
A Quantitative Method to Evaluate the
Performance of Climate Models in
Simulating Global Tropical Cyclones
Yixuan Shen1, Yuan Sun1,2*, Zhong Zhong1,3 and Tim Li2,4

1College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China, 2Joint International
Research Laboratory of Climate and Environmental Change (ILCEC), Nanjing University of Information Science and Technology,
Nanjing, China, 3Jiangsu Collaborative Innovation Center for Climate Change, School of Atmospheric Sciences, Nanjing
University, Nanjing, China, 4IPRC and Department of Atmospheric Sciences, University of Hawai’i at Mānoa, Honolulu, HI,
United States

The capability to reproduce tropical cyclones (TCs) realistically is important for
climate models. A recent study proposed a method for quantitative evaluation of
climate model simulations of TC track characteristics in a specific basin, which can
be used to rank multiple climate models based on their performance. As an extension of
this method, we propose a more comprehensive method here to evaluate the
capability of climate models in simulating multi-faceted characteristics of global
TCs. Compared with the original method, the new method considers the capability
of climate models in simulating not only TC tracks but also TC intensity and frequency.
Moreover, the new method is applicable to the global domain. In this study, we apply
this method to evaluate the performance of eight climate models that participated in
phase 5 of the Coupled Model Intercomparison Project. It is found that, for the overall
performance of global TC simulations, the CSIRO Mk3.6.0 model performs the best,
followed by GFDL CM3, MPI-ESM-LR, and MRI-CGCM3 models. Moreover, the
capability of each of these models in simulating global TCs differs substantially over
different ocean basins.

Keywords: tropical cyclone track, intensity and frequency, climate model performance, quantitative evaluation
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INTRODUCTION

Tropical cyclones (TCs) are among the most devastating natural disasters on Earth (e.g., Tonkin et al.,
1997; Henderson-Sellers et al., 1998; Pielke et al., 2008; Peduzzi et al., 2012; Rappaport, 2014). In recent
years, numerical models have become an important tool for investigating TC activities. With
improvements in numerical models such as increased resolution, optimized dynamic framework,
and parameterization schemes, great achievements have been made in studying TC activities.
Nevertheless, the performance of global climate models for simulating multiple features of TCs
(such as TC genesis location, intensity, and track) remains unsatisfactory (Emanuel et al., 2008;
LaRow et al., 2008; Caron et al., 2010; Zhao and Held, 2010; Manganello et al., 2012; Tory et al., 2020;
Zhang et al., 2021). In addition, because of the feedback effect of TC activities on atmospheric circulation,
the simulated atmospheric circulation results will also be affected if models have poor ability to simulate
TC activities (Chen et al., 2019). Therefore, it is very important to evaluate the ability of climate models
on simulating TC activities. Due to the lack of metrics for quantitatively evaluating the performance of

Edited by:
Bo Lu,

China Meteorological Administration,
China

Reviewed by:
Rongqing Han,

National Climate Center, China
Jingliang Huangfu,

Institute of Atmospheric Physics
(CAS), China

*Correspondence:
Yuan Sun

sunyuan1214@126.com

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Earth Science

Received: 12 April 2021
Accepted: 30 June 2021

Published: 09 August 2021

Citation:
Shen Y, Sun Y, Zhong Z and Li T (2021)
A Quantitative Method to Evaluate the

Performance of Climate Models in
Simulating Global Tropical Cyclones.

Front. Earth Sci. 9:693934.
doi: 10.3389/feart.2021.693934

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6939341

ORIGINAL RESEARCH
published: 09 August 2021

doi: 10.3389/feart.2021.693934

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.693934&domain=pdf&date_stamp=2021-08-09
https://www.frontiersin.org/articles/10.3389/feart.2021.693934/full
https://www.frontiersin.org/articles/10.3389/feart.2021.693934/full
https://www.frontiersin.org/articles/10.3389/feart.2021.693934/full
http://creativecommons.org/licenses/by/4.0/
mailto:sunyuan1214@126.com
https://doi.org/10.3389/feart.2021.693934
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.693934


global climate models for TC simulation, it is hard to compare
different global climate models and comprehensively evaluate their
improvements.

Currently, the following methods are used to evaluate the
performance of numerical models in simulating multiple features
of TC activities. One is the statistical analysis method, for
comparing spatial distributions of TC occurrence frequency.
Differences or correlation coefficients between model
simulations and observations are commonly calculated using
this method (Zhou, 2012; Zhou and Xu, 2017). The second
method is to use the correlation coefficient, root mean square
error, or Taylor diagrams (Taylor, 2001) to quantize the
difference of the large-scale environmental fields related to TC
genesis (e.g., 500-hPa geopotential height and the genesis
potential index) between simulations and observations (Song
et al., 2015). The third is to classify TC tracks and compare
the differences of TC track category between simulations and
observations. The results are then used to determine model
performance in simulating TC occurrence frequency and TC
track (Strazzo et al., 2013; Shaevitz et al., 2014; Kossin et al., 2016).

To a certain extent, the abovementioned methods can be used
to evaluate model performance in terms of TC simulations.
However, these methods all have some weaknesses. First, most
methods only account for one or two features of TCs. For
example, only TC occurrence frequency or TC track
classification is considered by some methods. Second, no
quantitative metrics have been proposed to evaluate model
performance in simulating TCs, and evaluation of model
performance is limited to qualitative analysis. To address these
issues mentioned above, Shen et al. (2018) proposed an index to
quantitatively evaluate the performance of climate models in
simulating density and geographical properties of the TC
track. However, their method needs to be improved in several
aspects because: (1) it only considers model performance in
simulating the TC track and does not examine other aspects
of TC characteristics (e.g., intensity); and (2) it only evaluates
model performance in a single ocean and cannot provide a
picture for global TC simulations. The objective of the present
study is to supplement these aspects to expand the objective
method proposed by Shen et al. (2018); then we can better
evaluate the skill of climate models regarding TC simulation.
The new method proposed in this study will be used to evaluate
model performance of global TC simulations. It not only accounts
for TC track density and track pattern as in Shen et al. (2018) but
also considers TC intensity, monthly variation of TC frequency
and differences in model capability between different oceans.

Data used in the present study and the evaluation method are
introduced in Data and Method. Results are discussed in Results,
followed by a summary in Conclusion.

DATA AND METHOD

Data
The data used in the present study include the TC best-track
dataset provided by the International Best Track Archive for
Climate Stewardship (IBTrACS) (Knapp et al., 2010) and the

TC tracks simulated by eight global climate models of phase 5
of the Coupled Model Intercomparison Project (CMIP5) (Taylor,
2001). The observational dataset of the IBTrACS v03r10 for the
period 1980–2005 is used to provide information on TC genesis
time, latitude, longitude, and wind speed at the TC center at 6-h
interval. The CMIP5 simulations are from CanESM2 (resolution:
2.8°×2.9°), CSIRO Mk3.6.0 (1.9°×1.9°), GFDL CM3 (2.5°×2.0°),
GFDL-ESM2M (2.5°×2.0°), HadGEM2 (1.9°×1.2°), MIROC5
(1.4°×1.4°), MPI-ESM-LR (1.9°×1.9°), and MRI-CGCM3
(1.1°×1.2°), which have a relatively large number of simulated
TCs among multiple CMIP5 climate models. Using the tracking
algorithm proposed by Camargo and Zebiak (2002), which is based
on TC characteristics, the simulated TC tracks are derived from the
large-scale environmental fields in the CMIP5 historical
experiments. For these climate model results, different
thresholds are used for different model resolutions. Details and
specific information about the eight models and the simulated TC
track data can be found in Camargo (2013). The global TCs
mentioned in the present study include TCs over six areas with
the largest number of TC genesis, that is, the West Pacific Ocean
(WP), the East Pacific Ocean (EP), the South Pacific Ocean (SP),
the North Atlantic Ocean (NA), the North Indian Ocean (NI), and
the South Indian Ocean (SI). These oceans are divided based on the
official standard of the IBTrACS Basin Map. Slightly different to
that used in IBTrACS, the region around Australia is not treated as
a single area for TC genesis in this study. Instead, it is divided into
SI and SP with the boundary located along 140°E (Figure 1A).

Method
Themethod used is an extension of the method proposed by Shen
et al. (2018). It includes the following three indexes: the index of
TC track density weighted by TC destructive potential (WTD),
the index of geographical properties of the TC track (GPT), and
the index of monthly variation of TC frequency proportion
(MVF). Detailed calculation of GPT can be found in Results of
Shen et al. (2018). This index is used to evaluate the model
simulation of geographical properties of the TC track. Note that
the algorithm for calculatingWTD in this study is the same as the
basic algorithm for calculating the TC track density simulation
index (DSI) in Shen et al. (2018), except that the weighting of TC
destructive potential is considered when calculating the TC track
density (see Eqs 1, 2).

Evaluation Index for TC Track Density Weighted by
Destructive Potential
The selected areas are first divided into R×L grid boxes with
horizontal resolution of 2°×2°, where R represents the number of
grids along the meridional direction and L represents the number
of grid along the latitudinal direction. TC records at 6-h interval
are taken as independent samples. For any specific grid box, the
number of TC track density is increased by one every time a TC
center appears in the grid box. Based on this method, a large
amount of TC records can form a map of TC track density, and
the annual-mean TC track density can then be obtained. Different
from the annual-mean TC track density used in Shen et al. (2018),
the TC track density weighted by destructive potential is used in
the present study to evaluate model performance. As suggested by
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Emanuel (2005), TC destructive potential can be estimated by
integrating the cube of maximum wind speed over its lifetime
(i.e., the power dissipation index; PDI). For each TC record, when
the TC center is located in a grid box, the TC track density
weighted by destructive potential (i.e., PDI-weighted TC track
density) in the grid box is increased by the cube of the maximum
wind speed rather than by 1. Finally, the weighted TC track
density is calculated.

Unlike Shen et al. (2018) that used the DSI, we use the
destructive potential as the weighting factor to calculate the
weighted TC track density index (i.e., WTD). Our method
considers not only the model capability for simulating TC
duration and frequency, but also the model performance for
TC intensity simulation; and the latter is more important for
evaluating the model simulation of TC damage.

The algorithm for calculating the WTD simulated by a model
in a grid box can be expressed by:

WTD(g) �
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ln(Do,g)
ln(Ds,g) , if Ds,g >Do,g > 0

ln(Ds,g)
ln(Do,g) , if Do,g ≥Ds,g > 0

, (1)

where g denotes the gth grid in the area of concern, o represents
the observation, s indicates the simulation, and Ds,g represents
simulation of the PDI-weighted TC track density in the grid box.
The weighted TC track density can be calculated by:

Dx,g � ∑c

j�1∑n

i�1V
3
i,j, (2)

where x is o (observation) or s (simulation), i denotes the ith
recording time of a TC, j indicates the jth TC, n represents the total
number of times a TC occurs in a grid box, c is the total number of
TCs that occur in the grid box, andVi,j represents 10-mwind speed

at the TC center. Note that theWTD has a larger magnitude due to
the consideration of the destructive potential in its calculation;
thus, the logarithm of WTD is used for comparison between
observations and simulations. The sum of WTD in all grid
boxes within a specific area divided by the number of valid grid
boxes in the area yields the final WTD value for the area. The valid
grid box mentioned here is defined as a grid box in which there
exists at least one observed or simulated TC exposure. The detailed
definition of valid grid boxes can be found in PDI-Weighted TC
Track Density of Shen et al. (2018). For a specific area, the value of
WTD is between 0 and 1, and the larger the value of WTD, the
closer the model simulation is to the observation. In addition, it
should be noted that the absolute values of the WTD scores are
meaningless. The simulation performance of a model is judged by
the relative values of the skill scores obtained frommultiple climate
models, but not the absolute values.

Evaluation Index for Geographical Properties of the TC
Track
We use a mass moment of five variables, that is, the latitude and
longitude of TC centroid and the variances of TC centroid along the
zonal, meridional, and diagonal directions, to describe geographical
properties of a TC (Camargo et al., 2007; Nakamura et al., 2009;
Shen et al., 2018). The k-means clustering method is implemented
to classify the observed TC tracks. Note that the slight difference
between the present study and Shen et al. (2018) is that the number
of clusters in each individual area is not empirically determined but
based on an objective metric derived from the silhouette value. This
is because many researchers attempted to classify TC tracks in the
two areas of theWP and NA, but not in the other areas (e.g., NI, SI,
SP, and EP). In this study, the silhouette coefficient (Peter, 1987) is
used to determine the number of TC track clusters in each area
(Camargo et al., 2007). The silhouette coefficient combines the
cohesion and separation of the cluster to evaluate the effect of
clustering. The calculation is as follows:

FIGURE 1 |Distributions of logarithmic TC track density weighted by destructive potential based on (A) IBTrACS and (B–I) eight CMIP5model simulations. The red
line in (A) represents the division of areas.
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Sj � bj − aj
max[aj, bj], (3)

For the sample point corresponding to the jth TC, the average
value of the distance between this point and all other points in the
same cluster A is calculated and denoted as aj, which is used to
quantify the degree of cohesion in a cluster. Another cluster B outside
point j is then selected, and the average distance between j and all
points in B is calculated. This procedure is repeated for all clusters,
and the nearest average distance denoted by bj can then be identified.
The cluster corresponding to bj is the neighbor class of j, which can be
used to quantify the degree of separation between clusters. The
silhouette coefficient of all sample points can be calculated, and
the average value is the overall silhouette coefficient of the current
cluster, which measures the coherence of clustering. The silhouette
value Sj is between −1 and 1. The larger the value, the better the
clustering effect, that is, the distinction between different classes is
obvious; and the negative value indicates the points that may be
classified incorrectly. The optimal classification number requires that
for a large average value of Sj, the number of negative Sj value should
be small. Previous studies used it to determine the number of TC
track clusters, and reliable classification results were obtained
(Camargo et al., 2007).

After the number of TC track clusters is determined by the
silhouette coefficient, the k-means clustering method is used to
classify TC tracks in each area, and the GPT algorithm proposed
by Shen et al. (2018), Eq. 2) can then be used to evaluate model
performance on the simulation of the TC track based on TC track
classification.

Evaluation Index of Monthly Variation of TC Frequency
Proportion
In addition to the WTD and GPT, the MVF is also an important
index to evaluate the model performance on TC simulation.
Based on the algorithm for root mean square error (RMSE)
calculation, the MVF can be expressed by:

MVF � 1 −

1
12

∑12

m�1(Fs,m − Fo,m)2
√

, (4)

where m indicates the month, Fs,m represents the proportion of
simulated TCs in the month m to the total number of simulated
TCs in the entire year, and Fo,m is the ratio of observed TCs in the
monthm to the total number of observed TCs throughout the year.

Note that it is the TC frequency proportion rather than the TC
frequency itself that is used in Eq. 4. This is because the model
performance of TC frequency has already been considered in the
TC-weighted track density (i.e., WTD), and the evaluation of the
number of simulated TCs should be removed from the MVF to
avoid redundant evaluation of the same TC feature. In this case,
all three indexes (i.e., WTD, GPT, and MVF) independently
assess different aspects of TC characteristics.

Comprehensive Evaluation Index
In order to simultaneously consider the simulated TC-weighted
track density, geographical properties of TC track, and monthly
variation of TC frequency proportion, the comprehensive

evaluation index (CEI) for the performance of climate model
on the simulation of multiple characteristics of TCs in a specific
area is calculated as follows:

CEIz � WTDz × GPTz ×MVFz. (5)

The subscript z represents one specific area. The PDI in each
area or across the globe can be derived from the observational
data (the sum of PDI values of all TCs in an area or across the
globe). Then, the proportion of the PDI in each area to the global
value can be obtained. Taking the ratio of PDI in each area as the
weight of the CEIz for performance evaluation in each area, the
CEI on multiple regions can be acquired.

Overview of Calculation Procedure
The calculation of the new evaluation index includes the
following steps.

1. Calculate spatial distribution of TC-weighted track density in
each area based on observations and model simulations.

2. Use Eq. 1 to calculate WTD for the weighted track density
simulation of climate models in each selected area.

3. The classification number of observed TC tracks in multiple
areas can be determined by Eq. 3 according to their own
characteristics. The k-means clustering method is then
applied to divide them into different classes, and the
proportions of various classes of observed TC track in a
certain area to the total number of TCs in that area can then
be obtained.

4. According to TC track clusters derived from observations,
TC tracks simulated by climate models are also classified to
the same track classes, and the proportion of each class of
TCs to total simulated TCs is calculated.

5. Use Eq. 2 in Shen et al. (2018) to calculate the GPT of climate
models used over multiple areas.

6. Calculate monthly TC genesis frequency in each area from
observations and simulations and obtain their proportions to
the total number of TCs in the entire year.

7. Use Eq. 4 to calculate the MVF for climate models in
different areas.

8. Use Eq. 5 to calculate the CEIz of climate models in each area.
9. Calculate the PDI of TCs in each area from observations;

obtain the ratio of PDI in each area to the global PDI;
multiply the CEIz of the climate model in each area by the
PDI ratio in that area to obtain the global CEI for each
climate model.

10. Sort the magnitude of CEI, and identify the model that can
best simulate multiple features of TC activities.

RESULTS

PDI-Weighted TC Track Density
Figure 1 shows distributions of TC track density weighted by
destructive potential in logarithmic scale in 2°×2° grid boxes over
various areas. For observed TCs, the weighted track density is the
largest in theWP and EP close to the land (i.e., the eastern coast of
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Eurasia and the western coast of North America) and the second
largest inWestern Australia and western NA, while the values are
relatively small in the SP and NI. Compared to the other latitudes,
the TC-weighted track density is the largest near 15 N/S. This is
because TCs tend to reach their maximum intensity near 15 N/S
during their life cycles. There are large differences in the spatial
distribution of PDI-weighted TC track density between
simulations and observations (Figure 1). This indicates that
besides the significant underestimation of TC intensity, these
climate models exhibit relatively low skills in reproducing the
observed spatial distribution characteristics.

In theWP region, the CSIROMk3.6.0 model performs the best,
and the GFDL CM3 is the second best. The CanESM2 and
MIROC5 yield the worst results in this study. The WTD
evaluation scores listed in Table 1 also show that among these
models, the CSIRO Mk3.6.0 model has the highest score of 0.623,
followed by the GFDL CM3 and HadGEM2 with 0.531 and 0.510,
respectively, and the CandESM2 and MIROC5 have the lowest
scores of 0.347 and 0.33, respectively. In the NA area, the eight
CMIP5models all yield poor results, and none of the simulations is
close to the observations. Even worse, several models can hardly
simulate any TC (such as the CanESM2, CSIRO Mk3.6.0, and
HadESM2). Relatively speaking, the results of GFDL CM3 and
MPI-ESM-LR are slightly better. Correspondingly, the scores of
these two models are also the highest at 0.379 and 0.392,
respectively, while the scores of the aforementioned three
models that can hardly simulate any TC have relatively low
scores of 0.142, 0.174, and 0.177, respectively. In the EP area,
although the numbers of TCs simulated by the GFDL CM3 and
MRI-CGCM3 are relatively large, there are many fictitious TCs in
the western part of the EP. Compared with TC underestimation,
the fictitious TCs in this area severely lower the score. As a result,
the scores of these twomodels are not the highest (0.540 and 0.545,
respectively). In the EP area, the MIROC5 and MPI-ESM-LR have
the highest scores of 0.580 and 0.582 respectively, followed by the
GFDL_ESM2Mof 0.555. In the SP area, the CSIROMk3.6.0 model
performs the best with the highest score of 0.667, and the
GFDL_ESM2M is the worst at 0.497. In the NI area, the MPI-
ESM-LR has the highest score of 0.522, and the GFDL_ESM2M
has the lowest score of 0.323. In the SI area, the MRI-CGCM3 has
the highest score of 0.693, closely followed by the HadESM2
(0.683); and the MIROC5 has the lowest score of 0.503.

The distributions of TC-weighted track density simulated by
individual models and their corresponding WTD scores indicate

that the WTD score can effectively reflect the performance of
these models in terms of TC track density and intensity. Results
show that there exist large differences between different models
for TC simulation in different areas. For example, the CSIRO
Mk3.6.0 model can better simulate TCs in the WP, whereas it
does the worst in the NA. It is worth noting that the algorithm for
WTD calculation involves the identification of effective grid
boxes, and the number of effective grids boxes are related to
observations and simulations of the selected models in each area.
Therefore, the scoring method in this study determines the
performance of an individual model based on the WTD
magnitude of its simulation relative to that of the other
models in the same area. Thus, it makes no sense to compare
absolute values of WTD between simulations in different areas.
The proportions of PDI in individual regions to global total PDI
(Figure 2) determined from observations are used as weighting
factors of WTD scores in various areas to obtain the overall
performance score for each model in each area (Table 1). In term
of WTD scores, the MPI-ESM-LR demonstrates the best
comprehensive performance (0.512), followed by the GFDL
CM3, CSIRO Mk3.6.0, and MRI-CGCM3 (0.508, 0.507, 0.504).
The CanESM2 performs the worst (0.410).

Simulation on Geographical Properties of
TC Track
The average silhouette coefficients of characteristic TC track
vectors in each area under different cluster numbers and the
curves of the number of samples with silhouette coefficient less
than 0 can be calculated using Eq. 3. Results are shown in
Figure 2. According to the principle that the optimal cluster
number corresponds to large average silhouette coefficient and to
the smallest number of samples with silhouette coefficient less
than 0, the optimal classification numbers of TC tracks in each
area are obtained, which are 2 in theWP, EP, SP, SI, and NI, and 3
in the NA. Consistent with the setting in Shen et al. (2018), the
weights of the three elements associated with the variance in
different directions (i.e., zonal, meridional, and diagonal
directions) and the other two elements associated with the
centroid (i.e., latitude and longitude of the TC centroid) are
set to 1/9 and 1/3 to weaken the effects of TC track pattern, length,
and direction represented by the variances. Based on the number
of clusters determined above, the k-means clustering method is
applied to classify the observed TCs, and the initial center point of
k-means cluster is randomly selected. The TC track classification
in each area is obtained after repeated clustering. According to the
latitude and longitude of multiple TC tracks of different track
clusters, the average tracks for different classes of TC tracks in
each area are obtained and displayed in Figure 3.

The divisions of regions according to the IBTrACS standard
are marked by lines in deep red color (Figure 3). Different color
curves represent the average TC tracks of different clusters. In
using the k-means clustering method, classification is based on
internal similarity of the samples. Figure 3 shows that in each
area, the observed TC track clusters obtained based on TC genesis
position and track characteristics (e.g., length, pattern, and
direction) demonstrate obvious differences. In the evaluation

TABLE 1 | Index of TC track density weighted by TC destructive potential for eight
CMIP5 climate models in different areas and globe (WTD).

Model\Region WP NA EP SP NI SI Global

CanESM2 0.347 0.142 0.567 0.589 0.442 0.516 0.410
CSIRO Mk3.6.0 0.623 0.174 0.491 0.667 0.344 0.645 0.507
GFDL CM3 0.531 0.379 0.540 0.570 0.358 0.583 0.508
GFDL_ESM2M 0.426 0.261 0.555 0.497 0.323 0.525 0.439
HadGEM2 0.510 0.177 0.494 0.620 0.452 0.683 0.474
MIROC5 0.330 0.236 0.580 0.650 0.477 0.503 0.422
MPI-ESM-LR 0.486 0.392 0.582 0.635 0.522 0.588 0.512
MRI-CGCM3 0.488 0.296 0.545 0.636 0.493 0.693 0.504
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of model performance on the simulation of TC track
classification, we compare the proportions of various TC track
clusters simulated by the model with that of observations.
According to the cluster centers of various TC track classes in
different areas obtained from the observations, we calculate the
Euclidean distances between multiple TC track vectors simulated
by the eight models and individual cluster centers. The TC tracks
are classified according to the shortest distance principle. Based

on the classification results of TC tracks simulated by each model
in different areas, the proportion of the number of TCs of various
classes in an area simulated by the models to the total number of
TCs in the area can be obtained. Using Eq. 2 in Shen et al. (2018),
the GPT scores of eachmodel in different areas and over the globe
are calculated (Table 2). The closer the GPT value is to one, the
closer the classification ratio of each track class simulated by this
model is to the observations. In addition, the score has nothing to

FIGURE 2 | Changes in mean silhouette values for observed TCs in different areas (A,C,E,G,I, and K), and the number of negative silhouette values (B,D,F,H, and
J) with the cluster number of TC track.
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do with the number of simulated TCs, since it is solely determined
by the TC track classification ratio.

Table 2 shows clearly that in the WP, except for the MIROC5
and MPI-ESM-LR that have obvious lower scores for TC track
classification, the scores of all the other models are very close. In
other words, for the two clusters of TC tracks in theWP, although
the numbers of TCs simulated by these models are significantly
lower than the observation, most models can simulate the
observed TC track classification ratio. In the EP, the GPT
score of the MIROC5 model is the highest of 0.985, followed
by the MRI-CGCM3 of 0.964. In the NA, the best model for the
simulation of TC track classes is the GFDL_ESM2M (GPT of
0.964). Although the CanESM2 and CSIROMk3.6.0 models only
simulate very few numbers of TCs in the NA, their performances
are better than the MRI-CGCM3, which is the worst (GPT of
0.876). In the SP, the MIROC5 model is the best (GPT of 0.993),
followed by the MPI-ESM-LR and MRI_CGCM43 models. In the
SI, the HadGEM2 model yields the best simulation (0.994),
followed by the CanESM2 model (0.988). In the NI, the
CSIRO Mk3.6.0 model has the highest score of 0.991, followed
by the MIROC5 model (0.987), and the CanESM2 model
performs the worst (0.845). The GPT scores weighted by PDI

in individual areas show that for the eight climate models, the
CanESM2 model gives the best overall simulation of the TC track
classification around the globe (0.961), and the MPI-ESM-LR
model is the worst (0.911; Table 2).

Monthly Variation in the Proportion of TC
Frequency
Figure 4 displays monthly variation of the ratio of TC frequency in
each month to annual-mean TC frequency averaged over 1980–2005
for both observations andmodel simulations. The black curve in each
panel represents observation, and color curves are model simulation
results. Generally, these models have simulated the basic trend of
monthly variation in TC frequency proportion in the six ocean areas.
For example, in the Northern Hemisphere, TCs occur more
frequently around August, except for the NI, where the two TC
frequency peaks occur in May and October, respectively. In the
Southern Hemisphere, TCs occur more frequently around January.
Nevertheless, there are still differences between model simulations
and observations. Compared with the other areas, the simulations in
theWP, SP, and SI are better. All the models fail to simulate the peak
values in July and August in the EP; and the simulated peaks occur in
September and October instead. The differences between simulations
and observations are more significant in the NA and NI than in the
other areas.

To quantitatively compare the model performance on simulating
monthly variation of TC frequency proportion, we calculate the score
for TC monthly frequency proportion. Table 3 shows that the scores
in theWP, SP, and SI overall are higher than those in the other areas.
This result is consistent with that shown in Figure 4. In the WP, the
MVF is the highest for the CSIRO Mk3.6.0 model (0.971), and the
second highest is the GFDL CM3 (0.963). In the EP, MVF values are
similar for the MRI-CGCM3, MPI-ESM-LR, MIROC5, and
GFDL_ESM2M, all showing relatively good simulations. In the
SP, the CanESM2 has the highest MVF (0.979). In the NA, the

FIGURE 3 | Distributions of mean tracks for various TC track clusters in different regions based on IBTrACS best-track data. The deep red line indicates the
divisions of individual areas, and the color curves indicate the average tracks of TCs of different track clusters. The number in brackets indicates the PDI value in a specific
area (units: 1013 m3 s−2) and its ratio to global total PDI.

TABLE 2 | Index of geographical properties of TC track for eight CMIP5 models in
different areas and globe (GPT).

Model\Region WP NA EP SP NI SI Global

CanESM2 0.986 0.959 0.939 0.908 0.845 0.988 0.961
CSIRO Mk3.6.0 0.987 0.951 0.886 0.954 0.991 0.973 0.937
GFDL CM3 0.976 0.919 0.912 0.936 0.908 0.929 0.924
GFDL_ESM2M 0.988 0.964 0.895 0.912 0.929 0.976 0.938
HadGEM2 0.988 0.899 0.858 0.945 0.943 0.994 0.924
MIROC5 0.925 0.914 0.985 0.993 0.987 0.953 0.933
MPI-ESM-LR 0.927 0.945 0.893 0.981 0.889 0.910 0.911
MRI-CGCM3 0.986 0.876 0.964 0.983 0.947 0.955 0.939
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MPI-ESM-LR (0.944) and GFDL_ESM2M (0.941) have relatively
high values. In the NI, the CSIROMk3.6.0 model (0.944) and GFDL
CM3 (0.943) have the highestMVF. In the SI, theGFDLCM3has the
highest MVF (0.988). Comparison of individual models shows that
the CanESM2 performs the best in the SP and the second best in the
NI. The CSIROMk3.6.0model andGFDLCM3 both performwell in
the SI and WP, while the GFDL_ESM2M and HadGEM2 perform
well in the SP and SI. The MPI-ESM-LR performs the best in the SP,
and the second best in the WP. The MRI-CGCM3 performs well in
the SI. In summary, from the perspective of simulating monthly

variation of TC frequency proportion, these models perform better in
the SP and SI than in the other areas in the Southern Hemisphere; in
the Northern Hemisphere, the simulations are the best in the WP.
Considering the comprehensive results over all regions across the
globe, the overall score is the best (0.932) for the CSIRO Mk3.6.0,
followed by the GFDL CM3, GFDL_ESM2M, and MPI-ESM-LR,
whose MVF scores are all of 0.930. The overall performance of the
HadGEM2 (0.917) and MRI-CGCM3 (0.914) are relatively poor.
Overall, there is no large difference in MVF among the various
models.

Comprehensive Index
Values of the CEI obtained using Eq. 4 are listed in Table 4.
Comprehensively considering the simulation of each model in
terms of TC-weighted track density, TC track classification, and
monthly variation in TC frequency proportion, it can be seen that
in the WP the CSIRO Mk3.6.0 simulation is the best (0.597), the
GFDL CM3 and HadGEM2 perform the second best (0.499 and
0.478, respectively), and the MIROC5 is the worst (0.287). In the
NA, the simulations of the MPI-ESM-LR and GFDL CM3 are
relatively good with the values of 0.349 and 0.315, respectively,
and the other models are not ideal (all lower than 0.240). In the
EP, the MIROC5 performs the best (0.532), followed by the MPI-

FIGURE 4 | Variation in the proportion of monthly mean TC frequency to annual-mean TC frequency averaged over the period 1980–2015 in the six areas from
observations andmodel simulations. The abscissa is month, and the ordinate is TC frequency proportion. The black curve represents observations, and the other curves
represent the results of the eight CMIP5 models.

TABLE 3 | Index of monthly variation of TC frequency proportion for eight CMIP5
models in different areas and globe (MVF).

Model\Region WP NA EP SP NI SI Global

CanESM2 0.929 0.937 0.887 0.979 0.939 0.936 0.928
CSIRO Mk3.6.0 0.971 0.902 0.924 0.960 0.944 0.979 0.932
GFDL CM3 0.963 0.903 0.922 0.955 0.943 0.988 0.930
GFDL_ESM2M 0.941 0.941 0.930 0.969 0.935 0.963 0.930
HadGEM2 0.949 0.873 0.918 0.966 0.887 0.968 0.917
MIROC5 0.942 0.932 0.930 0.948 0.931 0.947 0.924
MPI-ESM-LR 0.951 0.944 0.932 0.972 0.921 0.938 0.930
MRI-CGCM3 0.927 0.912 0.936 0.935 0.911 0.940 0.914
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ESM-LR andMRI-CGCM3 (0.484 and 0.492, respectively), which
have similar scores. The HadGEM2 simulation is poor (0.389). In
the SP, the CSIRO Mk3.6.0 and MIROC5 models demonstrate
almost the same capability in terms of comprehensive simulation
of TC-weighted track density, TC track classification, and
monthly frequency proportion (both 0.611). Following the
CSIRO Mk3.6.0 and MIROC5 models, the MPI-ESM-LR also
shows relatively good capability (0.605). In the NI, the MIROC5
performs relatively well (0.438), followed by the MPI-ESM-LR
and MRI-CGCM3 (0.427 and 0.425, respectively). In the SI, the
HadGEM2 shows the best capability (0.658), while the MRI-
CGCM3 and CSIRO Mk3.6.0 models are the second best (0.622
and 0.615, respectively). The global CEI score of each model is
obtained using the PDI-weighted average of CEI scores in each
area. As shown in Table 4, there are relatively small differences in
global CEI scores (<0.1) despite the relatively large CEI
differences in some areas (e.g., >0.3 in the WP) among the
eight models. The four models with top CEI scores are the
CSIRO Mk3.6.0 model, GFDL CM3, MPI-ESM-LR, and MRI-
CGCM3 (0.443, 0.437, 0.434, and 0.433, respectively). The
performances of the MIROC5 and CanESM2 are relatively
poor (0.363 and 0.365, respectively).

Many previous studies have found that themodel spatial resolution
contributes significantly to model performance in simulating TC (e.g.,
Zhao et al., 2009;Murakami et al., 2015; Roberts et al., 2020; Tory et al.,
2020). The above results also show that the models with relatively high
horizontal resolution have relatively high scores.However, based on the
model selected here, the correlation coefficient between the global CEI
scores and themodel resolution is not significant at the 90% confidence
level. Moreover, the model with the highest resolution (i.e., MRI-
CGCM3) does not have the highest score in simulating TCs. This
maybe the fact that these CMIP5 climate models are all with spatial
resolution of 1.1–2.5°, which are still too coarse to properly identify TC,
so an increase in model resolution does not yield to a significant
improvement in the performance of these models. In addition,
dynamic cores of climate models and physical parameterization
scheme will also affect the final simulation effect of TC (Zhang
et al., 2021).

CONCLUSION

Different from the recent quantitative method to evaluate the
capability of climate models in terms of TC simulation (Shen
et al., 2018), the new method proposed in this study not only

considers the capability of climate models for simulating density
and geographical properties of TC tracks but also accounts for TC
intensity and monthly variation characteristics of TC frequency.
Moreover, the new method is applicable to TCs in regional
oceans and over the globe. Specifically, compared with the
method proposed by Shen et al. (2018), the new method has been
optimized from three aspects. First, the method of Shen et al. (2018)
can only assess the capability of climate models in simulating limited
features of TC track, while the new method considers the TC
destructive potential (the cube of the wind speed) in the
calculation of TC track density, which actually implicitly considers
TC intensity. Second, in terms of TC frequency simulation, a new
evaluation component is added to consider the simulation ofmonthly
variation of TC frequency. Third, the evaluation method for the
WNPTCs in the previous study (Shen et al., 2018) is expanded to the
global scale. Moreover, in the evaluation of the model capability for
simulating global TC track classes, an objective approach
(i.e., silhouette coefficient) is implemented to obtain the
classification number of TC tracks in each ocean area. This
number is later used in the k-means clustering. Furthermore, in
calculating the score of model capability in TC simulation in each
area, we do not consider the importance of each area equally. Instead,
the PDI over the individual area is used as weighting coefficient to
obtain the score for global simulation. This is because the PDI can
reflect the destructive potential of TC, and we pay more attention to
the regions with stronger potential damage by the TC.

After the optimization of the evaluationmethod in the above three
aspects, this method is applied to the IBTrACS best-track data and
TC simulations of eight CMIP5models. Results of model simulations
and observations are compared to obtain the ranking of model
capability in simulating TC track density weighted by destructive
potential, TC track classification, and monthly variation of TC
frequency proportion. Large differences are found among model
simulations of the above 3 TC features. In addition, the capabilities of
the eightmodels are different in different areas. In theWP, theCSIRO
Mk3.6.0 model performs the best; in the NA, the MPI-ESM-LR
performs the best; in the EP, the MIROC5 is the best; in the SP, the
CSIRO Mk3.6.0 and MIROC5 demonstrate the same capability, yet
the CSIRO Mk3.6.0 model performs better in the simulation of TC-
weighted track density and monthly variation of TC frequency
proportion, while the MIROC5 performs better in simulating TC
track classes. In the SI, the HadGEM2 performs the best. For the
simulation over multiple areas across the globe, the CSIRO Mk3.6.0
model performs better overall, followed by the GFDL CM3, MPI-
ESM-LR, and MRI-CGCM3.

TABLE 4 | Comprehensive evaluation index (CEI) for the eight CMIP5 models in different areas and globe.

Model (resolution)\Region WP NA EP SP NI SI Global

CanESM2 (2.8°×2.9°) 0.318 0.128 0.473 0.524 0.351 0.478 0.365
CSIRO Mk3.6.0 (1.9°×1.9°) 0.597 0.149 0.402 0.611 0.322 0.615 0.443
GFDL CM3 (2.5°×2.0°) 0.499 0.315 0.454 0.509 0.306 0.535 0.437
GFDL_ESM2M (2.5°×2.0°) 0.396 0.236 0.461 0.439 0.281 0.493 0.383
HadGEM2 (1.9°×1.2°) 0.478 0.139 0.389 0.566 0.378 0.658 0.402
MIROC5 (1.4°×1.4°) 0.287 0.201 0.532 0.611 0.438 0.454 0.363
MPI-ESM-LR (1.9°×1.9°) 0.428 0.349 0.484 0.605 0.427 0.502 0.434
MRI-CGCM3 (1.1°×1.2°) 0.446 0.236 0.492 0.585 0.425 0.622 0.433
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he purposes of the present study are to optimize and to expand
the objective method proposed in Shen et al. (2018) and to make
it more effectively reflect the capability of climate models in terms
of simulating TCs. The model capability in simulating multiple
characteristics of TCs is comprehensively considered. The new
method is applied to obtain performance scores of the eight
CMIP5 models in six study areas. Obviously, the performances of
these models are different in different areas. Therefore, when
selecting models for follow-up research, appropriate climate
models with better simulation capability should be selected
based on the region of concern. Once the CMIP6 model
outputs have been released fully, especially those variables
used to identify TC tracks, we will use the newly proposed
method to evaluate the performances of CMIP6 models.
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