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The analysis of radiative feedbacks requires the separation and quantification of the
radiative contributions of different feedback variables, such as atmospheric temperature,
water vapor, surface albedo, cloud, etc. It has been a challenge to include the nonlinear
radiative effects of these variables in the feedback analysis. For instance, the kernel method
that is widely used in the literature assumes linearity and completely neglects the nonlinear
effects. Nonlinear effects may arise from the nonlinear dependency of radiation on each of
the feedback variables, especially when the change in them is of large magnitude such as
in the case of the Arctic climate change. Nonlinear effects may also arise from the coupling
between different feedback variables, which often occurs as feedback variables including
temperature, humidity and cloud tend to vary in a coherent manner. In this paper, we use
brute-force radiation model calculations to quantify both univariate and multivariate
nonlinear feedback effects and provide a qualitative explanation of their causes based
on simple analytical models. We identify these prominent nonlinear effects in the CO2-
driven Arctic climate change: 1) the univariate nonlinear effect in the surface albedo
feedback, which results from a nonlinear dependency of planetary albedo on the surface
albedo, which causes the linear kernel method to overestimate the univariate surface
albedo feedback; 2) the coupling effect between surface albedo and cloud, which offsets
the univariate surface albedo feedback; 3) the coupling effect between atmospheric
temperature and cloud, which offsets the very strong univariate temperature feedback.
These results illustrate the hidden biases in the linear feedback analysis methods and
highlight the need for nonlinear methods in feedback quantification.

Keywords: arctic, surface albedo feedback, cloud feedback, feedback coupling, radiative feedback, climate
sensitivity, global warming

INTRODUCTION

Radiative forcing and feedbacks strongly influence the Arctic climate. The warming in the Arctic has
occurred in a faster pace than the global average, due to greenhouse gas forcing and amplifying
feedbacks (Stocker et al., 2013). It requires accurate quantification of the radiative effects of
associated feedback variables (surface albedo, atmospheric temperature, water vapor, cloud, etc.,)
in order to ascertain their contributions to the climate change of interest. For instance, based on the
energy budget balance with regard to the Top-of-Atmosphere (TOA), surface or atmospheric budget
and assuming the warming induced thermal radiation (Planck effect) balances the radiation changes
caused by feedbacks, one can infer how much global or regional warming, e.g., the Arctic warming
amplification, can be attributed to individual feedbacks (Held and Soden 2000; Lu and Cai 2009;
Pithan and Mauritsen 2014).
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Often assumed in feedback analysis is linear additivity of the
radiative effects of different feedback variables. For instance, the
widely adopted kernel method (Soden and Held 2006) measures
the radiation change caused by a feedback variable (X) by
multiplying a pre-calculated radiative kernel (zRzX) with the
climate response (dX). Due to its simple concept and
computational efficiency, a large number of studies have been
conducted using this method (e.g., Soden and Held 2006; Zelinka
et al., 2012; Vial et al., 2013; Zhang and Huang, 2014) and pre-
computed kernels based on different atmospheric datasets,
including climate models, reanalyses and satellite data (e.g.,
Soden et al., 2008; Yue et al., 2016; Huang et al., 2017).

The nonlinear effects, however, are often too large to ignore.
When individual feedback terms are independently measured,
such as the non-cloud feedbacks in the clear-sky case in the
kernel method, the ignored nonlinear effects may lead to a
non-closure of the radiation budget, i.e., the sum of the
individual terms cannot reproduce the overall radiation
change (e.g., Huang 2013; Vial et al., 2013). In the Arctic,
where climate perturbations are of large magnitudes, e.g., in
the case of sea ice melt, the non-closure issue is especially
noticeable (e.g., Shell et al., 2008; Block and Mauritsen 2013;
Zhu et al., 2019). Besides the large perturbations in surface
albedo, the Arctic is also noted for its strong and unique lapse
rate (e.g., Pithan and Mauritsen 2014) and cloud (e.g., Kato
et al., 2006) feedbacks. It should be noted that although some
methods exhibit a seemingly good radiation closure, the
nonlinear effects are not treated but hidden in the feedback
term(s) measured as a residual, e.g., the cloud feedback term in
the typical kernel method, including the adjusted cloud
radiative forcing (aCRF) technique (Shell et al., 2008; Soden
et al., 2008).

Although the existence of the nonlinear effects has been
recognized (e.g., Zhang et al., 1994; Colman et al., 1997), their
impacts were seldom isolated and quantified. Some recent works
have specifically addressed the nonlinearity issue in the radiative
feedback analysis. Zhu et al. (2019) for the first time used a neural
network model (a nonlinear diagnostic method without linearity
assumption) to assess the radiative feedbacks and identified a few
strong nonlinear effects, including a strong cloud-water vapor
coupling effect in the tropical climate variations and a strong
nonlinear dependence of radiation flux on the surface albedo.
Using Partial-Radiative-Perturbation (PRP) experiments and
brute-force radiation model-based computations, Huang and
Huang (2021) verified the cloud-water vapor coupling effect and
offered an analytic estimation of this effect on the longwave
radiation. Shakirova and Huang (2021) advanced the neural
network model of Zhu et al. and demonstrated its advantages
particularly for quantifying the albedo feedback.

In this paper, we aim to give an overview of the nonlinear
radiative feedback effects in Arctic climate change. Based on a
heuristic climate change scenario of broad interest: the abrupt
quadrupling of atmospheric CO2 (4xCO2), we investigate how the
nonlinear radiative effects arise from the univariate and
multivariate variations of the feedback variables, such as
atmospheric and surface temperature (t), water vapor (q),
surface albedo (a) and cloud (c), and measure how the

nonlinear effects compare to the linear effects in terms of
magnitude and pattern. We note that in this paper we are not
concerned with how the changes in these variables are resulted,
which if nonlinearly related to the surface warming may also cause
nonlinearity in climate feedbacks, but focus on how their changes,
as projected by the GCM, lead to nonlinear changes in the TOA
longwave (LW) and shortwave (SW) radiation energy fluxes. In the
following sections, we will define, demonstrate and discuss the
various feedback effects of interest in order.

METHOD: FEEDBACK DEFINITIONS

Here, we define a radiative feedback as the (partial) radiation
change, in the units of W m−2, due to one or multiple feedback
variables. This should be distinguished from a feedback
parameter, which is normalized by surface temperature change
and is in the units of W m−2 K−1.

Consider the radiation field of interest, e.g., the TOA or surface
radiation flux, as a function of the feedback variables:
R � R(x, y, z), where the letters (x, y, z) are generic notations
of the feedback variables. The total radiation change in a given
climate change scenario can thus be expressed by a Taylor
series as

ΔR(x,y,z) � R(x2 , y2 , z2) − R(x1 , y1 , z1)
� zR
zx

Δx + zR
zy

Δy + zR
zz

Δz (univariate linear effects)
+ 1
2
[z2R
zx2

(Δx)2 + z2R
zy2

(Δy)2 + z2R
zz2

(Δz)2 (univariate nonlinear effects)
+ 2 z2R

zxzy
ΔxΔy + 2

z2R
zyzz

ΔyΔz + 2
z2R
zxzz

ΔxΔz] (multivariate nonlinear effects)
+O(Δ3 )

(1)

where the subscripts 1 and 2 denote two different climate states, e.g.,
those before and after quadrupling CO2 (noted as 1xCO2 and 4xCO2,
respectively from now on); such terms as Δx � x2 − x1 denote the
climate responses. The terms on the righthand side of Eq. (1) illustrate
three types of radiative effects that we aim to elucidate here:

1) The univariate linear effects, such as zR
zx Δx, which we denote

as ΔRx ;
2) The univariate nonlinear effects, such as 1

2
z2R
zx2(Δx)2, which we

denote as ΔRxx;
3) The multivariate nonlinear effects, such as z2R

zxzyΔxΔy, which
we denote as ΔRxy .

To avoid confusion, we denote a univariate feedback, i.e., the
overall radiation change due to a single variable, as ΔR(x), which
consists of both univariate linear (ΔRx) and univariate nonlinear
(ΔRxx) effects:

ΔR(x) � R(x2, y1, ...) − R(x1, y1, ...)
� zR
zx

Δx + 1
2
z2R
zx2

(Δx)2 + O(Δ3)
� ΔRx + ΔRxx

(2)
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Equation (2) is written following the PRP concept (Wetherald and
Manabe 1988) and measures the univariate feedbacks by simply
evaluating the radiation flux twice: first with an unperturbed profile,
R(x1, y1, ...), and then perturbing x only, R(x2, y1, ...). Note that
other unperturbed independent variables than y are omitted in these
expressions. If not otherwise stated, unspecified independent
variables all take the unperturbed values when the radiation fluxes
are evaluated in the following. The evaluation of the radiation fluxes
can be done using a physical model, i.e., a radiative transfer model
(RTM) (Huang and Huang 2021), or a statistical model, e.g., a neural
network model that emulate the radiation fluxes (Zhu et al., 2019).

Similarly, a bivariate feedback can be expressed as:

ΔR(x,y) � R(x2, y2) − R(x1, y1)
� zR
zx

Δx + zR
zy

Δy + 1
2
z2R
zx2

(Δx)2 + 1
2
z2R
zy2

(Δy)2 + z2R
zxzy

ΔxΔy + O(Δ3)
� ΔRx + ΔRy + ΔRxx + ΔRyy + ΔRxy

(3)

From Eq. 2 and Eq. 3, the bivariate coupling effect ΔRxy can be
obtained as

ΔRxy � ΔR(x,y) − ΔR(x) − ΔR(y)
� R(x2, y2) − R(x2, y1) − R(x1, y2) + R(x1, y1) (4)

Based on the above equations and following Huang and Huang
(2021), we evaluate the radiation fluxes and isolate the respective
feedback effects (ΔRx, ΔRxx, ΔRxy, etc.), using the Rapid Radiative
Transfer Model (RRTM, Mlawer et al., 1997). Using this RTM, the
TOA and surface radiation fluxes are computed offline from
instantaneous atmospheric profiles generated by the Community
Earth System Model, CESM1.2, in a quadrupling CO2 experiment
(Wang andHuang, 2020).More details of the flux computation can be
found in Huang andHuang (2021); we note that the radiative transfer
computations, including the PRP computations, are based on
instantaneous (3-hourly, as opposed to monthly mean) profiles at
the original horizontal resolutions (1.9 ° × 2.5 °) of the CESM and then
averaged monthly or annually in all the results presented in the
following section.

Note that we use a one-sided PRP, starting with the
unperturbed climate and then prescribing the change(s) in the
variables of interest, to define feedbacks, i.e., how much radiation
change is caused by the change of the feedback variable(s) of
concern. Some studies opt to use two-sided perturbations (e.g.,
Colman and McAvaney 1997). In contrast to Eq. (2), one may
evaluate the feedback of x as

δR(x) � 1
2
R[(x2, y1) − R(x1, y1) + R(x2, y2) − R(x1, y2)]

≈
1
2
⎡⎢⎢⎣zR
zx

∣∣∣∣∣∣∣y1Δx + zR
zx

∣∣∣∣∣∣∣y2Δx⎤⎥⎥⎦ ≈ 1
2
⎡⎢⎢⎣zR
zx

∣∣∣∣∣∣∣y1Δx +⎛⎝zR
zx

∣∣∣∣∣∣∣y1
+ z

zy
(zR
zx

)∣∣∣∣∣∣∣∣
y1

Δy⎞⎠Δx

� zR
zx

+ 1
2

z2R
zxzy

ΔxΔy (5)

which, as shown in the above expansion, effectively includes
nonlinear coupling effects such as 1

2
z2R
zxzyΔxΔy in δR(x). When

individual feedbacks are evaluated this way, their sum can better
reproduce the overall radiation change, i.e., achieving a better
radiation closure. However, it should be noted these "individual"
feedbacks δR(x) differ from the univariate feedbacks ΔR(x) as δR(x)
contains coupling effects. To disclose these coupling effects, we adopt
the one-sided formulations as exemplified by Eq. 2, Eq. 3, and Eq. 4

RESULTS

In this paper, we use the climate change in an abrupt 4xCO2

experiment of CESM (Wang and Huang, 2020) to provide a
context for examining the linear and nonlinear radiative
feedbacks. As illustrated in Figure 1 for a few selected
variables, this scenario represents strong perturbations in the
Arctic climate, including reduction in surface albedo due to sea
ice melt, surface warming and atmospheric moistening. The
feedback quantifications presented in the following are based
on the two months exemplified in Figure 1 if not
otherwise noted.

Univariate Linear Effects
The univariate linear effect ΔRx can be measured, following its
definition, by multiplying the radiative linear sensitivity kernel
Kx � zR

zx with the climate response Δx: Rx � KxΔx. This is the core
idea of the kernel method (Soden et al., 2008). The kernels are
usually pre-computed, again, following the PRP idea, by
prescribing small perturbations to the individual variables, e.g.,
1-K in atmospheric and surface temperatures, several percent
change in water vapor concentration, or 0.01 increment of surface
albedo (e.g., Shell et al., 2008):

Kx � ΔR0

Δx0
� R(x1 + Δx0, y1) − R(x1, y1)

Δx0
(6)

so that the kernel method is in essence to scale up the radiation
change due to an infinitesimal (small) perturbation, R0, to
estimate the radiation change due to a finite (large) perturbation:

ΔRx � KxΔx � ΔR0
Δx
Δx0

(7)

It is worth noting that when defining and applying the kernels,
it is advisable to choose a scaling scheme appropriate to the
radiation dependency on the feedback variable. For instance, in
the case of such greenhouse gases as carbon dioxide and water
vapor, their radiative effects are logarithmically dependent on
their concentrations (e.g., Bani Shahabadi and Huang., 2014), so
that it is common to define the water vapor kernel with respect to
the change in the logarithm of the specific humidity,
i.e., Kq � ΔR0

Δ(ln(q))0, or, in an approximate form, using the

fractional change in q in the denominator, i.e., Kq � ΔR0
(Δq/q)0. As

shown by Figure 2, using the logarithmic scaling scheme, the
radiation change caused by water vapor perturbations, even when
the perturbations are of large magnitudes (about 200% increase of
TCWV), can be well approximated according to Eq. (7).
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FIGURE 1 | Changes in climate variables in the 4xCO2 experiment, exemplified by two months a January (left column) and a June (right column). (A,B) Suface
albedo; (C,D) sea ice fraction; (E,F) surface skin temperature; (G,H) column-integrated water vapor; (I,J) total cloud fraction. The numbers on the upper right corner of
each panel are the Arctic mean values, averaged over the latitude range of 70–90°N. Shaded in grey are regions with no data, for instance, due to no solar insolation to
infer surface albedo in (A).
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The validations against RTM-computed truth in Figures 2, 3
show that the non-cloud univariate radiative feedbacks ΔR(x),
even in the case of large climate perturbations, can be reasonably
approximated by the linear term ΔRx . This is the basis of the
kernel method (Soden et al., 2008). Nevertheless, the biases,
i.e., the univariate nonlinear effects ΔRxx may amount to non-
negligible extent: in the case of the univariate water vapor
feedback and the surface albedo feedback, the biases can
amount to more than 10% in terms of Arctic mean (averaged
over 70–90°N).

It should be cautioned that the kernel itself has a dependency
on the atmospheric conditions (x, y, z, . . . ) and such dependency
should be recognized when interpreting the kernel-diagnosed
feedbacks. The kernels appropriate to evaluating the linear
feedbacks in Eq. 1, Eq. 2, and Eq. 3, and used to compute
ΔRq in Figure 2 and ΔRa in Figure 3, are computed from the
GCM atmopsheric profiles in the unperturbed (1xCO2) climate,

i.e., Kx � zR
zx

∣∣∣∣∣∣∣x1,y1 ,z1, where (x1, y1, z1) denotes the 1xCO2 climate. If

computed from different atmospheric states, the kernel values
may quantitatively differ (e.g., see the kernel comparisons in
Huang et al., 2017; Smith et al., 2020 and others). If a kernel
computed from a different atmospheric state (x1′ , y1′ , z1′ ) is used to
measure the linear feedback, a bias is resulted:

ΔRx′ � zR
zx

∣∣∣∣∣∣∣x1′ ,y1′ ,z1′Δx
≈ ⎛⎝zR

zx

∣∣∣∣∣∣∣x1 ,y1 ,z1 +
z2R
zx2

∣∣∣∣∣∣∣∣x1 ,y1 ,z1dx′ +
z2R
zxzy

∣∣∣∣∣∣∣∣x1 ,y1 ,z1dy′ +
z2R
zxzz

∣∣∣∣∣∣∣∣x1 ,y1 ,z1dz′⎞⎠Δx

� ΔRx + bias

(8)

Equation (8) shows that the bias can be considered one type of
nonlinear effect in that it, like the nonlinear effects analyzed
below, results from the nonlinear dependency of the radiation on
the feedback variables (e.g., z2R

zxzy). For the simplicity of the
expressions, we omit the notation (...)|x1 ,y1 ,z1 in the following,
where the conditioned states can be inferred from the context.

The magnitude of the feedback bias caused by kernel bias is
proportional to the discrepancies in the atmospheric states
(dx′, dy′, and dz′ in Eq. (8)), which may introduce noticeable
quantitative differences in the kernels. For example, one may
see from Fig. S3 of Huang et al. (2017), as well as the
discussions of Sanderson and Shell (2012), the temperature
kernel discrepancies due to the ubiquitous discrepancies in
the cloud distribution in different atmospheric datasets used
for kernel computation. Here, as a sanity check, we recalculate

FIGURE 2 | Clear-sky univariate water vapor LW feedback. (A) RTM-computed (truth) overall univariate feedback, ΔR(q); (B) kernel-estimated univriate linear
feedback, ΔRq, based on logarithmic scaling; (C) the residual (A–B), i.e., the univariate nonlinear feedback, ΔRqq. Shown here is the clear-sky TOA LW radiation flux
change due to the water vapor change in January in the 4xCO2 experiment (as illustrated in Figure 1E). The kernel used in (B) is computed from the GCM instantaneous
atmospheric profiles of the same month and is not subject to the bias discussed in Eq. 8.

FIGURE 3 | All-sky univariate surface albedo SW feedback. (A) RTM-computed (truth), ΔqR(a); (B) kernel-estimated univariate linear feedback, ΔRa; and (C) the
residual (A–B), i.e., the univariate nonlinear term ΔRaa. Shown here is the all-sky TOA SW radiation flux change due to the surface albedo change in June in the 4xCO2

experiment (as illustrated in Figure 1B).
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the Arctic mean clear-sky water vapor feedback shown in
Figure 2 using the clear-sky kernels of Huang et al. (2017) and
obtain an Arctic mean ΔRq of 5.79 W m−2 (Figure 4). This,
compared to the RTM-computed truth value of 3.05 W m−2,
representes a 90% bias and is much larger than the bias when
the correct (GCM 1xCO2 climate based) kernels are used
(3.47 W m−2, as shown by Figure 2B). The results indicates
that, contradictory to common belief, there may be large
biases, especially in regional (e.g., Arctic) feedbacks,
resulting from kernel biases.

Lastly, we note that cloud feedback is difficult, if not impossible,
to be approximated by linear kernels. This is because cloud
variations involve multiple radiative properties, including cloud
fraction, droplet concentration and size distribution, etc., each of
which may experience large, discrete perturbations and strongly
affect the radiative sensitivity to each other. The cloud radiative
effects measured in the cloud property histogram method (Zelinka
et al., 2012) illustrate how the radiative sensitivity to cloud varies
strongly with the cloud properties. Among other issues, a notable
challenge is the vertical masking effect: for instance, the increase of
upper-level clouds greatly reduces the sensitivity of the TOA fluxes
to the lower-level clouds.

In summary, the non-cloud univariate feedbacks in general
can be approximated well by the kernel method, although one
should be mindful about the biases introduced by kernel
discrepancies. One most noticeable univariate nonlinear effect
in the Arctic is the surface albedo feedback. We further analyze
this and other nonlinear effects in the following subsections.

Univariate Nonlinear Effects
Because radiative transfer is a complex nonlinear process (e.g., see
Goody and Yung 1989), atmospheric radiation fluxes generally
have a nonlinear dependency on the feedback variables and thus
the univariate nonlinear effects generally exist.

Temperature
With regard to the univariate temperature feedback, a well-
recognized cause of the nonlinearity is the Planck function,

although this nonlinearity is weak at the terrestrial
temperatures. Based on the Stefan-Boltzmann Law,

R � σt4 (9)

Given the constant σ � 5.67 × 10−8 W m−2 K−4, one may find
that the nonlinear effect z

2R
zt2 is only about 1% of the linear effect zRzt ,

for a 1-K perturbation around the equivalent blackbody
temperature of Earth (t � 255K). Another cause of the
nonlinearity is the dependence of the gas absorptivity on the
temperature, which also has a minor impact (Huang et al., 2007).
This explains why the temperature feedback in the case of large
perturbations can still be very well approximated by the linear
kernels (not shown).

Water Vapor
The univariate water vapor feedback is generally well
estimated when the logarithmic scaling scheme is used,
although Figure 2C shows that the bias (i.e., the univariate
nonlinear effect, ΔRqq) can be non-negligible. A notable
reason that causes the feedback to deviate from the
logarithmic behavior is the unsaturated atmospheric
absorption in the mid-infrared window around 10 μm
wavelength. Here, the surface emission strongly
contributes to the OLR and thus the water vapor feedback
cannot be interpreted simply as the elevation of the
atmospheric emission level, which gives rise to the
logarithmic dependence (Bani Shahabadi and Huang.,
2014). Figure 5 suggests that the water vapor feedback
estimation may be improved if different scaling schemes
are used for different spectral bands: logarithmic in the
absorption bands (where atmospheric optical depth is
large) and linear in the window bands (where optical
depth is small):

ΔR(q) � Klog
q Δ(ln(q)) + Klin

q Δq (10)

where the logarithmic kernel Klog
q accounts for the logarithmic

response of the radiation flux in the absorption bands to water

FIGURE 4 |Clear-sky water vapor feedback bias due to kernel bias. (A) Like Figure 2B, but using the kernels computed from different atmospheric profiles (Huang
et al., 2017); (B) Bias compared to Figure 2B.
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vapor perturbation and the linear kernel Klin
q accounts for the

linear response in the window band. Further research is required
to develop and validate a global hybrid kernel set.

Surface Albedo
The univariate surface albedo feedback shows especially strong
nonlinear dependence on the surface albedo a (Figure 6). This is
because the multiple scattering of radiation between the surface
and atmosphere renders a nonlinear dependency of planetary
albedo on surface albedo. Following Stephens et al. (2015), the
planetary albedo ap can be expressed as

ap � r + aτ2

1 − ra
(11)

Here r and τ denote atmospheric reflectance and
transmittance respectively; they are related as τ + r + ε � 1,
where ε denotes atmospheric absorptivity. This relation means
that ap and thus the net shortwave radiation flux at TOA has a
nonlinear dependency on a:

zap
za

� τ2

(1 − ra)2 (12)

That the radiative sensitivity to surface albedo continuously varies
with the albedo value makes it difficult for any linear methods
such as the kernel method to accurately measure the albedo
feedback. It is interesting to notice from Eq. (12) that the radiative
sensitivity decreases with a. This means that if the surface albedo
kernel is computed with relatively larger albedo values under the
unperturbed climate (1xCO2), it will overestimate the univariate
albedo feedback in a warming scenario (4xCO2). This is clearly
seen from Figure 6. If the kernel method is used to estimate the
feedback when sea ice completely melts, the intercepts on y-axis
indicate the overestimate can be serveral dozens of Wm−2. This
overestimation issue was also noted in the previous studies (e.g.,
Block and Mauristen 2013; Zhu et al., 2019). It is also interesting
to notice that although the analytical model qualitatively captures
the change of radiative sensitivity to albedo, it does not accurately
predict it. The neural network method proposed by Zhu et al.
(2019) and Shakirova and Huang (2021) may be better suited for

FIGURE 5 | Spectral breakdown of the clear-sky univariate water vapor feedback. (A) RTM-computed (truth) broadband univariate feedback, ΔR(q); (B) kernel-
diagnosed broadband feedback, ΔRq, using the hybrid scaling (Eq. 10); (C) residual, ΔRqq. (D–F) Window band (700–1,180 cm−1) feedback, computed by RTM and
estimated by linear and logarithmic scaling. (G–I) Like (D–F), but for the non-window (absorption) bands.
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the albedo feedback quantification and deserves further
development and more extensive validations.

Multivariate Nonlinear Effects
Besides the univariate nonlinear effects, Eq. (1) indicates that
multivariate nonlinear effects, represented by such terms as
z2R
zxzyΔxΔy, may also strongly contribute to the radiative flux
variations. Such terms are often referred to as the coupling
effects because they result from concerted variations of the
involved variables; otherwise, if their covariance were small,
the average of this term over time or region would be
negligible. In reality, this necessary condition is usually met
because the variations of the feedback variables of concern
tend to be strongly correlated. For instance, temperature
warming and sea ice melt may expose more open water,
which in turn leads to more evaporation, atmospheric
humidity and cloudiness.

Due to large computational expenses of the brute-force RTM-
based feedback calculation, we base our discussions on two
representative months in the 4xCO2 experiment: January
(winter) for the longwave feedbacks and June (summer) for
the shortwave feedbacks, because the two types of feedbacks are
the most prominent in the two respective seasons. Figures 7,8 show
the radiative feedbacks corresponding to the changes in the feedback
variables illustrated in Figure 1. Table 1 summarizes their Arctic
mean values. These results disclose two strongest multivariate
feedback effects in the Arctic: the coupling effect between
temperature and cloud, ΔRtc, in the longwave and the coupling
effect between albedo and cloud, ΔRac, in the shortwave.

In the longwave, we find that the multivariate (bivariate)
feedback is dominated by the coupling effect between
temperature and cloud, ΔRtc. The pattern of this coupling
effect resembles, but strongly offsets, the univariate
temperature feedback, ΔR(t), which is the dominant feedback
that controls the overall LW feedback in the Arctic. This coupling
effect can be explained by a simple analytical model. Consider a
single-layer atmosphere, with temperature ta and emissivity
(absorptivity) ε, and assume the surface to be a blackbody
with temperature ts:

OLR � (1 − ε)σt4s + ε σt4a (13)

Hence, the coupling effect ΔOLRtc is found to be

ΔOLRtc � 4σ(t3aΔta − t3s Δts) dεdcΔc (14)

Because the warming in the Arctic is capped in near-surface
layers, Δta < <Δts. This leads to reduction in OLR, offseting the
increase of OLR by temperature warming. The coupling effect
between temperature and water vapor can be understood in the
same way. Becaue water vapor affects OLR also by affecting the
atmospheric emissivity; the coupling effect ΔOLRtq is thus also
affected by the factor (t3aΔta − t3s Δts) in Eq. (14). Although this
nonlinear effect arises from the nonuniform vertical structure of
temperatuure warming and thus share the physical cause of the
temperature lapse rate feedback, this nonlinear effect should be
distinguished from the lapse rate feedback, which is part of the
univariate temperature feedback, ΔRt . Note that the sign of ΔRtc

and ΔRcq is positive in Figure 7 because the fluxes are defined to
be downward positive.

In the shortwave, the dominant multivariate effect is found to
be the albedo-cloud coupling, which offsets the univariate albedo
feedback. From the simple model described above (Eq. 11 and Eq.
12, this can be understood as cloud-caused reduction in the
atmospheric transmittance and thus reduction in the radiative
senstivity to surface albedo.

It is interesting to note that the patterns of some coupling
feedback effects are correlated with the change patterns of the
associated feedback variables. For example, the LW cloud-
temperature coupling effect is correlated with surface
temperature change, with a correlation coefficient of 0.86; the
LW cloud-water vapor coupling effect is correlated with total
water vapor (TCWV) at 0.62; the SW albedo-cloud coupling
effect is correlated with the surface albedo change at 0.89. Such

FIGURE 6 | All-sky univariate surface albedo SW feedback
corresponding to different albedo values. By perturbing the surface albedo to
values from 0 to 1, the TOA SW feedback is computed by three different
methods: RRTM-computed truth, kernel-estimation and the single-layer
analytical model (Eq. 11). The results are compuated based on one arbitrarily
chosen grid box at (78°W, 82°N), where the intial surface albedo is 0.85.
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FIGURE 7 | All-sky LW feedback effects in January. Units: W m−2. Shown here are the total and component all-sky feedbacks in the 4xCO2 experiment evaluated
according to Eq. 2, Eq. 3, and Eq. 4 by using an RTM. t: atmospheric and surface temperatures; q: atmospheric water vapor; c: cloud; a: surface albedo; res: residual.
The Arctic mean values are noted on the top right corner of each panel.
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relation suggests that it may be possible to estimate these
nonlinear effects using analytical or statistical models. Huang
and Huang (2021) used such an model to explain the

cloud-water vapor coupling effect and found it to be the
dominant multivariate longwave feedback effect in the
tropics. Although this coupling effect is not as strong

FIGURE 8 | Like Figure 7, but for the all-sky SW feedback effects in June. Units: W m−2.
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compared to the temperature-related coupling effects in the Arctic,
we find that adopting the same estimation method of Huang and
Huang, 2021, Eq. 19 and using a parameter value appropriate to the
Arctic (A � 0.04 kg−1 m2), we can very well predict the cloud-water
vapor coupling effect (spatial correlation � 0.99, RMSE � 0.41W
m−2). Future works are warranted to identify methods for
explaining and predicting the other coupling effects.

Lastly, for comparison, we include in Table 1 the respective
feedbacks analyzed from the kernel method, i.e., the univariate
linear effects for non-cloud feedbacks and the cloud feedback
(ΔRp

c ) obtained as a residual of total radiation change
decomposition. Besides the biases in the univariate feedbacks
as noted above, it is worth noting that the kernel-based
estimations may also greatly bias the cloud feedback, mainly
due to its negligence of the coupling effects.

CONCLUSIONS AND DISCUSSIONS

In this paper, we present an overview of the nonlinear effects in both
longwave and shortwave radiative feedbacks in the CO2-drivenArctic
warming. Based on brute-force radiation model calculations we
disclose the most prominent nonlinear feedback effects and based
on simple analytical models we offer explanations of their physcial
causes. Although the presentation and discussion are focused on the
Arctic feedbacks, the diagnostic framework (Eq. 1) and the theoretical
explanations are applicable to global feedback analyses.

We identify these important nonlinear feedback effects:
1) The univariate nonlinear effect in the surface albedo feedback

in the shortwave. This nonlinearity can be understood from a
simple analytical model [Eq. (11)] that accounts for the coupling,
due to multiple-scattering, between the surface and atmosphere
(clouds). This coupling makes the radiative sensitivity to surface
albedo decrease with the surface albedo value (Figure 6). Because
of this effect, it generally leads to an overestimate of the surface
albedo feedback when albedo kernels computed from the current

climate are used to quantify the albedo feedback in a warming
climate (Figure 3; Table 1).

2) The bivariate surface albedo-cloud coupling effect in the
shortwave. This effect is attributable to the masking effect of cloud
increase that damps the radiative sensitivity to surface albedo. This
effect is themost prominent in the summer when solar insolation is
strong, as illustrated by Figure 8 for the month of June.

3) The multivariate temperature-cloud feedback in the
longwave. This effect is attributable to the fact that the
Arctic warming is much stronger at and near the surface
than in the upper air, which leads to a damping effect on
the temperature feedback. This nonlinear effect should be
distinguished from the temperature lapse rate feedback and
is found to be the strongest in the winter as illustrated by
Figure 7 for the month of January.

4) Although the univariate water vapor feedback largely scales
logarithmically with water vapor changes, it is found that the relation
deviates from the logarithmic scaling, especially in the window band.
This is due to the unsaturated atmospheric absorption in this band
and suggests that a hybrid scaling method as proposed by Eq. (10)
may improve the accuracy of the kernel-diagnosed water vapor
feedback (compare Figure 2C and Figure 5C).

It should be noted that the large nonlinear effects discovered here is
not limited to the 4xCO2 experiment. As shown byHuang andHuang
(2021) for the longwave feedbacks and Shakirova and Huang (2021)
for the shortwave feedbacks, similar, strong nonlinear effects exist even
also interannual climate variations. It is noted that the nonlinear effects
may quantitatively differ in different forcing experiments, thus
requiring them to be assessed more comprehensively in future work.

The strong nonlinear effects as disclosed here call into question
the accuracy of linear methods currently used in the feedback
analysis. Nonlinear methods are needed to improve the accuracy
of feedback quantificaiton when RTM-based PRP experiments are
not feasible due to its forbidding computational demands. Especially
in need are replacement of the linear kernels for the surface albedo
feedback and cloud feedback quantification. Although a handful of

TABLE 1 | Arctic mean all-sky feedbacks in the 4xCO2 experiment for the two selected months. Units: W m-2. Area-weighted averages are taken for the region 70–90°N.
Two sets of radiative kernels have been used to measure the univariate linear feedbacks: Ker1 is computed from the GCM instantaneous profiles in this work and thus is
of no kernel bias; Ker2 is the kernel computed by Huang et al. (2017) from the ERA-interim reanalysis profiles, which leads to biases in diagnosed univariate feedback as
explained by Eq. 8.

LW
(jan

ΔR(t,q,c) ΔR(t) ΔR(q) ΔR(c) ΔRcq Rtc ΔRqt res ΔTS (K)

Global
mean

Arctic
mean

RTM −38.21 −55.18 2.73 −3.52 0.83 11.77 8.23 −3.07 7.95 29.71
— — ΔRt ΔRq ΔRp

c — — — —

Ker1 — −48.98 3.08 7.68 — — — —

Ker2 — −44.53 5.35 0.97 — — — —

SW
(Jun.)

ΔR(a,q,c) ΔR(a) ΔR(q) ΔR(c) ΔRcq ΔRac ΔRqa res ΔTS (K)

Global
mean

Arctic
mean

RTM 112.24 145.73 10.05 −2.06 −0.69 −37.45 −6.22 2.09 6.97 9.20
— — ΔRa ΔRq ΔRp

c — — — —

Ker1 — 159.85 12.26 −59.88 — — — —

Ker2 — 117.04 8.14 12.95 — — — —
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studies have touched this topic, for instance, using quadratic fitting
(Colman et al., 1997), histogram (Zelinka et al., 2012) and neural
network (Zhu et al., 2019) methods, this challenging problem
demands devoted research programs to further develop, test and
mature the candidate methods.
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