
BS-LSTM: An Ensemble Recurrent
Approach to Forecasting Soil
Movements in the Real World
Praveen Kumar1, Priyanka Sihag1, Pratik Chaturvedi2, K.V. Uday3 and Varun Dutt 1*

1Applied Cognitive Science Lab, Indian Institute of Technology Mandi, Himachal Pradesh, India, 2Defence Terrain Research
Laboratory, Defence Research and Development Organization (DRDO), New Delhi, India, 3Geohazard Studies Laboratory, Indian
Institute of Technology Mandi, Himachal Pradesh, India

Machine learning (ML) proposes an extensive range of techniques, which could be applied
to forecasting soil movements using historical soil movements and other variables. For
example, researchers have proposed recurrent ML techniques like the long short-term
memory (LSTM) models for forecasting time series variables. However, the application of
novel LSTM models for forecasting time series involving soil movements is yet to be fully
explored. The primary objective of this research is to develop and test a new ensemble
LSTM technique (called “Bidirectional-Stacked-LSTM” or “BS-LSTM”). In the BS-LSTM
model, forecasts of soil movements are derived from a bidirectional LSTM for a period.
These forecasts are then fed into a stacked LSTM to derive the next period’s forecast. For
developing the BS-LSTMmodel, datasets from two real-world landslide sites in India were
used: Tangni (Chamoli district) and Kumarhatti (Solan district). The initial 80% of soil
movements in both datasets were used for model training and the last 20% of soil
movements in both datasets were used for model testing. The BS-LSTM model’s
performance was compared to other LSTM variants, including a simple LSTM, a
bidirectional LSTM, a stacked LSTM, a CNN-LSTM, and a Conv-LSTM, on both
datasets. Results showed that the BS-LSTM model outperformed all other LSTM
model variants during training and test in both the Tangni and Kumarhatti datasets.
This research highlights the utility of developing recurrent ensemble models for forecasting
soil movements ahead of time.

Keywords: soil movements, time-series forecasting, recurrent models, simple LSTMs, stacked LSTMs, bidirectional
LSTMs, conv-LSTMs, CNN-LSTMs

INTRODUCTION

Landslides are like a plague for Himalayan regions. These disasters present a significant threat to life
and property in many regions of India, especially in the mountain regions of Uttarakhand and
Himachal Pradesh (Pande, 2006). The landslides cause enormous damages to property and life every
year (Surya, 2011). To reduce the landslide risks and the losses due to landslides, modeling and
forecasting of landslides and associated soil movements in real-time is much needed (Van Westen
et al., 1997). This forecasting may help inform people about impending soil movements in landslide-
prone areas (Chaturvedi et al., 2017). One could forecast soil movements and generate warnings
using the historical soil movements and weather parameter values (Korup and Stolle, 2014). Real-
time landslide monitoring stations provide ways by which data of soil movements and weather
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parameters could be recorded in real-time (Pathania et al., 2020).
Once these data are collected, one may develop machine learning
(ML) models to forecast soil movements (Kumar et al., 2019a;
2019b, 2020; 2021a; 2021b). Such ML models may take prior
values as inputs and forecast the value of interest ahead of time
(Behera et al., 2018, 2021a; Kumari et al., 2020).

In the ML literature, the RNN models such as the long short-
term memory (LSTM) have been developed for forecasting soil
movements (Xing et al., 2019; Yang et al., 2019; Jiang et al., 2020;
Liu et al., 2020; Meng et al., 2020; Niu et al., 2021). These
recurrent models possess internal memory and they are a
generalization of the feedforward neural networks (Medsker
and Jain, 1999). Such recurrent models perform the same
function for each data input, and the output of the current
input is dependent on prior computations (Mikolov et al.,
2011). Some researchers have forecasted soil movements by
developing a single-layer LSTM model, where the model used
historical soil movements in a time series to forecast future
movements (Xu and Niu, 2018; Yang et al., 2019; Jiang et al.,
2020; Liu et al., 2020; Meng et al., 2020; Xing et al., 2020; Niu et al.,
2021). For example, Niu et al. (2021) developed an ensemble of
the empirical mode decomposition (EEMD) and RNN model
(EEMD-RNN) to forecasting soil movements. Furthermore, Jiang
et al. (2020) developed an ensemble of the LSTM and support
vector regression (SVR) models to forecast soil movements.
Similarly, a stacked LSTM model was developed by stacking
LSTM layers to forecast the soil movements (Xing et al.,
2019). Beyond some of these attempts for forecasting soil
movements, there have been some attempts at developing
RNN models for the time series forecasting problems across
different domains (Huang et al., 2015; Behera et al., 2018,
2021b; Qiu et al., 2018; Zhang et al., 2019; Barzegar et al.,
2020; Cui et al., 2020; Singh et al., 2020). For example,
convolutional LSTM (Conv-LSTM), bidirectional LSTM (Bi-
LSTM), and CNN-LSTM models have been developed in the
natural language processing (NLP), crowd time series forecasting,
software reliability assessment, and water quality variable
forecasting (Huang et al., 2015; Behera et al., 2018, 2021b; Qiu
et al., 2018; Zhang et al., 2019; Barzegar et al., 2020; Cui et al.,
2020; Singh et al., 2020). However, a comprehensive evaluation of
these RNNmodels has not yet been performed for soil movement
forecasting. Furthermore, the development and evaluation of
novel ensembles of RNN models for soil movement
forecasting in hilly areas are yet to be explored.

The primary goal of this research is to bridge these literature
gaps and develop new ensemble RNN techniques, which have not
been explored before. Specifically, in this research, we create a
new RNN ensemble model called “Bidirectional-Stacked-LSTM”
or “BS-LSTM” to forecast soil movements at known real-world
landslides in India’s Himalayan states. The new BS-LSTM model
combines a stacked LSTM model and a bidirectional LSTM
model to forecast soil movements. In the BS-LSTM model,
first, forecasts of soil movements are derived from a
bidirectional LSTM for a period. These forecasts are then fed
into a stacked LSTM to derive the next time period’s forecast. For
the development and testing of the BS-LSTMmodel, we collected
soil movement data from two real-world landslide sites in the

Himalayan mountains in India: the Tangni site (Chamoli district)
and the Kumarhatti site (Solan district). The Chamoli district has
suffered several landslides in the recent past (Khanduri, 2018). A
total of 220 landslides were recorded in this area in 2013, causing
many deaths and massive damages to infrastructure (Khanduri,
2018). The Solan district has also been prone to landslides in
Himachal Pradesh, and many landslide incidents have been
recorded in this district (Chand, 2014; Kahlon et al., 2014).
The world heritage Kalka - Shimla railway line passes through
the Kumarhatti site in the Solan district (ICOMOS, 2008). The
debris flow at the Kumarhatti site has often damaged the Kalka -
Shimla railway line (Surya, 2011; Chand, 2014). In this research,
using the soil movement data of Tangni and Kumarhatti sites, we
compare the performance of the BS-LSTM model to the
performance of other LSTM variants, including a simple
LSTM, a bidirectional LSTM, a stacked LSTM, a CNN-LSTM,
and a Conv-LSTM. The primary novelty of this work is to
propose a new BS-LSTM model and compare this new
model’s performance to the existing state-of-the-art RNN
models for soil movement forecasting. To the best of the
authors’ knowledge, this work is the first of its kind to
propose an ensemble of RNN models for soil movement
forecasting.

First, we present a review of the literature on machine
learning models for forecasting soil movements. The
method for calibrating different models to forecast the soil
movement data from the Tangni and Kumarhatti sites is
described next in detail. Finally, we provide the results from
various models and explore their implications for real-world
soil movement forecasts.

Background
Several research studies have proposed RNN models to forecast
soil movements and determine various triggering parameters for
such movements (Xu and Niu, 2018; Xing et al., 2019; Yang et al.,
2019; Jiang et al., 2020; Liu et al., 2020; Meng et al., 2020; Niu
et al., 2021). For example, Yang et al. (2019) created an LSTM
model for forecasting soil movements in China’s Three Gorges
Reservoir area. The model was trained using reservoir water
level, rainfall, and soil movement data. In this experiment, the
support vector machine (SVM) model was also developed to
compare with the LSTM model to forecast soil movements.
From the results, it was found that LSTMs could effectively
forecast soil movements. Similarly, Xu and Niu (2018)
developed LSTM models to forecast the Baijiabao landslide’s
displacement in China. The developed model was compared
with a SVR and a backpropagation neural network. The LSTM
model performed better than the SVR and neural network
models. Furthermore, Xing et al. (2020) created LSTM and
SVR models to forecast soil movements of the Baishuihe
landslide in China. The findings indicated that the LSTM
model could be used to forecast soil movements. Next, Liu
et al. (2020) created LSTM, gated recurrent unit (GRU), and
random forest (RF) models to forecast soil movements. These
models were trained on the data recorded from the Three
Gorges Reservoir, China. Results showed that GRU and LSTM
models performed better compared to the RF model for
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forecasting soil movements. Furthermore, Meng et al. (2020)
created an LSTM model and trained this model on the data
collected from the Baishuihe landslide in the China. The
recorded data from this landslide included different
parameters like weather, rainfall, and soil movements. The
univariate and multivariate versions of LSTM models were
created on this dataset. The results revealed that the
multivariate LSTM model performed better without
overfitting. Similarly, Xing et al. (2019) developed a stacked
LSTMmodel, where the sequence of soil movements were split
into different subsequences. Next, the model used these
subsequences to forecast soil movements. Niu et al. (2021)
created an ensemble of EEMD and RNN models (the EEMD-
RNN model). The proposed EEMD-RNN model was evaluated
and compared to standard RNN, GRU, and simple LSTM
models. The results showed that the EEMD-RNN model
outperformed the individual RNN, GRU, and LSTM
models. Next, Jiang et al. (2020) developed an ensemble of
simple LSTM and SVR models to forecast soil movements. The
Shengjibao landslide in the Three Gorges Reservoir area in
China was taken as a case study. The results showed that the
ensemble model outperformed the individual simple LSTM
and SVR models.

In addition to the machine-learning literature related to
landslides, several ensembles of RNN models have been tried
for general sequence forecast and specific landslide susceptibility
forecasting problems (Huang et al., 2015; Qiu et al., 2018; Zhang
et al., 2019; Barzegar et al., 2020; Cui et al., 2020; Singh et al., 2020;
Wang et al., 2020; Behera et al., 2021b). However, ensemble RNN
approaches for forecasting soil movements have yet to be
developed. For example, Huang et al. (2015) created a Bi-
LSTM model for sequence labeling in NLP. According to
the study, the Bi-LSTM model could learn past and future
input features in a sequence (Huang et al., 2015). Next, Qiu
et al. (2018) built the DGeoSegmenter using a Bi-LSTM model,
which derived words randomly and combined them into
phrases. Similarly, Cui et al. (2020) created a hybrid model
of a temporal Bi-LSTM with a semantic gate, namely SG-
BiTLSTM. The LSTM model was also developed to compare
with the proposed model to identifying the landslide hazard-
affected bodies (i.e., roads and buildings) in the images (Cui
et al., 2020). Results revealed that the SG-BiTLSTM model was
better than the LSTM model to classify the landslide affected
bodies and extract features of images. Furthermore, Behera
et al. (2021b) developed the Conv-LSTM to analyze consumer
reviews posted on social media. An ensemble of CNN networks
and a simple LSTM model was created for the sentiment
classification of reviews posted across diverse domains. The
experimental results showed that the Conv-LSTM
outperformed other machine learning approaches in
accuracy and other parameters. Furthermore, Singh et al.
(2020) also created a Conv-LSTM model for crowd
monitoring in large-scale public events. In this research, five
different LSTM models were also developed to compare the
performance of the Conv-LSTM model (Singh et al., 2020).
Results showed that the Conv-LSTM performed best amongst
other models. Besides, Barzegar et al. (2020) created an

ensemble CNN-LSTM model to forecast the water quality
variables. In this experiment, the CNN-LSTM model was
developed to compare with other ML models, namely,
LSTM, CNN, SVR, and decision trees (DTs). Results
revealed that the developed ensemble model performed
better than the non-ensemble models (CNN, LSTM, DTs,
and SVR). Similarly, Zhang et al. (2019) also developed an
ensemble CNN-LSTM model for the zonation of landslide
hazards. The developed model was compared to other shallow
ML models in this experiment. This experiment showed that
CNN-LSTM was better than other shallow ML models.

In addition, the development of RNN ensemble techniques
have shown some scope in the social network analysis, NLP, and
similarity measures predictions (Lin et al., 2019; Behera et al.,
2020; Behera et al., 2021a; Behera et al., 2019). For example, an
ensemble of the RNN models could be used to predict the critical
nodes in extensive networks (Behera et al., 2020). Furthermore,
Behera et al. (2021a) predicted the missing link using the
similarity measures, where similarity measures calculated the
similarity between two links. Similarly, Behera et al. (2019)
used the similarity measures for community detection in large-
scale networks based on similarity measures. An ensemble of
RNN models could predict these similarity measures (Lin et al.,
2019).

We found that an ensemble of different RNN models has not
been explored in the past for soil movement forecasting.
However, an ensemble of the RNN model with EEMD or SVR
models have been developed (Xing et al., 2019; Jiang et al., 2020;
Niu et al., 2021), or individual ML models like LSTM, GRU, SVR,
SVM, DT, and RF (Xu and Niu, 2018; Yang et al., 2019; Liu et al.,
2020; Meng et al., 2020) have been developed for soil movement
forecasting. Furthermore, these developed ensembles and
individual RNN models have been compared with individual
MLmodels (LSTM, GRU, SVR, SVM, DT, and RF) to forecast soil
movements. However, different variants of an ensemble of RNN
models have not to be compared in the past. Moreover, it was
found that some RNNmodels like the CNN-LSTM, Conv-LSTM,
stacked LSTM, and the Bi-LSTM performed well in social
network analysis and NLP problems. However, these models
have not yet been developed for soil movement forecasting.

Overall, this paper’s primary objective is to fill the literature
gaps highlighted above by introducing a new RNN ensemble
model called “Bidirectional-Stacked-LSTM” or “BS-LSTM” for
forecasting soil movements at the Tangni and Kumarhatti sites in
the Himalayan region of India. Furthermore, we develop CNN-
LSTM, Conv-LSTM, Bi-LSTM, and stacked LSTM models and
compare the performance of these models with the BS-LSTM to
forecast soil movements. To the best of the authors’ knowledge,
this type of study of soil movement forecasting has never been
executed in the Chamoli and Solan districts in India. Thus, the
main novelty in this work is to develop an ensemble of the RNN
models for soil movement forecasting at new sites in the
Himalayan region.

Study Area
The data for training RNN models were collected from the two
landslide sites at Tangni and Kumarhatti (see Figure 1A). The

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6967923

Kumar et al. BS-LSTM to Forecasting Soil Movements

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Tangni landslide is located in the Chamoli district, India. The
landslide is at longitude 79° 27′ 26.3″ E and latitude 30° 27′
54.3″ N, and at an elevation of 1,450 m (Figures 1A,B). As
depicted in Figure 1B, the study area is located on the National
Highway 7, which connects Fazilka in Punjab with Mana Pass.
This landslide is categorized into a rock-cum-debris slide
(THDC, 2009). Furthermore, the Tangni site’s incline is 30°

up the road level and 42° beneath the road level. The
surrounding area of the landslide is a forest consists oak
and pinewood trees. Frequent occurrence of landslides was
recorded in this area in 2013, which caused financial losses to
the travel industry (IndiaNews, 2013). To monitor soil
movements, inclinometer sensors were installed at Tangni
site between 2012 and 2014.

The Kumarhatti site is located in the Solan district, India,
along the Kalka - Shimla railway track. The site is at longitude
77° 02′ 50.0″ E and latitude 30° 53′ 37.0″ N at an elevation of
1734 m (Figures 1C,D). The landslide debris often damaged the
Kalka - Shimla railway line, which was recorded at the Kumarhatti
site by the railway department (Surya, 2011; Chand, 2014). A low
cost landslide monitoring system was setup in 2020 at the
Kumarhatti site to detect soil movements (Pathania et al., 2020;
see Figure 1C).

Soil movement data were collected daily between July 1st, 2012
and July 1st, 2014, from the sensors installed at the Tangni site
(see Figure 1B). Soil movement data (in meter) was recorded
from the accelerometer sensors installed at the Kumarhatti site
between September 10th, 2020, and June 17th, 2021. The

FIGURE 1 | (A) Locations of the study areas. (B) Borehole location of the Tangni site on Google Maps. (C) The landslide monitoring sensors installed on a hill near
the railway track at Kumarhatti. (D) The Kumarhatti site’s location on Google Maps.
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accelerometer sensors were installed at 1 m depth from the hill
surface at the Kumarhatti site.

METHODOLOGY

Data Preparation and Analysis
Tangni Site
The soil movement time series of the Tangni site was collected
from several inclinometer sensors. Twenty five inclinometer
sensors (i.e., five sensors each at different depths in a borehole
across five boreholes) were placed at the Tangni site.

In each borehole, the first sensor was installed at 3 m depth;
the second sensor was installed at 6 m; the third sensor was
installed at 9 m; the fourth sensor was installed at 12 m; and, the
fifth sensor was installed at 15 m depth from the hill’s surface. The
sensor measured the inclination change in millimeters per meter
(i.e., tilt angle). Figure 2A depicts the working principal of the
inclinometer sensor at the site. As illustrated in Figures 2A if the
an inclinometer’s length is L and the incline changes by (θ), then
the soil movement in L · sin θ. As a result, we converted soil
movement units into inclination mm/m units, where one mm/m
unit equaled the 0.057° movement in the soil.

As shown in Figure 2A, the sensor has A and B axes, with
positive and negative side on each. For example, in the A-axis, the
A+ side measured the upside movement, and A− side measured
downside movement of the hill. The sensors were set up so that
the positive A-axis was recording the upward movements and the
negative A-axis was recording the downwardmovements towards
the road level.

First, we determined each sensor’s relative tilt angle along the
A-axis from its original value at installation time. Second, the
sensors closest to the failure plane of the landslide were projected
to yield the most significant tilt. As a result, if the sensor is nearby

or close to the failure plane, the soil mass movement will be
most significant at this sensor (see Figure 2B). We chose those
sensors that revealed the maximum soil movement in each
borehole over 2 years. As shown in Figures 2A,B sensor in
borehole two at a depth of 12 m showed the maximum soil
movement over 2 years.

Perhaps, this maximum soil movement was due to the sensor
installed near the failure plane in borehole two at a depth of 12 m.
Overall, we took the sensor with the maximum average change in
inclination from each borehole. As a result, the data set was
reduced to five soil movement time series data (captured by a
single sensor in each borehole).

Furthermore, there were no soil movements in the daily data.
We summed the movement data over a 7 days week to produce
78 weeks of aggregated soil movement data. The weekly time
series of five sensors (one in each borehole) were used to develop
different RNN models.

Figure 3A–E plots the soil movements (in°) over 78 weeks in
each of the five boreholes at Tangni. As illustrated in Figures
3A–E, upward and downward soil movements along the hill were
represented by positive and negative tilt angles, respectively. For
example, in Figure 3A, in week 30, the movement was 1.71° which
changed to −5.53° in week 32. Therefore, there was a rapid
downward soil movement of −7.24° in week 32. The soil
movement data from borehole one to borehole five showed a
consistent downward soil movement behavior (see Figures
3A–E). The borehole one continuously showed a downside
soil movement from week one to week 31; but, it showed a
considerable movement in week 32. Borehole five, which was
installed near the crest, also showed movements between weeks 1
and 78; but, it showed significant movements in weeks 23 and
weeks 60–78. Boreholes two, three, and four, located between the
crest and toe, detected small soil movement in the beginning and
last weeks.

FIGURE 2 | (A) The inclinometer sensor was installed in the borehole at the landslide location. (B) The analysis of the maximum soil movement of inclinometer
installed at 12 m depth near the failure plane.
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Kumarhatti Site
The landslide monitoring station at the Kumarhatti site has an
accelerometer sensor installed at the 1-m depth from the soil’s
surface. The sensor has three orthogonal axes, X, Y, and Z, with
positive and negative directions on each axis. For example, the
X-axis has a positive (X+) side measuring the downside hill
movement and a negative (X−) side measuring the upside hill
movement. The sensor was installed with X-axis (X+) parallel to
the hill’s slope and recorded the positive and negative
movements. Every 10 min, the accelerometer sensor recorded
the acceleration due to gravity at the deployment. This

acceleration was later converted into the soil movements (in
meters) at the site by double integration using the trapezoidal
rule. The Kumarhatti dataset has 36,000 soil movement points
every 10 min over 250 days.

Figure 3F depicts the daily soil movement (in meters) over
250 days for the Kumarhatti dataset. As illustrated in Figure 3F,
the positive slope of the soil movement in the graph represents the
slope moving toward the railway track at the Kumarhatti site.

The soil movement data from the Tangni and Kumarhatti sites
were split into 80 and 20% ratios to train and test different models.
For both sites, the developed LSTM models were first trained on

FIGURE 3 | The plots of soil movement recorded from sensors deployed at different sites. (A) Sensor tilt at 3 m in borehole one at Tangni. (B) Sensor tilt at 12 m in
borehole two at Tangni. (C) Sensor tilt at 6 m in borehole three at Tangni. (D) Sensor tilt at 15 m in borehole four at Tangni. (E) Sensor tilt at 15 m in borehole five at
Tangni. (F) Soil movements (in meters) per day at Kumarhatti.
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the initial 80% training dataset, and they were later tested on the
remaining 20% testing dataset. The Tangni dataset has 62 data
points for training and 16 for testing. The Kumarhatti dataset has
32,800 data points for training and 7,200 data points for testing.

Dataset Attributes
The Tangni and Kumarhatti datasets included four distinct
attributes: the timestamp, the borehole number, the sensor
depth, and the soil movement. For example, for Tangni
dataset, [2, 2, 12, 1.8°] denotes that the sensor in borehole two
at a depth of 12 m recorded the soil movement of 1.8° in the
upward direction during the second week since deployment. For
Kumarhatti dataset, [20, 1, 1, 0.001 m] denoted that the
accelerometer at 1-m depth in borehole one showed the
downward movement of 0.001 m in the 200th minute since
deployment.

Means, Standard Deviations, and
Correlations in the Dataset
Table 1 displays the mean and standard deviation (SD) in the
Tangni and Kumarhatti datasets. For example, soil movements in
borehole one had an SD of 1.83°. Furthermore, in Table 1,
columns three through seven show the correlation value (r) of
soil movements between different boreholes at Tangni. The
correlation value between boreholes shows that if two
boreholes are on the same failure plane of the landslide, both
will simultaneously show soil movements with a high correlation.
For example, borehole two was highly correlated with borehole
four. As shown in Figure 1B, both boreholes are nearby, and it
could be possible that both were on the same failure plane. The
mean value of the soil movement for the Kumarhatti data was
0.02 m and had a standard deviation of 0.02 m. In Table 1, the
borehole is denoted by BH.

Autocorrelation Plots
The current values within the time series data may correlate to
their previous values, which we call lags or look-back periods. The
autocorrelation function (ACF) determines the number of lags
present in a time series data. The partial autocorrelation function
(PACF) determines a direct correlation between the current value
and its lag values, removing the correlation of all other
intermediate lags. As a result, the ACF value determines how
many past forecasted errors are required to forecast the current
value, and the PACF value determines how many past forecasted
values are required to forecast the current value for the time series

data. Figure 4A-4 L show the ACF and PACF plots with a 95%
confidence interval for the Tangni and Kumarhatti datasets. As
can from these figures, we can see that for the Tangni dataset, the
time series one had an ACF value of five and a PACF value of one.
The time series two had ACF and PACF values of zero,
respectively. The time series three and four had ACF and
PACF values of two, respectively. Furthermore, time series five
had an ACF value of four and a PACF value of one. Similarly, the
time series from the Kumarhatti dataset had an ACF value of
forty-two and a PACF value of one. Based upon the range of ACF
and PACF values across the two datasets, the look-back period for
the developed models was varied from one to five for the Tangni
data and one to forty-two for the Kumarhatti data.

Recurrent Neural Network Models
Recurrent neural networks (RNNs) are specially designed to
discover dependencies between current and previous values in
time series data (Medsker and Jain, 1999). RNN networks are
composed of a chain of cells linked by a feedback loop, and these
cells extract temporal information from time series data. In
general, every cell in RNNs has a simple design, such as a
tanh function (Medsker and Jain, 1999). In general, the RNN
models suffer from the exploding and vanishing gradients
problem during the training process (Bengio et al., 1994). The
problem arises when the long sequence of small or large values
multiplies while calculating the gradient in the backpropagation.
The exploding and vanishing gradient problems in the RNN
model prevent the model from learning the long-term
dependency in the data.

LSTMs solve the exploding and vanishing gradient problems
by employing a novel additive gradient structure in the
backpropagation. The additive gradient structure includes
direct access to the forget gate activations, allowing the
network to update its parameters so that the gradient does not
explode or vanish (Hochreiter and Schmidhuber, 1997). Thus,
LSTMs solve the problem of vanishing gradient and the learning
of longer-term dependencies in RNNs models.

Simple Long Short-Term Memory Model
The simple LSTM is a type of RNN model that can remember
values from previous stages (Medsker and Jain, 1999). The cell
state in an LSTM acts as a conveyor belt (c< t > ), allowing
unaltered information to flow through the units with only a
few linear interactions. The internal architecture of each LSTM
unit has an input gate (i< t > ), forget gate (f < t > ), and output gate
(o< t > ). These three gates control the flow of information and

TABLE 1 | Means, standard deviations, and the correlations between the time series of different boreholes.

Mean SD BH1-03 m BH2-12 m BH3-06 m BH4-15 m BH5-15 m

Tangni Data BH1-03 m −4.14° 1.83° 1
BH2-12 m −2.45° 0.10° 0.162 1
BH3-06 m −0.16° 0.69° 0.174 0.026 1
BH4-15 m −3.14° 0.64° 0.266 0.552 0.034 1
BH5-15 m −1.74° 1.50° 0.000 0.142 0.101 0.223 1

Kumarhatti Data BH1-01 m 0.02 m 0.0 m
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avoid the exploding or vanishing gradient problems during training
(Hochreiter and Schmidhuber, 1997) (see Figure 5A). The input
gate adds new information from the new input and previous output
to the cell state. The forget gate determines what information is
retained for a long time and what information is removed from the
cell state. The forget gate uses the sigmoid (logistic) function, where
the sigmoid function’s output value is between zero and one. The
forgot gate’s output zero means to remove the information from the
cell state, and output one means to keep the information. The
purpose of the output gate is to determine what output value its
required from the cell state, and the output gate also updates the
previous state of the hidden state (h< t−1> ). There is also a layer in
the LSTM unit that contains the tanh activation function, which is
used to update the state of neurons (see Figure 5A). Eqs 1–5 are the

fundamental equations of the LSTM cell, with the Hadamard
product denoted by the letter ′o′:

i< t > � σ(Wxixt +Whi h
< t−1> +Wci o c

< t−1> + bi) (1)

f < t > � σ(Wxf xt +Whf h
< t−1> +Wcf o c

< t−1> + bf ) (2)

c< t > � i< t > o c< t−1> + i< t > o tanh(Wxcxt +Whc h
< t−1> + bc)

(3)

o< t > � σ(Wxoxt +Who h
< t−1> +Wco o c< t−1> + bo) (4)

h< t > � o< t > o tanh(c< t > ) (5)

Where, i< t > is the input gate at timestamp t; f < t > is the
forgot gate at timestamp t; c< t > is the cell state at timestamp
t; o< t > is the output gate at timestamp t; and h< t > is the

TABLE 2 | Parameter optimization of different LSTM models.

Model parameter ranges for the tangni dataset

Parameters Convolutional
LSTM

CNN-LSTM Simple LSTM Bidirectional LSTM Stacked LSTM BS-LSTM

Layers 4 6 3 3 4 7
Lags or Look-back
period

Within 1 to 5 Within 1 to 5 Within 1 to 5 Within 1 to 5 Within 1 to 5 Within 1 to 5

Batch Size 10 or 50 10 or 50 10 or 50 10 or 50 10 or 50 10 or 50
Epochs 16 16 16 16 16 16
Filter Size in the
Convolution Layer

64 64 Not Applicable Not Applicable Not Applicable Not Applicable

Pool Size in the
Convolution Layer

Not Applicable 2 Not Applicable Not Applicable Not Applicable Not Applicable

Kernel Size in the
Convolution Layer

(1, 2) (1, 1) Not Applicable Not Applicable Not Applicable Not Applicable

LSTM Units in the
Hidden layer

Not Applicable Between 1 and 400,
with step size 50

Between 1 and 400,
with step size 50

Between 1 and 400,
with step size 50

Between 1 and 400,
with step size 50

Between 1 and 400,
with step size 50

Number of Neurons in
the Dense Layer

1 1 1 1 1 1

Inputs Shuffling Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No
Activation Functions Rectified Linear

Unit
Rectified Linear Unit Linear Activation

Function
Linear Activation

Function
Linear Activation

Function
Linear Activation

Function
Optimizer Adam

Model parameter ranges for the Kumarhatti dataset

Parameters Convolutional
LSTM

CNN LSTM Simple LSTM Bidirectional LSTM Stacked LSTM BS-LSTM

Layers 4 6 3 3 4 7
Lags or Look-back

period
Within 1 to 42 Within 1 to 42 Within 1 to 42 Within 1 to 42 Within 1 to 42 Within 1 to 42

Batch Size 1,024 1,024 1,024 1,024 1,024 1,024
Epochs 10 or 50 10 or 50 10 or 50 10 or 50 10 or 50 10 or 50
Filter Size in the

Convolution Layer
64 64 Not Applicable Not Applicable Not Applicable Not Applicable

Pool Size in the
Convolution Layer

Not Applicable 2 Not Applicable Not Applicable Not Applicable Not Applicable

Kernel Size in the
Convolution Layer

(1, 2) (1, 1) Not Applicable Not Applicable Not Applicable Not Applicable

LSTM Units in the
Hidden layer

Not Applicable Between 1 and 500,
with step 10

Between 1 and 500,
with step 10

Between 1 and 500,
with step 10

Between 1 and 500,
with step 10

Between 1 and 500,
with step 10

Number of Neurons in
the Dense Layer

1 1 1 1 1 1

Inputs Shuffling Yes/No Yes/No Yes/No Yes/No Yes/No Yes/No
Activation Function Rectified Linear

Unit
Rectified Linear Unit Linear Activation

Function
Linear Activation

Function
Linear Activation

Function
Linear Activation

Function
Optimizer Adam
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hidden state at timestamp t. The variable xt in the equations
represents the input data sequence at timestamp t.
The matrices Wxi, Wci, Wxf , Whf , Wcf , Wxc, Whc, Wxo, Who,
and Wco are the weight matrices between two different layers.
For example, the Wxi is the weight matrix between input

data sequence x and input gate i< t > . Similarly, the bi,
bf , bo, and bc are the biases for the input gate, forgot gate,
output gate, and cell state, respectively. The tanh and σ here
represent the tan hyperbolic and sigmoid (logistic) activation
functions.

FIGURE 4 | The autocorrelation and partial autocorrelation plots with the 95% confidence interval. (A) Autocorrelation for sensor at 3 m in borehole one at Tangni.
(B) Autocorrelation for sensor at 12 m in borehole two at Tangni. (C) Autocorrelation for the sensor at 6 m in borehole three at Tangni. (D) Autocorrelation for the sensor
at 15 m in borehole four at Tangni. (E) Autocorrelation for the sensor at 15 m in borehole five at Tangni. (F) Autocorrelations for the Kumarhatti data. (G) Partial
autocorrelation for the sensor at 3 m in borehole one at Tangni. (H) Partial autocorrelation for the sensor at 12 m in borehole two at Tangni. (I) Partial autocorrelation
for the sensor at 6 m in borehole three at Tangni. (J) Partial autocorrelation for the sensor at 15 m in borehole four at Tangni. (K) Partial autocorrelation for the sensor at
15 m in borehole five at Tangni. (L) Partial autocorrelations for the Kumarhatti data.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6967929

Kumar et al. BS-LSTM to Forecasting Soil Movements

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Convolutional Long Short-Term Memory
Model
Conv-LSTM is a combination of convolution operation of the
CNN model and the LSTM model (Shi et al., 2015). As shown in
Figure 5B, the convolution operation is applied to the input and
the hidden state of the LSTM cells. As a result, at each gate of the
LSTM cell, the internal matrix multiplication process is changed
by the convolution operation (*). This operation can find the
underlying spatial information in high-dimensional data. The
Conv-LSTM’s critical equations are provided in Eqs 6–10 below,

where the convolution operation is denoted by ′*′ and the
Hadamard product is denoted by ′o′:

i< t > � σ(Wxi * xt +Whi * h
< t−1> +Wci o c

< t−1> + bi) (6)

f < t > � σ(Wxf * xt +Whf * h
< t−1> +Wcf o c

< t−1> + bf ) (7)

c< t > � i< t > o c< t−1> + i< t > o tanh(Wxc * xt +Whc * h
< t−1> + bc)

(8)

o< t > � σ(Wxo * xt +Who * h
< t−1> +Wcoo c

< t−1> + bo) (9)

h< t > � o< t > o tanh(c< t >) (10)

FIGURE 4 | Continued.
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FIGURE 5 | (A) A layer of the simple LSTMwith three gates. (B) AConv-LSTMmodel with a convolution operation on input and hidden state. (C) ACNN-LSTMwith
a CNN network at an input layer.
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Where, i< t > is the input gate at timestamp t; f < t > is the forgot
gate at timestamp t; c< t > is the cell state at timestamp t; o< t >

is the output gate at timestamp t; and h< t > is the hidden state at
timestamp t. The variable xt in the equations represents the
input data sequence at timestamp t. The matrices Wxi,
Wci, Wxf , Whf , Wcf , Wxc, Whc, Wxo, Who, and Wco are the
weight matrices between two different layers. Similarly, the
bi, bf , bo, and bc are the biases for the input gate, forgot gate,

output gate, and cell state, respectively. The tanh and σ here
represent the tan hyperbolic and sigmoid (logistic) activation
functions.

CNN-Long Short-Term Memory Model
The CNN-LSTM model is an ensemble of CNN and LSTM
models (Wang et al., 2016). As shown in Figure 5C, the CNN
model first searches for spatial information in high-dimensional

FIGURE 6 | (A) The structure of the Bi-LSTM. (B) The structure of a two-layer stacked LSTM. (C) The structure of the BS-LSTM.
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input data and transforms it into one-dimensional data. The one-
dimensional data is then fed as an input to the LSTMmodel. Here
the CNN network acts as a spatial feature extractor.

Bidirectional Long Short-Term Memory
(Bi-Long Short-Term Memory) Model
This model is mainly designed to improve the performance of the
simple LSTM model. The Bi-LSTM model trains the two parallel
LSTM layers simultaneously (Cui et al., 2018). The models
train one of the parallel layers in the forward direction of the
input data and another layer in the backward direction of the
input data (see Figure 6A). The Bi-LSTMmodel could learnmore
patterns from the input data than the simple LSTM model in this

forward and backward training method. As the input data grows,
the Bi-LSTM model identifies the unique pieces of information
from the data.

Figure 6A depicts the Bi-LSTM design, which consists of two
simple LSTM layers. One layer of the model trains the model
forward, while a second layer of the LSTM trains the model
backward. The parallel layers of the LSTMmodel receive the same
input data and combine their outputs as one output. Finally, in
order to forecast the output, the Bi-LSTM model is linked to a
dense layer.

Stacked Long Short-Term Memory Model
The stacked LSTM could be developed by stacking the two simple
LSTM layers. The first layer receives the input from the input

FIGURE 6 | Continued.
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layer and provides the input to the next connected LSTM
layer (see Figure 6B) (Yu et al., 2019). Stacking multiple
LSTM layers on top of each other allows the model to learn
different temporal patterns from various timestamps in the input
data. This design gives more power to the LSTM models to
converge faster.

Figure 6B shows a stacked LSTM with two layers stacked
on top of each other. The first layer of the stacked LSTM
model is designed to take data from the input layer and
process it before passing it to the next layer. The next layer is
linked to the dense layer, which processes the output of the
first layer before passing it to the dense layer. Finally, the
dense layer forecasts the required outputs. The primary
equations of the model, which update the model’s initial
layer, are as follows:

i< t >l � σ(Wxi
l h

<t>
l−1 +Whi

l h
< t−1>
l +Wci

l o c
< t−1>
l + bil) (11)

f < t >
l � σ(Wxf

l h
<t>
l−1 +Whf

l h< t−1>
l +Wcf

l o c
< t−1>
l + bfl ) (12)

c< t >l � f < t >
l o c< t−1>l i< t >

l o tan h (Wxc
l h

<t>
l−1 +Whc

l h
< t−1>
l + bcl )

(13)

o< t >
l � σ(Wxo

l h<t>l−1 +Who
l h< t−1>

l +Wco
l o c

< t−1>
l + bol ) (14)

h< t >
l � o< t >

l o tan h (c< t >
l ) (15)

Where, the variable xt in the equations is representing the
input data sequence at timestamp t. The matrices Wxi

l ,
Wci

l , W
xf
l , Whf

l , Wcf
l , Wxc

l , Whc
l , Wxo

l , Who
l , andWco

l are the
weight matrices between two different layers at the level l.
Similarly, the bil , b

f
l , b

o
l , and bcl are the biases at the level l for

the input gate, forgot gate, output gate, and cell state,
respectively.

Bidirectional Stacked Long Short-Term
Memory Model
An ensembled version of a bidirectional LSTM and a stacked
LSTM (called the BS-LSTM network) is a newly designed
model for sequence forecasts. A bidirectional LSTM network
is concatenated with a stacked LSTM network (see
Figure 6C). First, the bidirectional LSTM network is
trained in both directions of the input time series (week
one to week 62 and vice versa). Second, the output of the
bidirectional LSTM layers is linked to a dense layer. Next,
the dense layer’s output is provided as input to the stacked
LSTM layers. Finally, the stacked LSTM layers relate to a
dense layer. The final dense layer forecast the required
outputs.

As seen in Figure 6C, seven layers make up the structure of
the BS-LSTM model. The input layer was the first layer, and
the following two parallel layers were trained in the forward
and backward directions. Next, the output of the Bi-LSTM
model was related to the dense layer. The dense layer
provided the values to the input layer of the stacked
LSTM. In the design of this stacked LSTM, two LSTM
layers were stacked, one on top of the other. The output of
the last stacked layer was related to the dense layer. Finally,

the dense layer of the stacked LSTM forecasted the following
week’s soil movements.

Model Parameters Tuning
The first layer in different models was the input layer. The
input layer’s dimension could be determined by the features
in the dataset, look-back periods, and batch size. The Tangni
dataset had fewer data points than Kumarhatti. Thus, the
batch size was selected as 16 for Tangni and 1,024 for
Kumarhatti. The range of the look-back periods was
estimated from the ACF and PACF values. As per the
ACF and PACF values, the look-back period for the
Tangni dataset was varied from one to five. Similarly, the
look-back period for the Kumarhatti dataset was varied
from one to forty-two. The number of the features in
both datasets was three (i.e., borehole, depth, and soil
movement). The second layer was the hidden layer. The
nodes in the hidden layer of the LSTM models are called
LSTM units. In this research, the one-step forecasting
method has been used to forecast the soil movement at
the next timestamp.

Simple Long Short-Term Memory Model
The number of LSTM units in the hidden layer was changed
between 1 and 400 with a step size of 50. The hidden layer’s
output vector size was the same as the number of LSTM units
in this layer. The dimension of the model’s output could be
changed by a dense layer. The dense layer consists of several
neurons with a linear activation function. The dense layer’s
output vector size was the same as the number of neurons in
this layer. Thus, the dense layer with one neuron was
connected to the last hidden layer. Table 2 shows the
various parameters used by this model to forecast the soil
movement in the Tangni and Kumarhatti datasets.

Conv-Long Short-Term Memory Model
In this model, the output dimension of the convolution layer
was determined by the batch size, new number of rows, new
number of columns, and the number of filters. In the
convolution layer, the batch size was selected as 16 for
Tangni and 1,024 for Kumarhatti. The new number of
rows and columns were set as one and two, respectively.
The number of filters was selected as 62. The kernel size of the
convolution layer was set to 1 × 2. The output vector
dimension of the convolution layer was multidimensional,
so a flatten layer was added after the convolution layer. The
flatten layer converted the multidimensional data into one
dimension. The dimension of the model’s output could be
changed by a dense layer. The dense layer consists of several
neurons with a rectified linear unit (ReLU) activation
function. The dense layer’s output vector size was the
same as the number of neurons in this layer. Thus, the
dense layer with one neuron was connected to the last
hidden layer. Table 2 shows the various parameters used
by this model to forecast the soil movements in the Tangni
and Kumarhatti datasets.
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CNN-Long Short-Term Memory Model
In this model, the time distributed convolution layer executed
the same convolution operation to each timestamp as the
LSTMs unrolled. The output dimension of the convolution
layer was determined by the batch size, new number of rows,
new number of columns, and the number of filters. In the
convolution layer, both new rows and columns were set as
one. The number of filters was selected as 62. The kernel size
of the convolution layer was set to 1 × 1. A max-pooling layer
was used to reduce the spatial dimensions. The pool size of
the max-pooling layer was set at 2. The max-pooling layers’
output was multidimensional, so a flatten layer was added
after the max-pooling layer. The flattening layer converted
the multidimensional data into one dimension. The flatten
layer provided the one-dimensional data to the next hidden
layer. The next layer was the hidden layer. The nodes in the
hidden layer are called LSTM units. The number of LSTM
units in the hidden layer was changed between 1 and 400
with a step size of 50. The hidden layer’s output vector size
was the same as the number of LSTM units in this layer. The
dimension of the model’s output could be changed by a dense
layer. The dense layer consists of several neurons with a
rectified linear unit (ReLU) activation function. The dense
layer’s output vector size was the same as the number of
neurons in this layer. Thus, the dense layer with one neuron
was connected to the last hidden layer. Table 2 shows the
various parameters used by this model to forecast the soil
movements in the Tangni and Kumarhatti datasets.

Bi-Long Short-Term Memory Model
In this model, the nodes in the hidden layer was called LSTM
units. The number of LSTM units in both hidden layers was
changed simultaneously between 1 and 400 with a step size of
50. The hidden layer’s output vector size was the same as the
number of LSTM units in this layer. The dimension of the
model’s output could be changed by a dense layer. The dense
layer consists of several neurons with a linear activation
function. The dense layer’s output vector size was the same
as the number of neurons in this layer. In this research, the one-
look-ahead forecasting method has been used. Thus, the dense
layer with one neuron was connected to the last hidden layer.
Table 2 shows the various parameters used by this model to
forecast the soil movements in the Tangni and Kumarhatti
datasets.

Stacked Long Short-Term Memory Model
In this model, the number of LSTM units in the hidden layer was
changed between 1 and 400 with a step size of 50. The hidden
layer’s output vector size was the same as the number of LSTM
units in this layer. The dimension of the model’s output could be
changed by a dense layer. The dense layer consists of several
neurons with a linear activation function. The dense layer’s
output vector size was the same as the number of neurons in this
layer. Thus, the dense layer with one neuron was connected to
the last hidden layer. Table 2 shows the various parameters used
by this model to forecast the soil movements in the Tangni and
Kumarhatti datasets.

BS-Long Short-Term Memory Model
This model has seven layers, three in the Bi-LSTM model
(Input: one; Hidden: one; Output:1) and four in the stacked
LSTM model (Input: one; Stacked: two; Output:1). The
architecture of the Bi-LSTM and stacked LSTM layers was
the same as Bi-LSTM and stacked LSTM model developed in
this paper. Table 2 shows the various parameter values used
by this model to forecast the soil movement in the Tangni and
Kumarhatti datasets. For example, the BS-LSTM parameters
for the Tangni dataset were varied as per the following: the
batch size was fixed at 16; the LSTM units in the hidden layers
were selected between 1 and 400 with a step size of 50 for the
Bi-LSTM model and changed between 1 and 400 with a step
size of 50 for both stacked layers in stacked LSTM; the
number of epochs was changed as 10 or 50; the look-back
period was varied from one to five; and, the inputs were
passed with shuffling turned on or turned off. The BS-LSTM
parameters for the Kumarhatti dataset were varied as per the
following: the batch size was fixed at 1,024; the hidden layer’s
LSTM units in Bi-LSTM and stacked LSTM were varied
between 1 and 500 with a step size of 10; the number of
epochs was changed as 10 or 50; the look-back period was
varied between 1 and 42 (as estimated from ACF and PACF);
and, the inputs were passed with shuffling and without
shuffling.

Model’s Inputs and Outputs
Before entering the time series data into models, we divided the
input data into several packets based on borehole and depth.
Packets from the first 80% of data were utilized to training the
models, and packets from the last 20% of data were used for
testing the models. Each packet was a combination of X, Y, where
X was the predictor, and Y was the forecasted soil movement
value (see Figure 7). As shown in Figure 7, the X predictor
formed a movement vector consisting of soil movements
recorded by a sensor in a borehole in a timestamp (M),
borehole number of the sensor (Borehole), and the depth of
the sensor (Depth). The M was the timestamp value of the soil
movement recorded by a sensor in a borehole in a particular time.
The Borehole value was one of the five boreholes at the site. The
Depth value was the depth of the sensor in a specific borehole. For
example, for a look-back period of three in the Tangni dataset,
packet X1 may contain the movement recorded by the sensor in the
first 3 weeks in borehole one at a depth of 3 m. The corresponding
Y1 contained the actual value of the movement recorded by the
same sensor in borehole one in week four, forecasted by a model.
Thus, there was a one-look-ahead soil movement forecast (Y) for a
certain look-back period and for a particular sensor at a specific
depth (X) (the look-back was passed to models as a parameter).
These X and Y packets could be shuffled before input to a model,
where the shuffle operation would shuffle the two lists (i.e., X and Y)
in the same order (see Figure 7).

Dropouts in Models
The Tangni dataset has a limited amount of data, where the
training dataset has only 62 data points to train LSTM models.
When the training dataset is limited, the system can overfit the

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 69679215

Kumar et al. BS-LSTM to Forecasting Soil Movements

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


model’s parameters during training. The dropouts can be applied
to the layers of the LSTM to prevent overfitting (Pham et al., 2014;
Gal and Ghahramani, 2016). Different combinations with the
probability (p) of dropout were applied on the input-output and
recurrent connections of the LSTM layer. The probability value
(p) was varied between 0.0 and 0.8 with step size 0.2, where a
p-value of 0.0 means no dropout applied. For example, a
combination (0.2, 0.8) represents 20% dropout applied to the
LSTM unit’s output and 80% dropout applied on the recurrent
input of the LSTM unit (Gal and Ghahramani, 2016).

Performance Measure for the Models
The soil movement forecasting is a regression problem, where the
resulting soil movement is assumed to have a floating value. Thus,
an error can be calculated between the true value and the
forecasted value of the soil movements. The different
performance measures have been used to evaluate the
performance measure of the various models (Behera et al.,
2018). In this paper, four performance measures are used:
mean relative error (MRE), root mean square error (RMSE),
normalized root mean squared error (NRMSE), and mean
absolute error (MAE). Eqs 16–19 were used to calculate the
values of these measures to find the difference between actual
points of datasets from the forecasted points of datasets.

RMSE �
����
1
n
∑n
i�1

√ (True angle − Forecasted angle)2 (16)

NRMSE �
�����������������������������
Σn
i�1(True angle − Forecasted angle)2√

Σn
i�1(Forecasted angle)2 (17)

MAE � 1
n
∑n
i�1
(∣∣∣∣True angle − Forecasted angle

∣∣∣∣) (18)

MRE � 1
n
∑n
i�1
(∣∣∣∣∣∣∣∣True angle − Forecasted angle

Forecasted angle

∣∣∣∣∣∣∣∣) * 100 (19)

where, n denotes the number of data points in the Tangni or
Kumarhatti dataset, the true angle denotes the actual observed
value of the soil movements in the dataset, and the forecasted
angle denotes the forecasted value of the soil movements by
the model.

Model Calibration
We created a grid search procedure to calibrate the parameters in
various models. In this process, we changed the different set of
parameters (described in Table 2) in a LSTM model. After
feeding a combination into the LSTM models, we recorded the
MAE, RMSE, NRMSE, and MRE, and we chose the parameters
with the lowest error in the model.

RESULTS

The developed LSTMmodels first trained on the first 80% data and
then tested on the remaining 20% data. The training and testing
results of these models across the Tangni and Kumarhatti datasets
are reported inTable 3. The results inTable 3 are sorted according
to the model’s performance (minimum RMSE first) on the testing
dataset. As can see in Table 3, the BS-LSTM and Bi-LSTMmodels
outperformed the other models in training and testing across the
Tangni and Kumarhatti datasets.

FIGURE 7 | Inputs and outputs in a model.
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Table 4 introduces the optimized value of parameters for all
models. As can see in Table 4, for the Tangni landslide dataset,
the least error of the Bi-LSTM model was at the look-back
period � 4, number of epochs � 50, batch size � 16, LSTM units
in the hidden layer � 400, with the shuffling of inputs, and no
dropouts applied on the LSTM layer. Table 4 shows the
optimized values for the BS-LSTM model, where the BS-
LSTM model was an ensemble version of two different
recurrent models, Bi-LSTM and stacked LSTM. The Bi-LSTM

was trained first. The best set of Bi-LSTM parameters that
minimized the RMSE on the Tangni dataset included: look-
back periods � 4, shuffling turned on, LSTM units in the hidden
layer � 400, the number of epochs � 50, batch size � 16, and no
dropouts applied on the LSTM layer. Next, the trained Bi-LSTM
model’s output forecasted values were fed into a stacked LSTM
as an input. The stacked LSTM was trained next, where the
minimum RMSE was produced with the following parameters:
batch size � 4, number of epochs � 50, packets without shuffled,

TABLE 3 | Errors of various models in the training and testing dataset.

Models Borehole Training Testing

MAE RMSE NRMSE MRE MAE RMSE NRMSE MRE

Performance of models on the Tangni dataset

BS-LSTM 1–03 m 0.22 0.39 0.00 23.29 0.15 0.18 0.00 2.63
2–12 m 0.03 0.03 0.00 1.23 0.02 0.03 0.00 1.00
3–06 m 0.07 0.08 0.07 19.19 0.25 0.58 0.24 66.42
4–15 m 0.06 0.18 0.00 2.56 0.03 0.05 0.00 1.04
5–15 m 0.29 0.46 0.01 23.32 0.34 0.54 0.06 38.26
Average 0.13 0.23 0.02 13.92 0.16 0.27 0.02 16.70

Bidirectional LSTM 1–03 m 0.12 0.25 0.00 4.83 0.04 0.05 0.00 0.77
2–12 m 0.02 0.03 0.00 0.73 0.01 0.01 0.00 0.52
3–06 m 0.02 0.03 9.31 209.11 0.36 0.74 0.18 238.46
4–15 m 0.05 0.16 0.00 1.72 0.03 0.04 0.00 0.83
5–15 m 0.40 0.69 0.02 686.76 0.46 0.67 0.05 256.24
Average 0.12 0.23 1.87 180.63 0.18 0.30 0.05 99.36

Stacked LSTM 1–03 m 0.20 0.34 0.00 9.17 0.16 0.18 0.00 2.74
2–12 m 0.03 0.03 0.00 1.19 0.02 0.03 0.00 0.93
3–06 m 0.12 0.12 1.17 99.12 0.40 0.75 0.17 133.96
4–15 m 0.09 0.17 0.00 3.03 0.05 0.06 0.00 1.51
5–15 m 0.44 0.73 0.02 95.59 0.40 0.58 0.05 145.64
Average 0.18 0.28 0.24 41.62 0.21 0.32 0.04 56.96

CNN-LSTM 1–03 m 0.27 0.79 0.01 48.62 0.10 0.12 0.00 1.81
2–12 m 0.05 0.05 0.00 1.95 0.04 0.05 0.00 1.56
3–06 m 0.10 0.11 1.08 87.81 0.32 0.66 0.11 86.81
4–15 m 0.12 0.30 0.00 6.13 0.08 0.10 0.00 2.32
5–15 m 0.38 0.76 0.02 57.83 0.50 0.74 0.07 243.92
Average 0.18 0.40 0.22 40.47 0.21 0.33 0.04 67.28

Simple LSTM 1–03 m 0.19 0.35 0.00 23.42 0.06 0.07 0.00 1.10
2–12 m 0.09 0.10 0.00 4.01 0.08 0.09 0.00 3.26
3–06 m 0.12 0.13 1.15 99.13 0.44 0.81 0.22 146.67
4–15 m 0.16 0.28 0.00 6.27 0.09 0.11 0.00 2.72
5–15 m 0.48 0.73 0.02 59.11 0.51 0.77 0.07 236.76
Average 0.21 0.32 0.23 38.39 0.24 0.37 0.06 78.10

Convolutional LSTM 1–03 m 0.29 0.78 0.01 608.79 0.04 0.04 0.00 0.76
2–12 m 0.11 0.11 0.00 4.47 0.09 0.10 0.00 4.02
3–06 m 0.01 0.02 54.84 1,111.34 0.36 0.76 0.19 646.81
4–15 m 0.23 0.32 0.00 9.46 0.18 0.20 0.01 5.68
5–15 m 0.52 0.79 0.02 138.42 0.76 1.06 0.12 477.23
Average 0.23 0.40 10.97 374.50 0.29 0.43 0.06 226.90

Performance of models on the Kumarhatti dataset

BS-LSTM 1–1 m 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.01
Bidirectional LSTM 1–1 m 0.00 0.00 0.00 1.63 0.00 0.00 0.00 0.01
Simple LSTM 1–1 m 0.00 0.00 0.00 1.69 0.00 0.00 0.00 0.19
Convolutional LSTM 1–1 m 0.00 0.00 0.00 1.93 0.00 0.00 0.00 0.13
Stacked LSTM 1–1 m 0.00 0.00 0.05 12.70 0.00 0.01 0.06 13.63
CNN-LSTM 1–1 m 0.02 0.02 0.39 87.82 0.03 0.03 1.15 131.58
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TABLE 4 | Optimized parameters for the different models on the Tangni and Kumarhatti datasets.

Optimal parameters of the different models on the Tangni dataset

Parameters Convolutional
LSTM

CNN-
LSTM

Simple
LSTM

Bidirectional
LSTM

Stacked
LSTM

BS-LSTM

Layers 4 6 3 3 4 7
Lags or Look-back period 2 4 4 4 4 4
Epochs 10 50 50 50 50 50
Batch Size 16 16 16 16 16 16
LSTM Units in the Hidden Layer Not Applicable 50 200 400 200, 100 Bi-LSTM (400), Stacked LSTM

(200, 100)
Number of Neurons in the Dense
Layer

1 1 1 1 1 1

Inputs Shuffling No Yes Yes Yes No Bi-LSTM (Yes), Stacked LSTM (No)
Dropout at Input Layer 0.0 0.0 0.0 0.0 0.0 0.0
Dropout at Dense Layer 0.0 0.0 0.0 0.0 0.0 0.0

Optimal parameters of the different models on the Kumarhatti dataset

Parameters Convolutional
LSTM

CNN-
LSTM

Simple
LSTM

Bidirectional
LSTM

Stacked
LSTM

BS-LSTM

Layers 4 6 3 3 4 7
Lags or Look-back period 25 1 1 1 1 1
Epochs 10 50 50 50 50 50
Batch Size 1,024 1,024 1,024 1,024 1,024 1,024
LSTM Units in the Hidden Layer Not Applicable 300 240 410 160, 330 Bi-LSTM (50), Stacked LSTM

(250, 300)
Number of Neurons in the Dense

Layer
1 1 1 1 1 1

Inputs Shuffling Yes Yes Yes Yes Yes Bi-LSTM (Yes), Stacked LSTM (Yes)
Dropout at Input Layer 0.0 0.0 0.0 0.0 0.0 0.0
Dropout at Dense Layer 0.0 0.0 0.0 0.0 0.0 0.0

Optimal parameters of the different models on the Tangni dataset

Parameters Convolutional
LSTM

CNN-
LSTM

Simple
LSTM

Bidirectional
LSTM

Stacked
LSTM

BS-LSTM

Layers 4 6 3 3 4 7
Lags or Look-back period 2 4 4 4 4 4
Epochs 10 50 50 50 50 50
Batch Size 16 16 16 16 16 16
LSTM Units in the Hidden Layer NA1 50 200 400 200, 100 Bi-LSTM (400), Stacked LSTM

(200, 100)
Number of Neurons in the Dense

Layer
1 1 1 1 1 1

Inputs Shuffling No Yes Yes Yes No Bi-LSTM (Yes), Stacked LSTM (No)
Dropout at Input Layer 0.0 0.0 0.0 0.0 0.0 0.0
Dropout at Dense Layer 0.0 0.0 0.0 0.0 0.0 0.0

Optimal parameters of the different models on the Kumarhatti dataset

Parameters Convolutional
LSTM

CNN-
LSTM

Simple
LSTM

Bidirectional
LSTM

Stacked
LSTM

BS-LSTM

Layers 4 6 3 3 4 7
Lags or Look-back period 25 1 1 1 1 1
Epochs 10 50 50 50 50 50
Batch Size 1,024 1,024 1,024 1,024 1,024 1,024
LSTM Units in the Hidden Layer NA1 300 240 410 160, 330 Bi-LSTM (50), Stacked LSTM

(250, 300)
Number of Neurons in the Dense

Layer
1 1 1 1 1 1

Inputs Shuffling Yes Yes Yes Yes yes Bi-LSTM (Yes), Stacked LSTM (Yes)
Dropout at Input Layer 0.0 0.0 0.0 0.0 0.0 0.0
Dropout at Dense Layer 0.0 0.0 0.0 0.0 0.0 0.0

NA1: Not Applicable
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no dropouts, number of nodes in input layer � 12, number of
LSTM units in first stacked layer � 200, second stacked layer �
100, and number of neurons in the dense layer � 1. For the
Tangni dataset, most LSTM models had a look-back period of
four, as shown in Table 4. Furthermore, the Kumarhatti dataset
had a PACF value of one, implying that this time series was only
required a single look-back period. As shown in Table 4, most

LSTM models had a one-look-back period on the Kumarhatti
dataset. The models’ parameters optimization found that the
look-back period was the most critical parameter to
reduce error.

Figure 8 depicts the top-performing BS-LSTM model’s
training and test fit over five boreholes from the Tangni site
and one borehole from the Kumarhatti site.

FIGURE 8 | The best performing BS-LSTM model showing the soil movements (in degree) over the Tangni landslide training and test datasets. (A) The sensor at
3 m in borehole one at Tangni. (B) The sensor at 12 m in borehole two at Tangni. (C) The sensor at 6 m in borehole three at Tangni. (D) The sensor at 15 m in borehole
four at Tangni. (E) The sensor at 15 m in borehole five at Tangni. (F) The best performing BS-LSTM model showing the soil movement (in meters) over the Kumarhatti’s
training and testing datasets.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 69679219

Kumar et al. BS-LSTM to Forecasting Soil Movements

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


DISCUSSION AND CONCLUSION

A focus of recurrent neural network models could be the
forecasting of soil movements to warn people about
impending landslides. We developed a novel ensemble BS-
LSTM model (a combination of a Bi-LSTM model and a
stacked LSTM model). We calibrated the parameters of the
BS-LSTM model on the Tangni and Kumarhatti datasets. The
soil movement data from the Tangni and Kumarhatti were split
into 80 and 20% ratios to train and test the LSTM models. The
developed LSTM models first trained on the initial 80% training

dataset with a one-step look ahead forecasting method and later
tested on the remaining 20% testing dataset for both locations.
Four performance measures MAE, RMSE, NRMSE, and MRE,
were utilized to record the performance of the models.

For the Tangni and Kumarhatti datasets, the ensemble BS-
LSTM was the best model to forecast the soil movements during
model training and testing. The Bi-LSTM was the second-best
model to forecast the soil movements for both datasets. An
explanation for the BS-LSTM’s performance might be that the
inbuilt Bi-LSTM found more information in the input time series
via training the model in both forward and backward directions.

FIGURE 8 | Continued.
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Next, the inbuilt stacked LSTM could utilize this information to
forecast the soil movement values.

Another observation from this experiment that the LSTM
models trained on the Tangni landslide dataset showed some
overfitting, where the training error was less than the testing
error. The one reason could be that the LSTM models have
memory limitations in general. The LSTM models require more
data to train their parameters, where the Tangni dataset has only
62 data points. The LSTM models were trained on the
Kumarhatti dataset to investigate the memory limitations, and
the results were reasonably good without overfitting. During the
training and testing of the Kumarhatti dataset, the LSTM models
showed almost no error in the soil movement forecasting.

The LSTMmodels in this paper were developed to forecast the
sequence of soil movements. The CNN-LSTM and Conv-LSTM
models were developed by ensembling of the CNN network and a
simple LSTM model. The ensembling fed the spatial information
of soil movements into the simple LSTM model, which increased
the performance of these models. The developed Bi-LSTM and
stacked LSTM models were the non-ensemble models. The BS-
LSTM model was developed using the Bi-LSTM and stacked
LSTMmodels. The BS-LSTM was compared with an ensemble of
CNN and simple LSTM models (CNN-LSTM and Conv-LSTM)
to forecast soil movements on the Tangni and Kumarhatti
datasets. The training and test results demonstrated that the
BS-LSTM models outperformed the ensemble of CNN and
simple LSTM models.

Results reported in this paper have several implications for soil
movement forecasts in the real world. First, the results show that
an ensemble of RNNmodels (such as BS-LSTM) could be utilized
to forecast soil movements at real-world landslide sites. Our
findings show that an ensemble BS-LSTM outperforms the
non-ensemble models and ensemble of CNN and simple
LSTM models for forecasting of soil movements. Furthermore,
this is the first attempt to use recurrent neural network models to
model soil movements at the Tangni and Kumarhatti sites. Such
an ensemble of recurrent neural networks may also have the
scope in other fields such as social network analysis and natural
language processing, respectively.

According to this article, recurrent neural network models
might be useful in anticipating soil movements to warn people
about impending landslides. During the training and testing of
the Kumarhatti dataset, the LSTMmodels showed almost no error in
the soil movement forecasting. In conclusion, the newly developed
ensemble models were generalized to forecast the soil movements

on different landslides. In future, these models could be used to
forecast the soil movements at other landslide sites in India and in
other countries. The soil movement forecasting is a class imbalance
problemwheremovement eventsmay be lesser than non-movement
events. Also, the machine learning models could show overfitting
when training data is scarce. In such situations, the generative
adversarial networks (GANs) could generate synthetic data of soil
movements to solve class imbalance in datasets (Al-Najjar and
Pradhan, 2021). For example, Al-Najjar and Pradhan, (2021)
developed a GAN model for spatial landslide susceptibility
assessment when training data was less. As a part of our future
plan, we would like to extend this research by developing various
GANmodels for soil movement forecasting. A portion of these ideas
forms the immediate stages in our project on soil-movement
forecasts utilizing machine learning approaches.
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