � 0.971), and the SVM technique
(AUROC � 0.893).

Figure 4 depicts the ROC curves for the ensemble ML
techniques in the training dataset. The highest AUROC value
among the ensemble techniques belonged to the AB technique
(AUROC � 0.9993). The next highest AUROC was as per the
following sequence: The RF technique (AUROC � 0.9947), the
Bagging technique (AUROC � 0.9933), and the Stacking and
Voting techniques (AUROC � 0.5).

Table 6 shows the best set of hyperparameters obtained across
different ML techniques in the training dataset. As shown in
Table 6, among the individual techniques, the MLP possessed the
following parameters: the number of nodes per hidden layer was
150, the hidden layers were 3, the number of epochs was 150, and
the activation function was sigmoid. Furthermore, among the
ensemble techniques, the RF technique possessed 210 as the
optimal number of trees. Among other ensemble techniques
(AB, Bagging, and Stacking), the desired batch size was 100,
and the number of iterations was 10. However, in the ensemble
voting technique, the desired batch size was 100.

Table 7 shows the performance of different ensemble and
individual ML techniques in the test dataset. Among different
individual ML techniques, the sensitivity, specificity, accuracy,
and kappa statistic were the highest for the DT technique,
followed by SVM, BN, and MLP techniques.

Furthermore, among the different ensemble ML techniques,
the sensitivity, specificity, accuracy, and kappa statistic were the
highest for the RF, AB, and Bagging techniques, followed by the
Stacking and Voting techniques.

Figure 5 presents the ROC curves for the individual
techniques in the test dataset. The results revealed that the DT
technique obtained the highest AUROC value compared to other
individual techniques (SVM, BN, and MLP). Here, the DT
technique performed the best with an AUROC of 0.917, and it
was followed by the BN technique with an AUROC of 0.890.

Figure 6 presents the ROC curves for the ensemble techniques
in the test dataset. The results revealed that the RF, AB, and
Bagging techniques showed the highest AUROCs than other
ensemble ML techniques (Stacking and Voting). Here, the RF
and AB techniques performed the best with an AUROC of 0.9722,
and they were followed by the bagging technique with an AUROC
of 0.9583. The AUROCs of Stacking and Voting were 0.5,
showing no class separation capacity.

TABLE 5 | ML technique evaluation in training dataset using different performance measures.

Parameters Individual models Ensemble models

BN SVM MLP DT RF AdaBoost Bagging Stacking Voting

Sensitivity (%) 90.50 92.90 100.00 95.20 100.00 100.00 100.00 73.33 73.33
Specificity (%) 84.90 85.70 100.00 92.40 100.00 100.00 100.00 26.67 26.67
Accuracy (%) 87.70 89.30 100.00 93.80 100.00 100.00 100.00 50.00 50.00
Kappa (k) 0.75 0.81 1.00 0.88 1.00 1.00 1.00 0.00 0.00

FIGURE 3 | ROC curves for individual ML techniques in the training
dataset.
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Geotechnical Factors
As the geotechnical analyses involving 21 factors can be tedious
and exhaustive, it necessitates an iterative procedure to choose the
best subset of the affecting factors as a combination. For the
iterative process, different factors were divided into six groups
based on the engineering properties of the soil, slope and terrain
geometry, moisture indices, soil gradation parameters, Atterberg
indices, and particle size constituents. Furthermore, individual
factors causing slope failures across different groups were ranked

by adopting different feature selection methods (Micheletti et al.,
2014).

Table 8 shows the ranking of different factors by employing
the different feature selection methods (i.e., correlation feature
selection, IGR, GR, relief-F, and OneR) considering the two-class
values (slope failure or no-slope failure). The ensemble (average)
of the five feature selection methods was considered for the
combined rank of each factor. The smaller the rank, the more
important the individual factor for slope-failure prediction. The

FIGURE 4 | ROC curves for ensemble ML techniques in the training dataset.

TABLE 6 | The best set of hyperparameters obtained across different ML techniques in training data.

Type of the models Model Parameters Value

Individual methods MLP Number of hidden layers 3
Number of nodes 150
Number of Epochs 150

SVM Degree of the polynomial kernel 5
Calibrator logistic

DT No hyperparameters were varied -
BN No hyperparameters were varied -

Ensemble methods RF Number of trees 210
AdaBoost Classifier RF

number of iterations 10
batch size 100

Bagging Classifier RF
number of iterations 10
batch size 100

Stacking Classifier RF
number of iterations 10
batch size 100

Voting batch size 100
combination rules the average number of possibilities

TABLE 7 | The evaluation of different ML techniques in the test dataset using different performance measures.

Parameters Individual models Ensemble models

BN SVM MLP DT RF AdaBoost Bagging Stacking Voting

Sensitivity (%) 77.80 83.30 72.20 88.90 88.90 88.90 88.90 66.67 66.67
Specificity (%) 72.20 75.00 69.40 94.40 94.40 94.40 94.40 33.33 33.33
Accuracy (%) 75.00 79.15 70.80 91.65 91.65 91.65 91.65 0.50 0.50
Kappa (k) 0.50 0.61 0.40 0.77 76.92 0.77 0.77 0.00 0.00
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FIGURE 5 | ROC curves for individual ML techniques in the test dataset.

FIGURE 6 | ROC curves for ensemble ML techniques in the test dataset.

TABLE 8 | Ranking of different geotechnical factors using different feature selection methods.

Group Geotechnical Factors CFS IGR GR Relief-F OneR Average

A Relative Compaction (%) 1 2 4 4 3 2.8
Cohesion, C (kPa) 14 3 3 21 6 9.4
Saturated Permeability, ks (cm/s) 3 4 2 10 1 4
Angle of internal friction (°) 11 10 17 18 15 14.2

B Porosity, n 2 1 1 12 2 3.6
Saturated unit weight (kN/m3) 5 20 20 5 18 13.6
Specific Gravity, Gs 8 21 21 20 10 16

C Slope angle (°) 17 8 8 3 19 11
Elevation 13 18 18 17 5 14.2

D In-situ water content (%) 4 5 5 1 13 5.6
Saturated moisture content (%) 6 15 15 11 4 10.2
Optimum moisture content (%) 7 12 12 15 9 11

E D10 9 9 9 7 8 8.4
D50 10 19 19 6 21 15
D30 19 16 16 9 17 15.4
D60 12 17 17 19 16 16.2

F Plasticity Index (IP) 18 14 14 8 12 13.2
Liquid Limit (LL) 21 13 13 14 20 16.2

G Fine content (%) 16 7 6 2 7 7.6
Gravel (%) 20 7 8 13 14 12.4
Sand (%) 15 11 11 16 11 12.8
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feature selection results revealed that the considered factors were
found to be related (strongly or weakly) to the possibility of slope
failures. Subsequently, the top-ranked factors obtained according
to the ensemble feature selection technique from each group in
Table 8 were considered as a combination in the RF and AB
ensemble techniques iteratively. Table 9 shows the AUROC
results from the RF and AB techniques in the iterative process.

For instance, in the first iteration in Table 9, the AUROCs
corresponding to the RF and AB techniques were computed for
the top-ranked factors from each of the seven groups from
Table 8. These factors were: relative compaction (group A),
slope angle (group B), porosity (group C), in-situ water
content (group D), D10 (group E), plasticity index (group F),
and fines content (group G). The second iteration was built
upon the first iteration, where the best AUROC result from the
first iteration was taken as a base, and the second-ranked
factors from each of the seven groups were added. As there
was no change in the AUROCs for RF and AB techniques in the
second iteration, the best result from the first iteration was
again revisited and taken into the third iteration. In the third
iteration, the process is repeated by selecting the next available
top-ranked factors from each group. As the AUROCs

increased by did not change across the addition of factors
in the third iteration, the minimal set of parameter
combinations was taken from the third iteration into the
fourth iteration. In the fourth iteration, the process ended
when the remaining factors in the groups were consumed.
Overall, the process ended in the fourth iteration with the
minimal set of factors for which the AUROCs in the RF and AB
techniques were minimized. The factors corresponding to the
maximum values of AUROCs were considered the most
contributing factors as a combination. These factors
included the following six parameters: relative compaction,
porosity, slope angle, saturated permeability, in-situ water
content, and angle of the internal friction. The maximum
AUROCs (95.80% in RF and 95.80% in AB) were obtained
for these six factors.

DISCUSSIONS

This paper’s primary objective was to develop novel ensemble
feature selection methods to determine different geotechnical
factors in isolation and as a combination, whichmay help indicate

TABLE 9 | AUROC values for selected factor combinations in different iterations involving the RF and AB techniques.

Iterations Combinations of the Geotechnical Parameters AUROC

RF AB

I Relative Compaction 0.778 0.778
Relative Compaction + Porosity 0.819 0.792
Relative Compaction + Porosity + Slope angle 0.875 0.875
Relative Compaction + Slope angle + Porosity + In-situ water content 0.903 0.917
Relative Compaction + Slope angle + Porosity + In-situ water content + D10 0.903 0.917
Relative Compaction + Slope angle + Porosity + In-situ water content + D10 + Plasticity Index 0.903 0.917
Relative Compaction + Slope angle + Porosity + In-situ water content + D10 + Plasticity Index + Fine content 0.903 0.917

Best from I set of the combinations were carried for further iterations
II Relative Compaction + Porosity + Slope angle + In-situ water content + Cohesion 0.903 0.917

Relative Compaction + Slope angle + Porosity + In-situ water content + Cohesion + Saturated Unit weight 0.903 0.917
Relative Compaction + Slope angle + Porosity + In-situ water content + Cohesion + Saturated Unit weight + Elevation 0.903 0.917
Relative Compaction + Slope angle + Porosity + In-situ water content + Cohesion + Saturated Unit weight + Elevation +
Saturated Moisture Content

0.903 0.917

Relative Compaction + Slope angle + Porosity + In-situ water content + Cohesion + Saturated Unit weight + Elevation +
Saturated Moisture Content + D50

0.903 0.917

Relative Compaction + Slope angle + Porosity + In-situ water content + Cohesion + Saturated Unit weight + Elevation +
Saturated Moisture Content + D50 + Liquid Limit

0.903 0.917

Relative Compaction + Slope angle + Porosity + In-situ water content + Cohesion + Saturated Unit weight + Elevation +
Saturated Moisture Content + D50 + Liquid Limit + Gravel (%)

0.903 0.917

Best from I/II set of the combinations were carried for further iterations
III Relative Compaction + Slope angle + Porosity + In-situ water content + Saturated Permeability 0.931 0.944

Relative Compaction + Slope angle + In-situ water content + Porosity + Saturated Permeability + Specific gravity 0.931 0.944
Relative Compaction + Slope angle + In-situwater content + Porosity + Saturated Permeability + Specific gravity + Optimum
moisture content

0.931 0.944

Relative Compaction + Slope angle + In-situwater content + Porosity + Saturated Permeability + Specific gravity + Optimum
moisture content + D30

0.931 0.944

Relative Compaction + Slope angle + In-situwater content + Porosity + Saturated Permeability + Specific gravity + Optimum
moisture content + D30 + Sand (%)

0.931 0.944

Best from III set of the combinations were carried for further iterations
IV Relative Compaction + Slope angle + Porosity + In-situ water content + Saturated permeability + Angle of the

internal friction
0.958 0.958

Relative Compaction + Slope angle + In-situ water content + saturated permeability + Porosity + angle of the internal friction
+ D60

0.958 0.958

Bolded text reveals the factors in combination obtaining the maximum AUROC value.
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the possibility of slope failures at real-world landslide sites. Another
objective of this paper was to develop ensemble and individual
machine learning (ML) techniques to utilize the identified
geotechnical factors and predict slope failures on real-world
slopes. Overall, these investigations may help develop early
warning systems based on real-time monitoring of the identified
factors. Relevant data were collected for 21 geotechnical factors
from in-situ and laboratory investigations across 60 different sites
(prone to recurring landslide incidents due to rainfall) in the Mandi
region, India. Several ensembles and individualML techniques were
employed to process data from both field and laboratory methods.

The results revealed that the Random Forest (RF) and AdaBoost
(AB) ensemble techniques performed better than other individual
techniques (Bayesian network, support vector machines, multilayer
perceptron) and ensemble techniques (Stacking, Bagging, and
Voting). A likely reason for this result could be that the RF and
AB techniques involve an information-gain-based feature selection
method as part of their algorithm. Each tree is developed to
minimize classification errors using an information-gain
approach; however, random selection influences the results.
Overall, the ensemble RF and AB models created multiple tree
classifiers on different subsets of the original data. The aggregate
opinion of multiple classifiers was likely less noisy than one classifier,
leading to better and more stable predictions (Agrawal et al., 2017;
Pham et al., 2019). At the same time, other techniques (i.e., BN,MLP,
SVM, Bagging, Voting, and Stacking) employed other classification
ideas that may be different from the information gain approach.

Furthermore, an analysis of geotechnical factors based on different
feature selection methods revealed that each of the 21 factors
contributed to slope failures. As measuring all 21 factors may be a
laborious and time-consuming exercise, one needs to identify a
minimum combination of factors that would allow researchers to
evaluate slope failures. In this paper, an iterative methodology was
proposed to combine a minimal set of isolated factors with improving
ML techniques’ classification accuracy. Referring to the iterative feature
selection procedure, six factors, namely, relative compaction, porosity,
saturated permeability, slope angle, angle of the internal friction, and
in-situwater content, were strongly relevant to predicting the failure of
slopes in the study area. Based on the field investigations, it has been
understood that the in-situ water content of the soil was very close to
the plastic limit of the soil because the soil sampling in the study area
were collected in the rainy season (Dijkstra et al., 1994; Ahmad et al.,
2006; Yalcin 2011; Kim and Song 2015). The high value of soil porosity
(Kim and Song 2015) and void ratio permit the water to flow easily
within the soil matrix and increase the infiltrating process. Further,
denser soil (McKenna et al., 2012; Kim and Song 2015) with lesser pore
size leads to obstruction of the water passing into the soil matrix and
thus the risk of landslide decreases.During thewetting condition, it was
understood that a reduction of the soil’s strength is pivotal responsible
for slope failures in the present study area, especially in rainy seasons
(Mugagga et al., 2012).

Geotechnical factors like the porosity, gradation factors, dry
density, saturated permeability, and shear strength have been
identified to contribute to the predictions of slope failures from
the physical-based approach (McKenna et al., 2012; Park et al.,
2019; Shepheard et al., 2019). Furthermore, prior research has
proposed dry density, saturated permeability, and porosity as

factors to understand different slope failure modes (slide or flow
type; Iverson 1997; Yalcin 2011; McKenna et al., 2012; Mugagga
et al., 2012). In the current study, relative compaction, porosity,
saturated permeability, in-situ water content, slope angle, and angle
of the internal friction have significantly influenced slope failures.
These results agree with those of others, where the average soil
porosity and soil-saturated permeability possessed higher values at
slope failure sites than at no slope failure sites (Kim and Song 2015).

A review of the literature depicts that most of the slope failures
occur immediately after the infiltration due to rainfall, which
increases the in-situ water content of the soil close to the plastic
limit of the soil (Yalcin 2011; Kim and Song 2015). The soils in slopes
with higher permeability and porosity permit the water to permeate
into the soil matrix, increasing the infiltration. Here, the increased
moisture in soil significantly decreases the soil strength and leads to
slope failures. In a different context, the infiltration leads to pore
water pressures, which can trigger rainfall-induced landslides.
Hence, as found in the present study, the in-situ moisture
content does likely play a predominant role in influencing the
slope failure at a given site. Overall, it is hypothesized that the in-
situ moisture content could be employed as a factor for slope
monitoring with an inverse relation with strength, imposing the
condition: if more moisture, then more chances of slope failure.
Threshold moisture values can be determined statistically based on
prior slope failure data, if available, or in combination with soil
movements (measured by deployed accelerometer sensors). This
validation will likely reduce false alarms from early warning systems
for monitoring slope failures.

Given the technical advancement in real-time monitoring (Kumar
et al., 2019), various in-situ-based soil-moisture sensing techniques
could be employed after appropriate calibration and sensitivity
investigations (Mali et al., 2019). The varying soil moisture with
seasons, precipitation, and ground conditions may indicate soil
strength and failure susceptibility. Additionally, as other causal
factors like the porosity, saturated permeability, slope angle, angle
of the internal friction, and relative compaction are relatively constant
over time (considering no external disturbances), these factors could
be adopted for developing regional level susceptibility maps. These
maps could help in identifying the locations or slopes for the
installation of real-time monitoring systems. The present study
results revealed that other significant factors like fines content and
their constituents did not significantly contribute to slope failures in
the study area. A likely reason for the absence of these factors may be
their low ranges in the soils collected from the study area. As part of
our future study, we plan to evaluate the ensemble and non-ensemble
machine learning techniques for defining the rainfall thresholds for
zonal susceptibility considering the daily and cumulative rainfall
events prior to the landslide events. Furthermore, the use of deep
learning techniques incorporating the above-mentioned parameters as
well as soil movements obtained from sensing technologies may help
improve the predictions of future failure events.

LIMITATION FOR THE PRESENT STUDY

The present study’s primary intent was to identify certain
geotechnical factors acquired from field and laboratory
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investigations in causing slope failures in Mandi, India. Different
individual and ensemble machine-learning (ML) techniques were
employed for the analyses and a novel ensemble feature selection
method. However, the present analysis outcome is limited to its
study area, i.e., Mandi, India, and the 60 sites investigated. Thus,
extensive future studies may be needed to collect more data from
different regions to validate the reported findings ecologically.
Although data from 60 sites resulted in impressive results from
ML techniques in this paper, future studies may collect data from
many sites for training ML techniques and their parameters.

The different ML techniques were employed among data-
driven techniques to determine the major influencing factors for
slope failures. However, numerous other ML techniques are
available for performing machine learning, which could be
tried as part of future research.

In the studies related to rainfall-triggered slope failure assessment,
rainfall thresholds have been presented as indicators of early warning
or predicting anticipated slope failures. Though the current study
falls in a similar domain, rainfall intensity has not been considered in
the analyses directly. Overall, considering rainfall as the triggering
factor may be undertaken as part of future work in this area.

The slope height was not considered in the current study due to
the equipment’s failure to work on inaccessible slopes in the study
area, and this factor may be incorporated as a part of future work.
Based on the data available and correlation with precipitation
factors during slope failures, further studies could be undertaken to
evaluate the rainfall thresholds and causal properties to identify the
vulnerable zone in the current study area.

CONCLUSION

The current study’s primary objectives were to develop an
understanding of the causal factors for slope failures via ML
feature-selection methods and to develop different ensemble and
individual classification techniques for predicting slope failures.
For achieving these objectives, a detailed field survey (60 sites)
was performed in Mandi, India, and soils were collected from
slope failure and no-slope failure areas. The laboratory
investigations were performed on the collected soil samples

from the study region and other relevant field data. Seventy
percent of the data were used for model training, and the
remaining data were used for model testing. The results
revealed that the ensemble RF and AB techniques performed
the best with 0.9722 AUROC, 91.65% accuracy, and 0.77 kappa
statistics compared to other employed ensemble individual ML
techniques. Furthermore, relative compaction, porosity, saturated
permeability, slope angle, angle of the internal friction, and in-situ
water content were identified as the most relevant causal factors
as a combination for slope failures. These factors are a subset of
those reported in other slope failure studies, and this combination
forms the study’s interesting outcome. Overall, the suggested ML
techniques and feature selection methods may be utilized for
developing a prediction tool for local-scale susceptibility zonation
and slope-failure investigations.
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