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Residual oil distribution plays a critical role in understanding of the CO2 flooding processes,
but its quantitative research for reservoirs with different permeability levels rarely has been
comprehensively conducted in the laboratory. This article presents the results of an
experimental study on the immiscible CO2 displacement efficiency in different
permeability core samples and various oil distribution patterns prior to and after
immiscible CO2 flooding. Experiments were conducted on four core samples extracted
from the selected oil field with a permeability range from 0.210–66.077 mD. The
experimental results show that the immiscible CO2 can mobilize oil in ultralow-
permeability environment and achieve a reasonable displacement efficiency (40.98%).
The contribution of different oil distribution patterns to displacement efficiency varies in
reservoirs with different permeabilities. With the increase of core permeability, the
contribution of cluster and intergranular pore oil distribution patterns to displacement
efficiency increases. However, the oil displacement efficiency of corner and oil film patterns
tends to increase with lower permeability. Therefore, immiscible CO2 flooding is
recommended for ultralow-permeability case, especially for reservoirs with larger
amount of oil in corner and oil film distribution patterns. The oil displacement efficiency
calculated by immiscible CO2 flooding experiment results agrees reasonably well with the
core frozen slices observation. The results of this study have practical significance that
refers to the effective development of low-permeability reservoirs.
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INTRODUCTION

The onshore proven undeveloped oil reserves in China are mainly low-permeability and ultralow-
permeability reservoirs (Zhao et al., 2011; Duan et al., 2014). There are many researches in this field
with different focuses (Li et al., 2017; Zhang et al., 2020; Wang et al., 2021). Field tests show that CO2

flooding is a potential option to improve the oil recovery of low-permeability sandstone reservoirs
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(Zekri et al., 2006; Bourgeois et al., 2011; Wei et al., 2020a), which
is the future development direction of enhanced oil recovery
(EOR) in these reservoirs (Su et al., 2011; Hao et al., 2016; Li et al.,
2019; Wu et al., 2020).

Determination of residual oil distribution is critically
important for developers to identify the potential sweet
point, which provides a reasonable basis for the optimum oil
recovery method selection. Although residual oil distribution
plays a critical role in understanding of the processes which take
place within a reservoir during and after CO2 flooding, and
many laboratory studies have been performed to evaluate the
residual oil distribution, very limited effort has been focused on
its quantitative research at the core scale considering different
permeability levels. Wang et al. (2013) studied the residual oil
distribution in ultralow-permeability reservoir by using nuclear
magnetic resonance (NMR) technique, and they considered
wettability, pressure gradient, and different water cuts.
Iglauer et al. (2014) imaged a sequence of surfactant EOR
production steps with a microcomputed tomography, and
they limited the study to microscopic sweep efficiency.
Residual oil distribution on pore-scale during secondary and
tertiary solvent injection was investigated by Shokrlu and
Babadagli, (2015), and they studied the efficiency of a
miscible-displacement process that is conducted in a cyclic
form similar to water-alternating gas. Hu et al. (2017)
conducted an experimental study on the mechanism of CO2-
immiscible flooding and residual oil distribution in a water-
drive reservoir. Al-Bayati et al. (2019) presented the results of an
experimental study on immiscible CO2 flooding efficiency in
sandstone porous media, but their research did not involve
microscale investigation and they focused on the influence of
permeability heterogeneity. Wei et al. (2020b) conducted an
experimental study, in which the original oil–water distribution
feature and that after fluid injection were revealed, and they only
covered the case of tight oil reservoirs. Druetta and Picchioni
(2020) developed a numerical model to investigate the
mechanisms and effectiveness of polymer flooding on the
residual oil after waterflooding, and they validated their
results by comparing them with the experiments carried out
by other authors. Although they conducted numerical
simulation, it still provided some perspectives on the
experimental investigation of residual oil distribution. Wang
et al. (2020) conducted an investigation on the multiphase flow
characteristics and EOR mechanism of water-alternating gas
(WAG) injection after continuous CO2 injection at the
microscale using CT scanning and microelectronic
photolithography. They concluded that WAG injection after
continuous CO2 injection increased oil recovery by 23.15%,
which was dominated by the first and second WAG injection
cycles. Wei et al. (2021) also applied the NMR technology to
carry out experimental research, in which the microscopic oil
displacement mechanism in low-permeability reservoirs was
discussed, but they focused on five different EOR methods
including CO2 flooding. To our knowledge, the displacement
efficiency of immiscible CO2 flooding by considering the
contribution of various oil distribution patterns to
displacement efficiency in reservoirs with different

permeabilities have not been investigated before. In this
work, in order to represent different oil recovery scenarios,
scales in the different permeability recovery process are
considered: from the macro- to microscale systems. The
core permeability range is from 0.210–66.077 mD. The
efficiency of immiscible CO2 flooding is evaluated by the
field core drainage experiments, combined with the frozen
slice technology the displacement process of oil by immiscible
CO2 is analyzed quantitatively. Thus, this research is
dedicated to bridge the existing gap in our knowledge by
following a systematic experimental approach and improve
fundamental understanding with which it will be possible to
develop better production techniques and improved CO2

EOR models.

EXPERIMENTAL WORK AND
METHODOLOGY
Coreflooding Equipment, Core Samples,
and Chemicals
In immiscible CO2 flooding experiments, we have followed a
systematic approach. Figure 1 shows a schematic diagram of
the core flooding apparatus used in this study, which consists
of the injection system, the displacement system, the pressure
control system, and the fluid collection system. The advanced
frozen slice technology and the laser confocal scanning
microscopy have been applied in order to visualize oil
distribution. Experiments were carried out on four core
samples from the Daqing Oilfield, China. In the
experiments, kerosene and synthetic brine with a salinity of
6778 mg/L were used to simulate oil and formation water.
Table 1 presents the results of measured properties of the
sandstone core samples. The core sample G-2 with medium
permeability was selected in order to be compared with other
low-permeability cores.

Experimental Procedure
Specific experimental procedures are as follows: 1) prepare the
formation water and oil as mentioned, 2) clean and dry the core
sample, 3) put the core sample in the holder and maintain the
confining pressure at 3 MPa; vacuum the core for 24 h, 4) inject
formation water into the core by hand pump until the pressure at
the end of the core remains at 0.5 MPa, 5) inject oil at a constant
speed of 0.005 ml/min until no water flows out, 6) place the core
in the 90°C thermotank for 48 h, 7) cut 1.5 cm core end to make a
frozen slice, 8) set the temperature and the back pressure of the
displacement system at 50°C and 6.5 MPa to ensure immiscible
condition (Yang et al., 2015; Zhang et al., 2017; Dindoruk et al.,
2020); flood the remaining core with a constant speed of 0.01 ml/
min for three pore volume (PV) CO2, 9) record injection pressure,
oil and gas production every certain time until no oil comes out,
10) cut 1.5 cm core end to make another frozen slice, and 11) use
the laser confocal scanning microscopy to visualize residual oil
distribution.

The same procedure was applied to all core samples with
different permeabilities.
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RESULTS AND DISCUSSION

In this section, the flooding experiment results are analyzed in
order to understand the macroscopic displacement efficiency
relative to different permeabilities. The results of residual oil
distribution visualization by laser confocal microscopy are
discussed to shed some light on the microscale oil distribution
and contribution of different distribution patterns to
displacement efficiency with all mentioned permeability ranges.

Immiscible CO2 Flooding Experiments:
Macroscopic Displacement Efficiency
The displacement efficiency of immiscible CO2 flooding as a
function of PV number for core samples with different

permeabilities was calculated and is presented in Figure 2.
Figure 3 shows the change of percent displacement efficiency
and oil saturation post and prior to CO2 flooding with
permeability.

As expected, in all runs, displacement efficiency increased with
the increasing of pore volume of CO2 injected. At the initial stage
of immiscible CO2 flooding, the oil displacement efficiency of
cores with different permeability levels did not change
significantly, and the ultralow and extra low-permeability cores
had even faster growth rate than that of the PV number. Injecting
CO2 as an immiscible agent at experimental conditions resulted
in final oil displacement efficiency of 40.98 and 41.76% for
ultralow and extra low permeability, respectively. There was
only a slight change in displacement efficiency when the
permeability increased from ultralow to extra low, but
immiscible CO2 flooding performance improved significantly
at higher permeability. The following oil displacement
efficiency was obtained: 54.98 and 62.49% corresponding to
low and medium permeability, respectively. At the higher
permeability, the injected CO2 succeeded to contact more oil
in place and managed to displace and/or extract much more oil
than in the lower permeability case. The displacement efficiency
of immiscible CO2 flooding in medium permeability core was
increased by 52.49, 49.64, and 13.66% compared with ultralow-,
extra low-, and low-permeability core samples, respectively.

The increase of displacement efficiency began to slow down
after about 0.35 PV of CO2 had been injected for ultralow and
extra low-permeability cores, and 0.9 PV for higher permeability
cores. Moreover, in the case of medium permeability, higher oil
saturation prior to CO2 flooding and lower oil saturation post

FIGURE 1 | Schematic of the experimental setup.

TABLE 1 | Petrophysical properties of the core samples.

Sample Diameter, cm Length, cm Dry weight, g Bulk volume, cm3 Porosity, % Permeability, mD Permeability level

FY-1 2.54 4.93 55.9991 24.981 12.366 0.210 Ultra-low
FY-2 2.50 4.81 51.7287 23.631 16.617 7.047 Extra low
G-1 2.50 6.89 73.4510 33.841 15.399 21.751 Low
G-2 2.51 7.21 72.8497 35.676 21.998 60.077 Medium

FIGURE 2 | Displacement efficiency vs. PV number of CO2 injected for
different cores.
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FIGURE 3 | Displacement efficiency and oil saturation post and prior to CO2 flooding vs. permeabilities.

FIGURE 4 | Frozen slices of core FY-1 prior to (A) and post (B) CO2 floods.

FIGURE 5 |Oil saturation prior to and post CO2 floods in reservoir core with ultralow permeability. (A–C: observation points before the CO2 flood,D–F: observation
points after CO2 flood).
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flooding were observed. Nevertheless, experimental results show
that the immiscible CO2 can mobilize oil in ultralow-permeability
environment with a reasonable recovery.

Quantitative Observation of Core-Frozen
Slices: Microscopic Displacement
Efficiency
We performed a series of experiments as mentioned above for
quantitative observation of different residual oil distribution
patterns on core frozen slices with different permeabilities.
The frozen slices of ultralow-permeability core prior to and
post-immiscible CO2 flooding are shown in Figure 4. Three
observation points were selected evenly on each of the slices.
In order to determine the oil distribution patterns and analyze
their contribution to displacement efficiency, microphoto images
of oil saturation were taken prior to and after CO2 flood, which
are shown in Figure 5. Figures 5A–C show oil distribution of the
three observation points before the CO2 flood, and Figures 5D–F
reveal three observation points oil distribution after CO2 flood.
We can see a significant decrease of oil saturation after CO2

floods.
The image processing software developed by our team is used for

quantitative analysis of oil distribution in different pore structures. In
this study, we found five dominant oil distribution patterns, namely,
cluster, pore-throat, corner, intergranular pore, and oil film. Cluster
distribution pattern refers to the oil trapped in the large pores
connected by small pores and narrow throats. In the pore-throat
distribution pattern, oil is snapped off at the neck (narrow throat)
and may become residual under the current displacement
conditions. In corner distribution pattern, oil is trapped in the
end of the pores (the dead corner) due to poor connectivity. In
the intergranular pore distribution, oil is in the dispersed phase due
to the existence of fine particles in pores. Oil film distribution pattern
refers to the oil located on the particle surface of the channel wall in
the form of thin layer.

Figure 6 presents the software processing result of the residual
oil distribution in ultralow-permeability reservoirs. It can be seen
that all the five oil distribution patterns (Figure 6A—cluster,
pore-throat, and corner; Figure 6B—intergranular pore;
Figure 6C—oil film) exist in ultralow-permeability reservoirs
but with different proportions. Similarly, we can calculate the oil
distribution pattern of other cores before and after displacement.

Figure 7 shows the proportions of different oil distribution
patterns to total pore volume prior to and post CO2 floods,
then we can determine the production contribution from every
oil distribution pattern.

From Figures 6, 7, we can learn that various oil distribution
patterns had different contributions to displacement efficiency
in reservoirs with different permeabilities. The most common
oil distribution pattern for all core samples was cluster, which
had the biggest contribution to oil production. The distribution
pattern of intergranular pore also had a higher production
contribution. Oil did not tend to be stored in oil film
pattern, which was mainly affected by the pore structure.
Generally speaking, the larger the permeability was, the
greater the contribution of cluster and intergranular
distribution patterns to the oil production and the higher the
ultimate oil displacement efficiency. The production
contribution of the cluster distribution pattern in medium
permeability core was increased by 32.89, 29.56, and 7.44%
when compared with ultralow-, extra low-, and low-
permeability core samples, respectively.

Compared with other core samples, the in situ oil saturation of
core sample with extra low permeability was more concentrated
in the corner and oil film distribution patterns, resulting in
relatively low oil mobility. Therefore, although its permeability
was much higher than that of ultralow-permeability core, only
slight increase in displacement efficiency was observed, and this
phenomenon should be studied on case-by-case basis using the
formation fluids and rocks under reservoir conditions. In general,
oil displacement efficiency of corner and oil film patterns tends to
decrease with higher permeability. In core samples with ultralow
permeability, CO2 can enter into smaller pores, expand the sweep
area, and improve the displacement efficiency of oil in pore-
throat, corner, and oil film distribution pattern. There was no big
change between cores with different permeabilities in the
contribution of pore-throat oil distribution pattern to
displacement efficiency.

The displacement efficiencies of immiscible CO2 flooding in
reservoir core samples with different permeabilities by
microscopic oil distribution were 37.62% (ultralow), 41.52%
(extra low), 56.86% (low), and 61.90% (medium). The average
relative error of oil displacement efficiency calculated by
immiscible CO2 flooding experiment results and by frozen
slices observation was 3.28%.

FIGURE 6 | Visualization of different residual oil distribution patterns of core sample FY-1 (A: 1—cluster; 2—pore-throat; 3—corner; B: 4—intergranular pore; C:
5—oil film).
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CONCLUSION

The experiments described in this article represent immiscible
CO2 floods on core samples with different permeabilities. From
the experimental studies presented above, we can draw the
following conclusions:

1. Immiscible CO2 flooding performance on reservoir cores
improves with the increase of permeability. Compared
with ultralow-, extra low-, and low-permeability core
samples from the target oilfield, the displacement
efficiency of immiscible CO2 flooding on medium
permeability core was increased by 52.49, 49.64, and
13.66%, respectively.

2. In all core frozen slices, five oil distribution patterns with
different proportions were observed. The experimental
results showed that the production contribution of
different oil distribution patterns varies in reservoirs
with different permeability levels. Compared with
other oil distribution patterns, there was no big change
between cores with different permeabilities in the
production contribution of pore-throat distribution
pattern.

3. The contribution of cluster and intergranular pore-oil
distribution patterns to displacement efficiency was
more pronounced in cases with higher permeability.
The production contribution of cluster distribution
pattern in medium permeability core sample during
immiscible CO2 flooding was increased by 32.89, 29.56,
and 7.44% when compared with ultralow-, extra low-, and
low-permeability cores, respectively. Therefore, the
pore proportion of cluster and intergranular pore oil
distribution patterns is an important indicator
for efficient development of higher permeability
reservoirs.

4. The oil displacement efficiency of corner and oil film
distribution patterns tends to increase with lower
permeability, where CO2 can enter the smaller pore
structures and expand the sweep area. In ultralow-
permeability reservoirs, the immiscible CO2 can mobilize
oil in all five distribution patterns and achieve reasonable
displacement efficiency (40.98%). Therefore, immiscible CO2

flooding is recommended for ultralow-permeability case,
especially for reservoirs with larger amount of oil in corner
and oil film distribution patterns.
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