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The Late Devonian Frasnian–Famennian (F–F) mass extinction has been long-time
debated by non-volcanic causes, extra-terrestrial impacts, and large igneous province
(LIP) eruptions. To better understand the ultimate cause of the F–F mass extinction, here
we investigate the chemostratigraphy of mercury (Hg) and total organic carbon (TOC) on
two marine F–F strata in the Dushan area, South China. In both sections, high Hg and Hg/
TOC anomalies were observed near the F–F boundary. These anomalies are in line with
those recently observed in Morocco, Germany, Poland, and north Russia, suggesting a
global Hg flux. The Late Devonian LIP eruptions, which are believed to have emitted
massive amounts of Hg, could be responsible for the global Hg and Hg/TOC anomalies
around the F–F boundary. The observed Hg and Hg/TOC anomalies coincide with the
extinction of Frasnian fauna in the Dushan area, implying a causal link between the Viluy,
Kola, and Pripyat-Dnieper-Donets LIP eruptions and the F–F mass extinction.
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INTRODUCTION

The Late Devonian Frasnian–Famennian (F–F) transition witnessed one of the “Big Five” mass
extinctions which killed at least 40% of all species during the Phanerozoic (e.g., Stanley, 2016). This
critical period was characterized by many global events including climate oscillations (Huang et al.,
2018; Liu et al., 2020), eustatic sea-level changes (Sandberg et al., 2002; Bond and Wignall, 2008),
atmospheric O2 fluctuation (Dahl et al., 2010), seawater anoxic/hypoxic events (Kellwasser events,
Joachimski and Buggisch, 1993), eutrophication events (Murphy et al., 2000), and instability in the
sulfate reservoir (Cai et al., 2020). Three main Late Devonian extinction events occurred within an
interval of 0.7 Ma from the latest Frasnian to the earliest Famennian stages. These three extinction
events were named the Lower Kellwasser Event (372.5 Ma) from the latest Frasnian stage, the Upper
Kellwasser Event near the F–F boundary (ca. 372 Ma), and the Homoctenid Event (371.8 Ma) during
the earliest Famennian stage (McGhee and Racki, 2021). Impacts of these events were more severe in
low-latitude areas and marine ecosystems, where a fatal impact was caused on shallow-water reefs
and fish (McGhee and Racki, 2021). The Late Devonian Viluy LIP (Ricci et al., 2013) in Siberia and
the Kola and Pripyat-Dnieper-Donets LIPs (Puchkov et al., 2016) in Baltica are temporally
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overlapped with the time of Devonian F–F boundary age
(Percival et al., 2018a; Da Silva et al., 2020). Climate
change, ocean anoxia, and other factors are proposed in
concert as the killing mechanisms during these biotic crises
(McGhee and Racki, 2021, and references therein), but the
ultimate cause of the Late Devonian F–F mass extinction
remains somewhat uncertain.

Sedimentary Hg anomalies have been proven to be used as a
new proxy of LIP eruption (Bergquist, 2017; Grasby et al., 2019;
Shen et al., 2020). In geological history, Hg was dominantly
emitted to the environment via volcanism and cycled in the
atmosphere–land–ocean system before ultimately sinking to the
seafloor through organic matter burial (Grasby et al., 2019).
Excessive Hg emission often occurred during LIP eruption,

FIGURE 1 | (A) Paleogeographic reconstruction of the Late Devonian (370 Ma). The base map is from Blakey (2016), and assumed locations of coeval igneous
activities and Hg enrichment sections are fromRacki (2020). (B) Paleogeography of South China during the Late Devonian and location of the Dushan area (modified after
Zhao, 1985).
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resulting in anomalously high Hg concentration to total
organic carbon (Hg/TOC) ratios during critical events
(e.g., mass extinction, oceanic anoxia) (Sanei et al., 2012;
Grasby et al., 2019).

Compelling evidence of Hg enrichments in mass extinction
horizons has manifested that the end-Ordovician (Gong et al.,
2017; Jones et al., 2017), end-Permian (Sanei et al., 2012; Burgess
and Bowring, 2015; Grasby et al., 2017, 2020; Shen et al., 2019),
end-Triassic (Blackburn et al., 2013; Thibodeau et al., 2016;
Percival et al., 2017), end-Cretaceous (Font et al., 2016;
Schoene et al., 2019), and Paleocene–Eocene (Keller et al.,
2018; Jones et al., 2019) extinctions had a causal link to LIP
eruptions. High Hg anomalies were recently identified close to the
Late Devonian F–F boundary from three sections located on the
peripheral of Laurussia, implying that the Viluy LIP and other
contemporaneous volcanism were the ultimate causes of the F–F
mass extinction (Racki et al., 2018). However, to testify whether
or not these LIP impacts are global, further examinations on
different sections away from the volcanic center remain
necessary.

The South China Craton preserves good sedimentary and
PaleoBios records for the Upper Kellwasser Event across the F–F
boundary (Carmichael et al., 2019, and references therein). This
craton was located at the eastern Paleo-Tethys, which was far
away from the center of the Late Devonian LIPs based on the
global paleogeography reconstruction (Blakey, 2016, Figure 1A).
If the Late Devonian volcanism did cause global-scale Hg
perturbation and biota mass extinctions during the F–F
interval, it may also have left sedimentary and biotic records
in the South China Craton. Monotonous dolomite deposited in
the Dushan area of South China during Late Devonian, making it
an ideal location for recording the potential volcanic Hg signal
without lithological interference (Bergquist, 2017; Percival et al.,
2018b). Here, we report the high-resolution Hg
chemostratigraphy in two continuous successions in the
Dushan area to shed light on the correlation between the
potential volcanic Hg signals and the biotic records during the
F–F transition.

GEOLOGICAL BACKGROUND

The South China Craton was located at the eastern part of the
Paleo-Tethys Ocean, near the equator during Late Devonian
(Blakey, 2016, Figure 1A). It is one of the hotspots for the
study of the Devonian system (Carmichael et al., 2019). After
the Wuyi–Yunkai intraplate orogeny (Li et al., 2010; Zhang
et al., 2016), the Early Devonian (Pragian Stage) transgression
followed by the Late Devonian regression gives birth to
numerous well-preserved Devonian sections (Figure 1B)
and provides ideal sedimentary and PaleoBios records (Ma
et al., 2016; Qie et al., 2019) for global comparisons (Klapper
et al., 1993). The eustatic fall and the mass extinction of the
deeper-water brachiopods and conodonts and shallow-water
coral and ostracods occurred correlative with the latest
Frasnian Pa. linguiformis Zone to the Famennian Lower Pa.
triangularis Zone (Ma et al., 2016). These patterns in South

China are coincident with those of North America (Sandberg
et al., 2002). The Late Devonian carbon isotope records of
South China are also consistent with those from Gondwana,
North America, and Europe (Zhang et al., 2019). A tuffaceous
layer just above the F–F boundary from the basinal facies
successions in South China yielded a SIMS zircon U–Pb age of
367.8 Ma (Zhang et al., 2020), which correlates with the precise
F–F boundary age of ca. 372 Ma from Germany (Percival et al.,
2018a; Da Silva et al., 2020). Low redox sensitive element
concentrations (Mo, U, V) and low V/Cr ratios (<2) suggest a
constant oxic ocean condition in South China during the F–F
transition (Zhang et al., 2020). Ocean sulfate deficit (Cai et al.,
2020), climate change (Huang et al., 2018), tectonic evolution,
and volcanic/hydrothermal activities (Ma et al., 2016; Zhang
et al., 2020) have been proposed as the killing mechanisms for
F–F mass extinction in South China.

The Late Devonian sequence in the Dushan area represents
typical semi-restricted and restricted platform facies which can
be correlated with other sections in South China (Ma et al.,
2016). Biostratigraphy, paleontology, and lithostratigraphy
during the F–F stages have been previously studied (Wang
and Chen, 1999; 2006; Nie et al., 2016; Ma et al., 2016). This
sequence displays a complete succession through the lastest
Frasnian to the early Famennian. The latest Frasnian strata
(the middle part of the Sifangpo Member of the Yaosuo
Formation) in the Sifangpo (SFP) section are characterized
by gray to light gray, medium to thick dolomite bearing
abundant body fossils (stromatoporoids, coral,
brachiopods). The F–F boundary can be roughly determined
by a prominent stratigraphic transformational surface above
the Frasnian fauna disappeared horizon which is also the
horizon of sample SFP320 (Wang and Chen, 1999; 2006).
Body fossils disappeared near the F–F boundary. The
earliest Famennian sequence (the middle part of the
Sifangpo Member of the Yaosuo Formation) consists of
light gray to grayish-white, thin- and medium-bedded
dolomite and yields a few trace fossils (Wang et al., 2006).
Locally hydrothermal and volcanic activities are absent in the
Dushan area (GGS, 2017). Therefore, the well-preserved
sedimentary and fossil records in the Dushan area
(Figure 2) show a unique advantage for studying the direct
association between the potential volcanic activities and the
Late Devonian mass extinctions.

METHODS

Both the fossil-rich SFP section (N 25°51′30.7″, E 107°32′11.3″)
and the fossil-poor Shenheqiao (SHQ) section (N 25°55′4.8″, E
107°32′59″) in the Dushan area were selected in this study. Flesh
rock samples (27 samples from the SFP section and 16 samples
from the SHQ section) were systematically collected near the F–F
boundary from both sections with an interval of 10–20 cm
(Figure 2). After removing the weathered surfaces, thin
sections were prepared from 14 samples from the SFP section.
The remaining samples were powdered to 200 mesh by the agate
mortar for the following analytical testing.
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Optical and FESEM-EDS Mineralogy
Microscopy
Optical and field emission scanning electron microscope
imaging of the 14 thin sections was performed at the Center
for Lunar and Planetary Sciences, Institute of Geochemistry,
Chinese Academy of Sciences, using an FEI Scios DualBeam
field emission scanning electron microscope system, which
was equipped with EDAX energy dispersive spectroscopy
(FESEM-EDS). The backscatter electron mode analysis and
energy dispersive spectroscopy point analysis were carried out
at 20 kV.

Hg Concentration Analysis
The sample powders were analyzed for Hg concentrations using a
Lumex Hg analyzer RA 915F with the Hg detection limit of
0.5 ng/g at the State Key Laboratory of Ore Deposit
Geochemistry, Institute of Geochemistry, Chinese Academy of
Sciences. Measurements of the standard reference material (GSS-
4, soil) yielded Hg recoveries of 90 and 110%, and coefficients of
variation for triplicate analyses were <10%.

Total Organic Carbon Content Analysis
Total organic carbon (TOC, wt%) analyses were carried out using
the same samples previously used for analyzing Hg
concentrations, using the potassium dichromate method
(Schumacher, 2002). The sample powders were first leached by
2.5 N HCl to remove inorganic carbon and then rinsed by
18.2 MΩ cm water, freeze-dried, and measured using an

Elementar vario MICRO cube analyzer with analytical
errors <2.5%.

X-Ray Diffractometry Analysis
The mineralogy composition was performed on 27 powder
samples (SFP) using a Rigaku Ultima IV X-ray diffractometer,
with a carbon monochromator and Cu-Kα radiation, at 40 kV
and 40 mA at Guizhou Central Laboratory of Geology and
Mineral Resources, Bureau of Geology and Mineral
Exploration and Development of Guizhou Province. Mineral
composition was determined on randomly oriented powdered
samples. The diffraction patterns were processed using Jade 6.5
software, and the primitive modal contents were calculated by the
Rietveld method.

RESULTS

Mineral Composition Results
The mineralogy composition (in wt%) is presented in Table 1.
Samples from both SFP and SHQ sections are fine- to medium-
grained dolostones. The rocks mainly consist of dolomite
(88–97%) with minor illite, zeolite, calcite, quartz, variable
fossil fragments, and organic matter. Dolomite exhibited
poikilitic texture and is 0.1–0.2 mm in size. Clay minerals and
authigenic quartz are mainly distributed between dolomite. Fossil
fragments can be found in the thin sections of SFP0 to SFP290
and disappeared in the thin sections of SFP300 to SFP400.

FIGURE 2 | (A) Field photo of Sifangpo section, Dushan area, showing biostrome dolomite. (B) Detailed view of biostrome dolomite at 2.4–2.6 m below the F–F
boundary, showing abundant body fossils including stromatoporoids, coral, and brachiopods. (C) F–F boundary (dashed line) in the dolostone sequence, emphasizing
the transgression that occurred during the earliest Famennian. (D)Close view of coral in latest Frasnian strata. (E) Thin-section photo of sample SFP85, emphasizing the
abundance of dolomitic body fossils. (F) Thin-section photo of sample SFP320, emphasizing dolomite is the dominant rock-forming mineral.
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Hg and TOC Concentrations
Samples from the SFP section have Hg concentrations ranging
from 2.83 to 23.8 ppb with a median value of 7.66 ppb. These
samples have variable TOC contents ranging from 0.28 to 6.45%,
which are broadly consistent with the fossil abundance from field
observation. Hg/TOC values range from 0.79 to 59.1 with a
median value of 3.47. Hg displays weak correlations with TOC
(r � −0.19), whereas Hg/TOC shows positive correlations with Hg
(r � +0.51) and negative correlations with TOC (r < −0.64)
(Figure 3).

Samples from the SHQ section have Hg concentrations
ranging from 1.12 to 43.1 ppb with a median value of
9.68 ppb and relatively low TOC contents (0.06–1.34%). To
provide meaningful interpretation, three extremely low-TOC

(<0.1%) samples are eliminated from the discussion
(Grasby et al., 2019; Shen et al., 2020). Hg/TOC ratios of
these samples range from 2.58 to 251 with a background value
of 52.2. Hg and TOC are insignificantly correlated (r � −0.25),
and Hg/TOC displays significant positive correlations with Hg
(r � +0.97) but weak correlations with TOC (r < −0.32)
(Figure 3).

DISCUSSION AND CONCLUSION

Subaerial volcanism serves as the major natural source of Hg in
the environment, with a normal annual flux of 75–700 tons
(Grasby et al., 2019). Volcanism emits massive amounts of Hg

TABLE 1 |Hg (ppb), TOC (%), Hg/TOC (ppb/%) andmineral compositions (wt%) of samples from the Sifangpo (SFP) and Shenheqiao (SHQ) sections, Dushan, South China.

Sample Lithology Hg TOC Hg/TOC Dolomite Calcite Zeolite Quartz Illite

ppb % ppb/% wt% wt% wt% wt% wt%

SFP0 Dolomite 4.1 2.56 1.6 91.4 0 3.6 0 5
SFP20 Dolomite 6.5 3.83 1.7 94.2 0.2 3.4 0 2.2
SFP50 Dolomite 6.5 5.41 1.2 93.6 0.1 3.2 1 2.1
SFP70 Dolomite 11.3 1.92 5.9 81.8 11.2 4.3 0.5 2.2
SFP85 Dolomite 10.6 5.7 1.9 89.9 2.4 4.9 1.3 1.5
SFP110 Dolomite 10.4 0.33 31.1 96.9 0.2 2 0.9 0
SFP130 Dolomite 7.4 4.31 1.7 93 0.7 2.9 0.3 3.1
SFP150 Dolomite 4.1 5.28 0.8 96.4 0.1 2.5 0.7 0.3
SFP170 Dolomite 14.7 4.24 3.5 92.7 0.2 4.3 0.5 2.3
SFP190 Dolomite 3.4 0.57 6 91.3 0.6 3.5 0 4.6
SFP210 Dolomite 8.6 4.03 2.1 93.4 0.2 2.7 0 3.7
SFP230 Dolomite 11.6 5.02 2.3 91.3 0.6 4.2 0 3.9
SFP240 Dolomite 7.1 2.76 2.6 94.7 0 3.6 0 1.7
SFP250 Dolomite 11.7 1.59 7.4 92.3 0 3.4 0 4.3
SFP260 Dolomite 13.9 3.81 3.7 92.9 0.1 4.2 0 2.8
SFP275 Dolomite 6.7 6.45 1 96.7 0.2 2.6 0 0.5
SFP290 Dolomite 2.8 0.67 4.2 96.9 0 2.5 0 0.6
SFP300 Dolomite 21.3 1.3 16.4 92.3 0 4.5 0.8 2.4
SFP310 Dolomite 23.8 1.3 18.3 93.2 1.5 3.5 0.8 1
SFP320 Dolomite 20 0.34 59.1 96.5 0.1 1.4 0.9 1.1
SFP330 Dolomite 14.2 1.09 13 90.3 0 1.2 1.9 6.6
SFP340 Dolomite 8.5 0.44 19.3 87.9 3.6 4.4 0.6 3.5
SFP355 Dolomite 5 0.32 15.8 95 0 3.5 0.9 0.6
SFP365 Dolomite 3.5 2.85 1.2 93.2 0.2 3 1.8 1.8
SFP375 Dolomite 6 4.83 1.2 93.9 0 3.4 0.5 2.2
SFP385 Dolomite 7.7 2.79 2.7 96.1 0.1 3.2 0 0.6
SFP400 Dolomite 5.4 0.28 19.4 96 0.1 3.2 0.4 0.3
SHQ380 Dolomite 20.3 0.18 110.2
SHQ400 Dolomite 9.7 0.08 128.3
SHQ410 Dolomite 7.7 0.07 106.7
SHQ420 Dolomite 1.1 0.15 7.6
SHQ430 Dolomite 34.5 0.21 161.7
SHQ445 Dolomite 10.6 0.2 52.2
SHQ450 Dolomite 10.2 0.17 59.9
SHQ460 Dolomite 11.2 0.21 54.5
SHQ470 Dolomite 43.1 0.19 221
SHQ475 Dolomite 35.6 0.14 250.9
SHQ500 Dolomite 6.4 0.16 39.3
SHQ510 Dolomite 7.3 0.06 122.8
SHQ520 Dolomite 3.5 0.23 14.8
SHQ530 Dolomite 5.5 0.14 39.4
SHQ540 Dolomite 3.9 0.36 11
SHQ550 Dolomite 3.8 1.46 2.6
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to the atmosphere, in the form of gaseous Hg(0). This form of
Hg has a lifetime of ∼1 year in the atmosphere, allowing this
element to be globally and uniformly distributed before
deposition into marine and terrestrial ecosystems (Percival
et al., 2017). Once deposited, Hg continues to cycle in the
atmosphere–land–ocean system, but it ultimately sinks to the
seafloor. Organic matter (OM) drawdown plays a critical role
in Hg burial onto the seafloor due to its strong affinity to Hg
(Sanei et al., 2012; Grasby et al., 2019). Under normal
conditions, volcanic Hg emissions can be balanced by OM
drawdown; however, excessive Hg emission often occurred
during LIP eruption, resulting in high Hg concentration to
TOC (Hg/TOC) ratios during critical events such as mass
extinction events and/or oceanic anoxia events (Sanei et al.,
2012; Blackburn et al., 2013; Burgess and Bowring, 2015; Font
et al., 2016; Thibodeau et al., 2016; Gong et al., 2017; Jones
et al., 2017; Percival et al., 2017; Keller et al., 2018; Jones et al.,
2019; Schoene et al., 2019; Grasby et al., 2020; Shen et al.,
2020).

To be noticed, clay minerals (Kongchum et al., 2011;
Uddin, 2017), sulfides (Bower et al., 2008; Duan et al., 2016;
Shen et al., 2020), and Fe–Mn oxides (Quémerais et al., 1998)
are also important hosts of Hg in marine sediments. Small
Hg fluxes can be a localized source from the submarine
volcanic and hydrothermal activity limited to vicinity of the
eruption or emission center (Scaife et al., 2017; Moreno et al.,
2018; Jones et al., 2019), wildfire (Shen et al., 2011), or erosion
(Them et al., 2019). Therefore, special attention must be paid
to determine whether Hg anomalies are attributed to increased
volcanic Hg loading, or other Hg enrichment mechanisms
(Sanei et al., 2012; Grasby et al., 2019; Shen et al., 2020). In this
study, given sulfides were not detected by X-ray diffractometry
and the correlation between Hg concentrations and main rock-
forming minerals (dolomite, illite) is insignificant (not shown),
manifesting these minerals are not the main hosts of Hg.
Hg displays weak correlation with TOC (Figure 3A), and
Hg/TOC peaks are more correlative with the Hg peaks
rather than TOC peaks (Figures 3B,C) in both sections,
which indicates that Hg is unlikely related to localized
organic matter detention (Grasby et al., 2019). The Hg/TOC

values from both sections exhibit rhythmic and comparable
variation through time, strongly supporting that the Hg
enrichments in sediments are not associated with organic
matter, redox conditions (e.g., Shen et al., 2020), or
secondary weathering in random layers. The lithological
and mineralogical similarity across the Hg and Hg/TOC
peak horizons in both sections demonstrates that the
terrestrial inputs, sedimentation rate, and diagenesis process
are not the main causes for the observed Hg anomalies. In both
sections, the Hg/TOC peaks correlate well with the Hg peaks
near the F–F boundary (Figure 4), suggesting excessive Hg
inputs to the ocean were responsible for the high Hg/TOC
anomalies during the F–F transition. Two spurious Hg/TOC
ratio peaks at 0.8 m above and 3.1 m below the F–F boundary
were due to low TOC content rather than elevated supply of Hg
(Figure 4).

Racki et al. (2018) suggested three criterions for detection of
the real volcanic Hg signal in the sedimentary sequence: (1) Hg
enriched above 3 × the median Hg content, (2) Hg/TOC
enriched above 3 × the median Hg/TOC content, and (3)
Hg abnormal identified worldwide. In this study, the SFP
section shows the highest Hg enrichment of 3.1 × the
background while the highest Hg/TOC enrichment of 5.7 ×
the background at the F–F boundary. Compatible Hg and Hg/
TOC enrichments can be observed in the SHQ section
(Figure 4). Localized volcanic and hydrothermal activities
are limited in the Dushan area (GGS, 2017) which preclude
the possibility of a local volcanic or submarine Hg
contribution. Exotic volcanic matter was identified
throughout the F–F boundary succession in the basinal
facies in South China (Zhang et al., 2020), which indicated
extensive volcanic activities occurred beyond South China
during the F–F transition. Moreover, the Hg anomalies just
under the F–F boundary have also been reported previously in
Morocco, Germany, Poland, and north Russia (Racki et al.,
2018; Racki, 2020). Although the low Hg contents in South
China than other sections worldwide may be due to the
effectiveness of different lithology in archiving the Hg
record (Bergquist, 2017; Percival et al., 2018b), the Hg and
Hg/TOC enrichments observed in our study are in line with

FIGURE 3 | Cross plot of (A) TOC vs. Hg, (B) Hg vs. Hg/TOC, and (C) TOC vs. Hg/TOC.
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those observed in other sections worldwide (Figure 5). An ash
bed named Center Hill Ash coincidently occurred in the US
just prior to the F–F boundary based on associated conodonts
(Over, 2002). Thus, the observed global Hg anomalies are
tentatively correlated with the volcanic activities which
produce the Center Hill Ash Bed (Racki, 2020). Considering
the correlation of the complex global Hg patterns (Figure 5)
and the age of Devonian LIPs (Ricci et al., 2013; Puchkov et al.,
2016; Ernst et al., 2020), we suggest the Hg perturbation in

sediments is induced by the eruptions of the Late Devonian
Viluy, Kola, and Pripyat-Dnieper-Donets LIPs.

Volcanic activity can release massive CO2 and geothermic gas
into the atmosphere which could cause synergistic effects of
global warming, ocean anoxia, acidification, and eventually
marine mass extinction (Clapham and Renne, 2019; McGhee
and Racki, 2021; Racki, 2021). The studied F–F volcanic Hg
signals are stratigraphically tied to the extinction of Frasnian
fauna and decline of organic matter (Figure 4), supporting a

FIGURE 4 |Diagram showing stratigraphy and lithology, changes in the abundance of body fossils (mass extinction levels are marked in gray) and sea level, Hg and
TOC concentrations, and Hg/TOC variation patterns across the F–F transition of two sections in the Dushan area, South China. White cycles indicate the samples with
low TOC values (≤0.1%).

FIGURE 5 | F–F sections in (A) South China, (B)Morocco, (C) north Russia, (D) Poland, (E) Thuringia, Germany, and (F) Silberberg, Germany (modified after Racki
et al., 2018; Racki, 2020) showing Hg enrichments with highlights on their probable correlation with bentonite beds by Winter (2015). Abbreviation: CH, Center Hill; Sc,
Scorpius; Sx, Sextans, PPP, Pictor–Phoenix–Pegasus.
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causal link between global massive volcanism and biodiversity
crisis, which further strengthens the hypothesis for LIP volcanism
as the ultimate driver of F–F mass extinction.
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