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Reverse time migration (RTM) is an ideal seismic imaging method for complex structures.
However, in conventional RTM based on rectangular mesh discretization, the medium
interfaces are usually distorted. Besides, reflected waves generated by the two-way wave
equation can cause artifacts during imaging. To overcome these problems, a high-order
finite-difference (FD) scheme and stability condition for the pseudo-space-domain first-
order velocity-stress acoustic wave equation were derived, and based on the staggered-
grid FD scheme, the RTM of the pseudo-space-domain acoustic wave equation was
implemented. Model experiments showed that the proposed RTM of the pseudo-space-
domain acoustic wave equation could systematically avoid the interface distortion problem
when the velocity interfaces were considered to compute the pseudo-space-domain
intervals. Moreover, this method could effectively suppress the false scattering of dipping
interfaces and reflections during wavefield extrapolation, thereby reducing migration
artifacts on the profile and significantly improving the quality of migration imaging.

Keywords: pseudo-space-domain, staggered-grid, acoustic wave equation, high-order finite-difference, reverse
time migration

INTRODUCTION

Based on the theory of the two-way wave equation, the reverse time migration (RTM) algorithm was
conceived in the early 1980s (McMechan, 1983; Whitmore, 1983). Since the wave equation does not
need to be decomposed, there is no strata dip angle limitation caused by the wave equation
approximation. The RTM is recognized as an ideal imaging method for complex structures and has
been a popular topic in the field of geophysics (Moradpouri et al., 2017; Li et al., 2018; Zhou et al.,
2018; Li et al., 2020). Chang and McMechan (1987) generalized the two-dimensional RTM to the
elastic wavefield and then extended it to three dimensions (Chang and McMechan, 1990, 1994).
Zhang and Ning (2002) proposed multi-wave and multi-component RTM based on the eikonal
equation. Sun and McMechan (2001) implemented elastic wave RTM based on the separation of P-
and S-waves. Yan (2012) studied the viscoelastic tilted transversely isotropic medium wave equation
RTM algorithm based on rotating staggered grids. Liu et al. (2013) achieved RTM of elastic waves in
porousmedia based on Biot’s theory. Song et al. (2015) proposed the RTMof divided-order multiples
to solve the problem of imaging difficulty in the regions of low illumination based on primaries. In
terms of computational efficiency and storage consumption, Liu et al. (2010) applied the graphics
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processing unit (GPU) for algorithmic acceleration, which greatly
improved the computational efficiency of RTM. Clapp (2009) and
Wang et al. (2012) used the random boundary and absorbing
boundary storage strategies to reduce the consumption of storage
capacity. Shi et al. (2015) analyzed the effect of random
boundaries and an absorbing boundary in RTM and
summarized the calculation cost and storage requirement for
different boundaries and storage strategies.

After a few decades of development, the RTM technology has
become increasingly mature, but it still suffers from the following
problems: First, the RTM is usually achieved by using the finite-
difference (FD) method with regular rectangular grids. When the
underground interface model is meshed by grids, dipping
interfaces and undulating surfaces only can be replaced by
staircase curves, which may result in false scattering and
interfacial distortion during RTM. In this respect, some
scholars used variable space grids (Zhu and Wei, 2005, 2007;
Huang and Dong, 2009), in which fine grids were adopted at
regions with severe variation of medium parameters. However,
this method still doesn’t eliminate the limitations of rectangular
grids, and it increases computational cost. Chu and Wang (2005)
proposed an FD simulation method based on an irregular
triangular mesh used in the finite-element method. Compared
with the traditional rectangular mesh FD scheme, this method
can describe undulating interfaces better, but the computational
complexity increased. Besides, now there are many studies on
RTM from rugged topography using curvilinear meshing or
unstructured triangular meshing to get rid of the staircase
approximation (Lan et al., 2014; Shragge, 2014; Liu et al.,
2016; Qu et al., 2019; Liu and Zhang, 2020). Second, in the
conventional RTM wavefield extrapolation based on the two-way
wave equation, it produces a large number of reflection waves
(back-propagating waves) at the interfaces. On the migration
profile, it forms strong low-frequency noises and artifacts
generated by wavepath cross-correlation with forward- and
back-propagating waves, which result in low-profile imaging
quality (Du et al., 2013). To reduce the influence of reflection
waves, Baysal et al. (1984) deduced that the non-reflection
acoustic equation can suppress the reflection waves well in the
case of small incident angle under the assumption of constant
impedance of the underlying medium. On the basis of the non-
reflection acoustic equation proposed by Baysal, Song (2005)
realized a recursive method to calculate the non-reflection scalar
wave equation by introducing a wave impedance function.
Willacy and Kryvohuz (2019) tried to image steep boundaries
between a salt body and surrounding sediments based on the
RTM using transmitted waves. He et al. (2008) developed RTM of
arbitrarily wide-angle wave equations, but the imaging effect of
this method is poor in shallow regions. Yoon and Marfurt (2006)
introduced Poynting vector imaging conditions into RTM to
realize cross-correlation of different direction wavefields, but it
has a big numerical error in the regions of complex tectonics. Liu
et al. (2011) proposed an imaging condition of RTM based on
wavefield decomposition that separated up-going and down-
going waves by using the F-K transform; however, the method
of separating wavefields required a large amount of extra
calculation and storage.

The effective solution of above two problems is of great
significance to improve the imaging quality of RTM. Wang
et al. (2005) deduced a pseudo-space-domain scalar acoustic
equation by transforming the traditional wave equation from
the time-space domain to time-traveltime domain (or “traveltime
domain”). This scheme not only overcomes the problem of
seismic velocity interface distortion but also effectively
suppresses false scattering and reflections. However, based on
the second-order partial differential acoustic wave equation,
Wang et al. (2005) had realized a second-order FD solution in
pseudo-space domain using regular grid, which cannot meet the
needs of calculation accuracy. Based on the detailed discussion of
the principle of the pseudo-space-domain wave equation, this
thesis derives the high-order staggered-grid FD scheme and
stability condition for the pseudo-space-domain first-order
velocity-stress wave equation and achieves high-precision
RTM with them.

PSEUDO-SPACE-DOMAIN FIRST-ORDER
VELOCITY-STRESS ACOUSTIC WAVE
EQUATION
At present, the most of FD wavefield extrapolations of the
acoustic wave are based on the first-order velocity-stress
acoustic wave equation. It can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
z~vx
zt

� −z~P
zx

,

ρ
z~vz
zt

� −z~P
zz

,

z~P

zt
� −ρc2p(z~vxzx

+ z~vz
zz

) + s(t),

(1)

where x and z represent the horizontal and vertical coordinates of
the space domain, respectively, cp is the primary velocity at point
(x, z), ρ is the density at point (x, z), ~P represents the pressure, ~vx
and ~vz represent the velocity components in the x and z
directions, respectively, s(t) is the source function, with t
being time. To obtain the numerical solution of Eq. 1, we
usually use differences instead of differentials to approximate
derivatives based on the staggered-grid technique (Vireux, 1984).

The conventional FD method, which is applied to the acoustic
equation, is based on rectangular grid. When the subsurface
interface model is meshed, the dipping interface can only be
described by using a staircase curve. It can cause false scattering in
the process of wavefield extrapolation and interface distortion at
the migration profile. At the same time, the two-way wave
equation can generate reflected waves at the interfaces between
different velocity layers. Furthermore, strong low-frequency
noises and artifacts are formed on the migration profile, which
lead to low profile imaging quality.

To solve above problems, a pseudo-space-domain first-order
velocity-stress acoustic wave equation is proposed in this article.
In RTM of acoustic wave equation, imaging about the pressure ~P
is usually used. Therefore, under the condition that the ~P is not
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affected, assumingvx � cp~vx, vz � cp~vz, P � ~P, Eq. 1 can be
transformed into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zvx
zt

� −cp
ρ

zP

zx
,

zvz
zt

� −cp
ρ

zP

zz
,

zP

zt
� −ρcp(zvx

zx
+ zvz

zz
) + s(t).

(2)

After discretizing the continuous model into a grid model, we
set the spatial unit grid length as Δξ (where ξ can represent x or z)
and that the traveltime between a grid length Δξ as Δτξ . Then, the
space grid Δξ and traveltime Δτξ satisfy the relationship
Δξ � cpΔτξ , where cp is the acoustic wave velocity in the grid
point. The derivative of the pressure and velocity components
with respect to space can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zP

zτξ
� cp

zP

zξ
,

zvx
zτξ

� cp
zvx
zξ

,

zvz
zτξ

� cp
zvz
zξ

.

(3)

Then, substituting Eq. 3 into Eq. 1 yields Eq. 4, which is the
pseudo-space-domain first-order velocity-stress acoustic wave
equation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zvx
zt

� −1
ρ

zP

zτx
,

zvz
zt

� −1
ρ

zP

zτz
,

zP

zt
� −ρ(zvx

zτx
+ zvz
zτz

) + s(t).

(4)

NUMERICAL SIMULATION OF THE
PSEUDO-SPACE-DOMAIN FIRST-ORDER
VELOCITY-STRESS ACOUSTIC EQUATION

Sampling Interval Calculation in the
Pseudo-Space-Domain
Usually, to solveEq. 4 by the FDmethod, first we should discretize the
continuous model into a grid model and then compute the
“traveltime” Δτξ along with the grid point interval Δξ. For
simplicity, Δτξ is called the “pseudo-space-domain interval”.

In the two-dimensional case, there are four pseudo-space-domain
intervals at a point P(i, j), where i and jrepresent grid coordinates in
the x and z directions, respectively. In the following discussion, a
pseudo-space-domain interval is denoted as Δτ±l (i, j), where l
represents i or j, “−” and “+” represent the side of the smaller
coordinate grid number and the side of the larger coordinate grid
number, respectively. As shown in Figure 1, Δτ−i (i, j) represents the
pseudo-space-domain interval between points P(i − 1, j) and P(i, j),
Δτ−j (i, j) represents the pseudo-space-domain interval between
points P(i, j − 1) and P(i, j), Δτ+i (i, j) represents the pseudo-
space-domain interval between points P(i + 1, j) and P(i, j), and
Δτ+j (i, j) represents the pseudo-space-domain interval between
points P(i, j + 1) and P(i, j).

Obviously, there are no velocity parameter items in Eq. 4. When
the wave equation is transformed into pseudo-space domain, the
original discrete space grid point velocity information is assigned to a
grid line. At the same time, additional velocity information of the
interfaces intersected on grid lines can be provided for computing the
pseudo-space-domain intervals. Figure 2 shows a partial schematic
illustration of a mesh model after the regular meshing of a velocity
interface model including a dipping interface (as shown by the black
solid line in Figure 2). The primary velocities at the upper and lower
sides of the interface are 3,000 and 3,500m/s, respectively, and the grid
interval is 10m. It can be seen that, aftermeshing the velocity interface
model according to a regular rectangular grid, the dipping interface is
distorted to an obvious staircase fold line. However, in the pseudo-
space-domain, the “propagation time” on both sides of the velocity
interface is calculated according to its actual velocity and propagation
distance, and the time sampling interval corresponding to the grid line
is the sumof different “time of propagation” segments. Points P andQ
in Figure 2 are two adjacent spatial grid points after the velocitymodel
is divided according to a rectangular grid, and the velocity interface as
shown by the black solid line intersects segment PQ at point B. In this
case, the pseudo-space-domain interval between P and Q may be
calculated as Δτ � ΔτPB + ΔτBQ, where ΔτPB is the traveltime along
with segment PB, andΔτBQ is the traveltime along segment BQ.

FIGURE 1 | Four pseudo-space-domain intervals at the point P(i, j).

FIGURE 2 | Partial schematic illustration of a mesh model after the
regular meshing of a velocity interface model including a dipping interface.
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Theoretically, there is no longer a distortion of the velocity
interface in the pseudo-space-domain, and even the mutation of
the model parameters between adjacent grid points are weakened,
so it is expected that false scattering and interface reflection in the
migration calculation can be reduced.

A 2Nth-Order-Accuracy Staggered-Grid FD
Scheme of the Pseudo-Space-Domain
First-Order Velocity-Stress Acoustic Wave
Equation
In the implementation of FD numerical simulations based on the
pseudo-space-domain acoustic wave equation, as well as to
improve the accuracy of the simulation and suppress the
impact of numerical dispersion, we need to improve the
accuracy of the differences. Therefore, in this study, we deduce
the 2Nth-order-accuracy staggered-grid FD expression for the
acoustic wave equation in the pseudo-space-domain.

In the two-dimensional case, the coordinates are denoted as
(i, j) in the space-domain model discretized by sampling interval
(Δx,Δz). The corresponding coordinates of the pseudo-space-
domain are (τi, τj). We take zP

zτx
and zvx

zτx
as examples to give the

propagation time interval calculation formula in pseudo-space-
domain.

When calculating zP
zτx

at τx � τi+1/2, P is located at point
(τi+m, τj) and (τi−(m−1), τj)(m � 1, 2, 3, . . .). In the τx
direction, the pseudo-space-domain propagation time intervals
centered on(τi+1/2, τj) are shown as follows:

Δτ+mi+1/2 �
⎧⎪⎨⎪⎩

0.5Δτ+i (i, j) (m � 1),
0.5Δτ+i (i, j) + ∑m−1

k�1
Δτ+i (i + k, j) (m> 1), (5)

where Δτ+i (i + k, j) represents the pseudo-space-domain interval
between points (i + k, j) and(i + 1 + k, j), Δτ+mi+1/2 represents the
propagation time interval between (τi+1/2, τj) and the grid point
(τi+m, τj) where P is located.

Δτ−(m−1)
i+1/2 �

⎧⎪⎨⎪⎩
0.5Δτ+i (i, j) (m � 1),
0.5Δτ+i (i, j) + ∑m−2

k�0
Δτ−i (i − k, j) (m> 1), (6)

where Δτ−i (i − k, j) represents the pseudo-space-domain interval
between points (i − 1 − k, j) and (i − k, j), Δτ−(m−1)

i+1/2 represents
the propagation time interval between (τi+1/2, τj) and the grid
point (τi−(m−1), τj) where P is located. It notes that here and
hereinafter (τi+1/2, τj) indicates the center point of the
propagation time between (i, j) and (i + 1, j).

When calculating zvx
zτx

at τx � τi, velocity vx is located at point
(τi+(m−1/2), τj) and (τi−(m−1/2), τj)(m � 1, 2, 3, . . .). In the τx
direction, the pseudo-space-domain propagation time intervals
centered on (τi, τj) are shown as follows.

Δτ+(m−1/2)
i �

⎧⎪⎨⎪⎩
0.5Δτ+i (i, j) (m � 1),
0.5Δτ+i (i +m − 1, j) + ∑m−2

k�0
Δτ+i (i + k, j) (m> 1),

(7)

where Δτ+i (i + k, j) represents the pseudo-space-domain interval
between points (i + k, j) and (i + 1 + k, j), and Δτ+(m−1/2)

i

represents the propagation time interval between (τi, τj) and
the grid point (τi+(m−1/2), τj) where vx is located.

Δτ−(m−1/2)
i �

⎧⎪⎨⎪⎩
0.5Δτ−i (i, j) (m � 1),
0.5Δτ−i (i −m + 1, j) + ∑m−2

k�0
Δτ−i (i − k, j) (m> 1),

(8)

where Δτ−i (i − k, j) represents the pseudo-space-domain interval
between points (i − 1 − k, j) and (i − k, j), and Δτ−(m−1/2)

i

represents the propagation time interval between (τi, τj) and
the grid point (τi−(m−1/2), τj) where vx is located. Similarly, the
pseudo-space-domain propagation time interval of P and vz in
the direction τz can be calculated separately in a similar manner
as described above.

Using the propagation time interval shown in Eqs 5, 6, the
2Nth-order-accuracy expansion of the first-order derivative of the
P with respect to the variable τx can be obtained. The P in the
pseudo-space-domain is assumed to have a 2Nth-order derivative.
For different Pτxvalues, satisfying τx � τi+1/2 +Δτ+mi+1/2 and τx �
τi+1/2 − Δτ−(m−1)

i+1/2 corresponding to τx � τi+m and τx � τi−(m−1)
(m�1, 2, . . . ,N − 1,N), respectively, the 2Nth-order Taylor
series expansions at τx � τi+1/2 are

Pτi+1/2+Δτ+mi+1/2 � Pτi+1/2 + ∑2N−1

n�1

(+ Δτ+mi+1/2)n
n!

P(n)
τi+1/2 + O((+ Δτ+mi+1/2)2N),

(9)

Pτi+1/2−Δτ−(m−1)
i+1/2

� Pτi+1/2 + ∑2N−1

n�1

(− Δτ−(m−1)
i+1/2 )n
n!

P(n)
τi+1/2

+ O(( − Δτ−(m−1)
i+1/2 )2N), (10)

where P(n) represents the nth-order derivative of P. The above 2N
equations are multiplied by cx1 , c

x
2 , . . ., c

x
2N−1, cx2N, respectively,

and then added and simplified as

∑N
m�1

(cx2m−1Pτi+1/2+Δτ+mi+1/2 + cx2mPτi+1/2−Δτ−(m−1)
i+1/2

) � ∑N
m�1

(cx2m−1 + cx2m)Pτi+1/2

+ ∑N
m�1

⎛⎝(Δτ+mi+1/2)
1!

cx2m−1 +
(− Δτ−(m−1)

i+1/2 )
1!

cx2m⎞⎠P(1)
τi+1/2 + ∑2N−1

n�2

∑N
m�1

⎛⎝(Δτ+mi+1/2)n
n!

cx2m−1 +
(− Δτ−(m−1)

i+1/2 )n
n!

cx2m⎞⎠P(n)
τi+1/2

+ O((+ Δτ+mi+1/2)2N) + O((− Δτ−(m−1)
i+1/2 )2N). (11)

To resolve the first-order derivative FD scheme of P at
τx � τi+1/2, Eq. 11 needs to satisfy the algebraic relationship
that the coefficient of the first derivative is one and the other
derivative is 0 except at the first order. Therefore, according to the
coefficient relationship between derivatives, we can get the FD
coefficients cxm(m�1, 2, . . . , 2N−1, 2N).
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From Eq. 11, we can see that the solutions for the FD
coefficients depend on the pseudo-space-domain propagation
time intervals Δτ+mi+1/2 and Δτ−(m−1)

i+1/2 (m�1, 2, . . . , N−1, N).
While the velocity on each grid remains constant, there
exists the relationships Δτ+mi+1/2 � Δτ−(m−1)

i+1/2 and cx2k−1 � −cx2k(k� 1, 2, . . . , N−1, N). While the velocity is not constant,
there exist the relationships Δτ+mi+1/2 ≠Δτ−(m−1)

i+1/2 and
cx2k−1 ≠ − cx2k(k � 1, 2, . . . , N−1, N). From the above analysis,
it can be seen that the FD coefficients of the numerical
simulation in the pseudo-space-domain are related to the
grid velocity and the size of the grid. Even with the same
difference order, the FD coefficients are different
corresponding to various grid velocity and sizes.

By substituting the FD coefficients into Eq. 11, a 2Nth-order
difference expression for the first derivative of P at τx � τi+1/2 can
be written as:

dP

dτx

∣∣∣∣∣∣∣
τx�τi+1/2

� ∑N
m�1

(cx2m−1Pτi+1/2+Δτ+mi+1/2 + cx2mPτi+1/2−Δτ−(m−1)
i+1/2

). (12)

Similarly, we have a 2Nth-order difference expression and FD
coefficients czm(m�1, 2, . . . , 2N−1, 2N) for the first-order
derivative of P at τz � τj+1/2, a 2Nth-order difference
expression, and FD coefficients cxvm(m�1, 2, . . . , 2N−1, 2N)
for the first-order derivative of vx at τx � τi, and a 2Nth-order

difference expression and FD coefficients czvm(m�1, 2, . . . , 2N−1,
2N) for the first-order derivative of vz at τz � τj.

Substituting the above difference expressions for P, vx, and vz
at τx or τz and the second-order difference expressions for the
first-order derivative of P, vx, and vz at time into Eq. 4, we can
obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk+1/2xτi+1/2 ,τj � vk−1/2xτi+1/2 ,τj

−Δt
ρ

∑N
m�1

(cx2m−1P
k
τi+1/2+Δτ+mi+1/2 ,τj + cx2mP

k
τi+1/2−Δτ−(m−1)

i+1/2 ,τj
),

vk+1/2zτi ,τj+1/2 � vk−1/2zτi ,τj+1/2

−Δt
ρ

∑N
m�1

(cz2m−1P
k
τi ,τj+1/2+Δτ+mi+1/2 + cz2mP

k
τi ,τj+1/2−Δτ−(m−1)

j+1/2
),

Pk+1
τi ,τj

� Pk
τi ,τj

−ρΔt ∑N
m�1

(cxv2m−1v
k+1/2
xτi+Δτ+(m−1/2)

i ,τj
+ cxv2mv

k+1/2
xτi−Δτ−(m−1/2)

i ,τj
)

−ρΔt ∑N
m�1

(czv2m−1v
k+1/2
xτi ,τj+Δτ+(m−1/2)

j

+ czv2mv
k+1/2
xτi ,τj−Δτ−(m−1/2)

j

) + s(t),
(13)

where k represents discrete time points, which satisfy t � kΔt
(where Δt represents a discrete time interval).

FIGURE 3 | Snapshots of wavefield extrapolation based on different orders of finite-difference operator in a pseudo-space-domain difference expression (A), (B),
(C), and (D) correspond, respectively, to second-order, eighth-order, twelfth-order, and sixteenth-order.
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In the following, a homogeneous model is used to show the
effect of the pseudo-space-domain high-order FD scheme on
dispersion suppression. The size of the model is 2000 ×
2000 m. The spatial sampling interval is 10 × 10 m, and the
primary wave velocity is 2,500 m/s. The source location is
1,000 m, 1,000 m. As a source wavelet, we adopt the Ricker
wavelet whose dominant frequency is 35 Hz, and the time
sampling interval is 0.25 ms. Snapshots based on simulations
of the pseudo-space-domain with different orders of FD
operator are shown in Figure 3.

It can be seen from the snapshot shown in Figure 3
that, for the pseudo-space-domain FD scheme with
different orders of FD operator, when the spatial grid
interval, model velocity, and wavelet dominant frequency
are the same, the higher the order of FD operator is, the
weaker the dispersion is.

Stability Condition for the
Pseudo-Space-Domain First-Order
Velocity-Stress Acoustic Wave Equation
First, we define the pseudo-space-domain plane harmonic
variables u

u � u0 e
iωnΔteikτxjΔτxeikτzkΔτz , (14)

where u0 represents the initial wavefield, ω represents the circular
frequency, kτx and kτz represent wave numbers in the τx and τz
directions, respectively; n, j, and k represent coordinates of
discrete grid points in the t, τx, and τz directions, respectively;
Δτx and Δτzrepresent pseudo-space-domain intervals in the τx
and τz directions, respectively; e stands for the base of the natural
logarithms, and i represents the imaginary unit in this section.

According to the above equation, one can get the following
relationships:

{ uτx+Δτ+mx � uτxe
ikτxΔτ+mx ,

uτx−Δτ−mx � uτxe
−ikτxΔτ−mx .

(15)

Substituting the above formulas into the first-derivative
difference expression gives

du

dτx
� u ∑N

m�1
(cx2m−1e

ikτxΔτ+mx + cx2me
−ikτxΔτ−mx ). (16)

Furthermore, the second-derivative expression for τx can be
obtained as

d2u

dτ2x
� u

⎧⎨⎩ ∑N
m�1

(cx2m−1e
ikτxΔτ+mx + cx2me

−ikτxΔτ−mx )⎫⎬⎭
2

. (17)

According to the definition of the propagation time in the
pseudo-space-domain and the sampling theorem, when the
maximum wave number for τx is obtained, the following
relationships hold: Δτ+mx kτx � (m − 1/2)π and
Δτ−mx kτx � (m − 1/2)π. Therefore, the above equation can be
converted into

d2u

dτ2x
� −u⎧⎨⎩ ∑N

m�1
((−1)m−1cx2m−1 + (−1)mcx2m)⎫⎬⎭

2

. (18)

Similarly, the second-derivative expression for τz can be
obtained as

d2u

dτ2z
� −u⎧⎨⎩ ∑N

m�1
((−1)m−1cz2m−1 + (−1)mcz2m)⎫⎬⎭,2 (19)

and the second-derivative expression for t can be obtained as

z2u

zt2
� −u(2 sin(ωΔt/2)Δt )2

(20)

Eq. (4) is reduced to the form of a pseudo-space-domain
second-order scalar acoustic wave equation, and Eqs. (18), (19),
and (20) are substituted to yield

(2 sin(ωΔt/2)Δt )2

� ⎧⎨⎩ ∑N
m�1

((−1)m−1cx2m−1 + (−1)mcx2m)⎫⎬⎭
2

+⎧⎨⎩ ∑N
m�1

((−1)m−1cz2m−1 + (−1)mcz2m)⎫⎬⎭
2

.

(21)

Because the left side of the equation above satisfies 0≤ sin2 ω Δt
2 ≤ 1,

and under the assumption that the differential coefficients in the τx
and τz directions are equal, the following relation holds:

Δt≤
�
2

√∣∣∣∣∣∣∣∣ ∑N
m�1((−1)m−1c2m−1 + (−1)mc2m)

∣∣∣∣∣∣∣∣
, (22)

where cm � cxm � czm (m � 1, 2, . . . , 2N − 1, 2N).

FIGURE 4 | PML layer distribution diagram (Zhang et al., 2016).
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Perfectly Matched Layer Boundary
Conditions of the Pseudo-Space-Domain
First-Order Velocity-Stress Acoustic Wave
Equation
In the central wavefield calculation region, FD numerical
simulation of the pseudo-space-domain first-order velocity-
stress acoustic wave equation with 2Nth order in pseudo-space
and second-order in time can be realized by applying Eq. 13. In
the artificial boundary region, to effectively suppress the artificial
boundary reflection, absorbing boundary processing is required.
The perfectly matched layer (PML) boundary conditions for the
first-order velocity-stress acoustic wave equation in the pseudo-
space-domain are given below.

Because the PML attenuation term is independent of the
partial derivative of wave equation, the space domain partial
derivative in the equation is transformed into a pseudo-space-
domain partial derivative; meanwhile, the space domain
attenuation factors dx and dz are transformed into pseudo-
space-domain attenuation factors dτx and dτz. The PML
boundary conditions for the pseudo-space-domain acoustic
wave equation are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zvx
zt

+ dτxvx � −1
ρ

zP

zτx
,

zvz
zt

+ dτzvz � −1
ρ

zP

zτz
,

zPx

zt
+ dτxPx � −ρ zvx

zτx
,

zPz

zt
+ dτzPz � −ρ zvz

zτz
,

P � Px + Pz,

(23)

where Px and Pz represent the components of P in the τx and τz
directions. dτx and dτz represent the attenuation factors in the τx
and τz directions, which are given by

d(τm) � log(1
R
) · 3

2τL
(τm
τL
)2

, (24)

where τm represents the normal pseudo-space-domain
propagation time interval from the point in the PML layer to
the outer edge of the center wavefield, R represents the theoretical
reflection coefficient for the PML layer (ranging from 10–5 to
10–7), and τL represents the pseudo-space-domain PML layer
thickness. As is shown in Figure 4, when wavefield calculations
are performed, dτx � 0, dτz � 0 in the center wavefield area;
dτx � 0, dτz � d(τm) in PML areas one and PML area 4;
dτx � d(τm), dτz � 0 in PML areas two and PML area three;
and dτx � d(τm), dτz � d(τm) in the corner area.

We can write the attenuation factors dτxvx, dτzvz, dτxPx, and
dτzPz in the PML boundary conditions into a differential form,
and by substituting them with the difference expression of each
first-order derivative into Eq. 23, we can derive

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk+1/2xτi+1/2 ,τj �
1

1 + dτxΔt/2
[(1 − dτxΔt/2)vk−1/2xτi+1/2 ,τj

−Δt
ρ

∑N
m�1

(cx2m−1P
k
τi+1/2+Δτ+mi+1/2 ,τj + cx2mP

k
τi+1/2−Δτ−(m−1)

i+1/2 ,τj
)⎤⎦,

vk+1/2zτi ,τj+1/2 �
1

1 + dτzΔt/2
[(1 − dτzΔt/2)vk−1/2zτi ,τj+1/2

−Δt
ρ

∑N
m�1

(cz2m−1P
k
τi ,τj+1/2+Δτ+mi+1/2 + cz2mP

k
τi ,τj+1/2−Δτ−(m−1)

j+1/2
)⎤⎦,

Pk+1
xτi ,τj

� 1
1 + dτxΔt/2

[(1 − dτxΔt/2)Pk
xτi ,τj

−ρΔt ∑N
m�1

(cxv2m−1v
k+1/2
xτi+Δτ+(m−1/2)

i ,τj
+ cxv2mv

k+1/2
xτi−Δτ−(m−1/2)

i ,τj
)⎤⎦,

Pk+1
zτi ,τj

� 1
1 + dτzΔt/2

[(1 − dτzΔt/2)Pk
zτi ,τj

−ρΔt ∑N
m�1

(czv2m−1v
k+1/2
xτi ,τj+Δτ+(m−1/2)

j

+ czv2mv
k+1/2
xτi ,τj−Δτ−(m−1/2)

j

)⎤⎦,
Pk+1
τi ,τj

� Pk+1
xτi ,τj

+ Pk+1
zτi ,τj

.

(25)

FIGURE 5 | Snapshot of the pseudo-space-domain acoustic wave equation at 0.82 s: (A) left boundary without PML boundary conditions; (B) left boundary with
PML boundary conditions.
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Equation 25 is the difference expression for PML boundary
conditions of the pseudo-space-domain first-order velocity-stress
acoustic wave equation.

A uniform medium model is used to verify the
effectiveness of the PML boundary conditions of first-
order velocity-stress acoustic wave equations in the
pseudo-space-domain for eliminating artificial boundary
reflections. The horizontal and vertical lengths of the
model are 2000 and 2000 m, respectively, and the grid
interval is 5 m. The primary wave velocity in the model is
2,500 m/s, and the density is 2000 kg/m3. The source location
is (1,000 m, 1,000 m), and the source wavelet employs Ricker
wavelet with a dominant frequency of 35 Hz. To avoid the
effects of numerical dispersion, the pseudo-space-domain
FD order is 10th order. The snapshot of the wavefield
extrapolation process at 0.82 s is shown in Figure 5,
where Figure 5A shows the snapshot of the left boundary
without the PML boundary conditions, and Figure 5B shows
a snapshot of the left boundary with PML boundary
conditions.

To further illustrate the boundary absorption effect of the
PML boundary conditions in the pseudo-space-domain
acoustic wave equation, the left boundary reflection wave
corresponding to a depth of 1 km in the wavefield shown
in Figure 5 is magnified and displayed and is compared with
the conventional acoustic wave equation wave based on the
same simulation parameters. As shown in Figure 6, the black
solid line is the left boundary reflection wave absorbed by the
PML boundary condition of the pseudo-space-domain
acoustic wave equation, the red dotted line is the left
boundary reflection wave absorbed by the PML boundary
condition of conventional method, and the blue dotted line
is the reflected wave of left boundary without attenuation by
PML boundary conditions. It can be seen that the amplitude of
the boundary reflection wave after absorption by the pseudo-
space-domain PML boundary condition is basically the same
as that obtained by the conventional PML boundary

condition, and it is obviously weaker than the amplitude of
the uncompressed boundary reflection wave.

Normalized Cross-Correlation Imaging
Conditions
In this study, normalized cross-correlation imaging conditions
(Kaelin and Guitton, 2006) are used in the RTM. The realization
process employs the zero-delay cross-correlation of the source
wavefield to normalize the zero-delay cross-correlation between
the forward time wavefield and the reverse time wavefield as

I(x, z) �
∑T
t�0
(v)F(x, z, t) · (v)R(x, z, t)

∑T
t�0
(v)F(x, z, t) · (v)F(x, z, t)

, (26)

where T is the total recording time. (v)F is the forward time
wavefield, and (v)R is the reverse time wavefield.

When using the above imaging conditions, it is usually
necessary to save the forward time wavefield at each time.
However, when all the wavefield values are stored on the
storage medium, large amount of memory storage space is
required and also a long data access time. To overcome this
problem, in this study, we implement an effective boundary
storage strategy (Clapp, 2008; Wang et al., 2012) based on PML
boundary conditions in the pseudo-space-domain. This entails
storing the wavefield value of the N-layer grid point (the FD order
is 2Nth order) that is adjacent to the central wavefield on each PML
boundary during the forward time source wavefield extrapolation,
as well as the central wavefield value at the last moment. These
boundary wavefield values are taken out as a boundary condition
when extrapolating along reverse time, and then, the source
wavefield can be rebuilt in the time iteration. Although this
method requires the forward time source wavefield
extrapolation in advance, this can effectively reduce the storage
requirements for the RTM in pseudo-space-domain.

FIGURE 6 | PML boundary condition absorption effect comparison.
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MODEL EXPERIMENT

Reverse Time Migration of the Dipping
Interface Model
The main purpose of this experiment is to test the validity of
pseudo-space-domain acoustic wave equation RTM in solving
velocity interface distortion and suppressing false scattering and
reflected waves.

The experiment used a two-layer velocity model with a
dipping interface, as shown in Figure 7A. The horizontal and
vertical lengths were 4,000 m and 2000 m, respectively. The
primary wave velocities at the upper and lower sides of the
interface were 2,500 m/s and 3,500 m/s, respectively. The
density was 2000 kg/m3. The grid model obtained by meshing
this interface model with vertical and horizontal grid intervals of
10 m is shown in Figure 7B. It can be seen that the original
smooth velocity interface has become an obviously stepped
interface (white arrow in the figure). In the experiment, a
geometry with a fixed position of receivers and changeable
source position was established. The shot point was between
500 and 3,480 m, the interval between the shots was 20 m, and a
total of 150 shots was made. There were 401 receivers per shot,
and each receiver was located between 0 and 4,000 m. The
interval between receivers was 10 m. The depths of shots and
receivers were both 10 m.

Obviously, to verify the effectiveness of a migration method in
solving velocity interface distortion, it is necessary to ensure that
the acquired seismic record is accurate. The shot records required

for this experiment were obtained by using FD wave equation
forward modeling. In theory, only by using a small enough grid
spacing can ensure that the obtained shot records are relatively
accurate. Therefore, in this study, we first used a model with 1 m
grid intervals in both vertical and horizontal directions for forward
modeling. (Note that, even if the number of grid points is only
doubled, this can cause a huge increase in the amount of

FIGURE 7 | Two-layer velocity model with a dipping interface: (A) original
model with a smooth dipping interface; (B) model with 10 m grid interval.

FIGURE 8 | Synthetic shot gather record (76th shot ): (A) grid interval of
1 m; (B) grid interval of 10 m.

FIGURE 9 | Reverse time migration seismic profile. (A) based on the
conventional acoustic equation and (B) based on the pseudo-space-domain
acoustic equation.
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computation. Therefore, regardless of whether one realizes forward
modeling in actual processing or migration and inversion, it is
generally unrealistic to use such a small grid interval.) The
simulation used a Ricker wavelet with a dominant frequency of

35 Hz. The FD order was 16th order in space and second-order in
time, and a total of 150 shots of seismic records was obtained. The
record of the 76th shot is shown in Figure 8A. For comparison, a
record obtained with the grid interval of 10 m is shown in
Figure 8B, which existed strong artificial scattered waves.

Based on the model of 10 m grid interval as shown in
Figure 7B, the FD algorithm for the conventional and pseudo-
space-domain acoustic wave equations is used for RTM with
second-order accuracy in time and sixteenth-order accuracy in
both space and pseudo-space. (Note that the pseudo-space-
domain RTM needs to add velocity interface information to
calculate the traveltime between two grid points.) The
migration profiles are, respectively, shown in Figures 9A,B.

To more intuitively compare the morphology of the dipping
interface in the migration profile of the two methods, the event in
the elliptical region in Figures 9A,B is magnified, as shown in
Figures 10A,B. It can be seen that the shape of the dipping
interface in the RTM profile of the conventional acoustic wave
equation (the red dotted line in Figure 10A) is significantly
distorted compared with the real interface morphology (the
red solid line in Figure 10A). The interface shape in the RTM
profile of the pseudo-space-domain acoustic wave equation is
basically consistent with the real interface morphology (the red
solid line in Figure 10B). This demonstrates that pseudo-space-
domain acoustic wave equation RTM can effectively solve the
distortion problem of the velocity interface.

Figures 11A,B show a snapshot of the forward time wavefield
of the 76th shot at 0.9 s. It can be seen that there are obvious false
scatterings in the wavefield of the conventional acoustic wave
equation (as shown in the elliptical region in Figure 11A), and
there are no obvious false scatterings in the wavefield of the
pseudo-space-domain acoustic wave equation (as shown in the
elliptical region in Figure 11B). By comparing the interface
reflections at the arrows in Figure 11, we can see that the

FIGURE 10 | Local magnification of a reverse time migration profile. (A) based on the conventional acoustic equation and (B) based on the pseudo-space-domain
acoustic equation.

FIGURE 11 | Snapshots of forward time wavefield in reverse time
migration (76th shot at 0.9 s). (A) based on the conventional acoustic equation
and (B) based on the pseudo-space-domain acoustic equation.
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pseudo-space-domain acoustic wave equation significantly
suppresses reflected waves (especially those of near-normal
incidence). This demonstrates the effectiveness of the pseudo-
space-domain acoustic wave equation in suppressing interfacial
false scattering and reflected waves.

Reverse Time Migration of the Marmousi
Model
The Marmousi model (shown in Figure 12) is a grid velocity model
of complex tectonic with numerous velocity interfaces, steep dip

structures, and dramatic velocity changes. Themodel size is 9,200m *
3,000m, respectively. The horizontal and vertical grid spacings are,
respectively, 5 and 4m. In the experiment, the unilateral shot
geometry used was a seismic source located at the right side and
receivers located at the left side. The interval between the shots was
25m, with 426 shots in total. There were 104 receivers per shot. The
depths of the shot and the receivers were both 8m. The source
wavelet used a Ricker wavelet with a dominant frequency of 35 Hz.
Synthetic seismograms were simulated by the conventional acoustic
wave equation FDmethod whose FD order was second-order in time
and eighth-order in space.

FIGURE 12 | Grid velocity model of Marmousi.

FIGURE 13 | Forward time wavefield snapshots in reverse time migration for the Marmousi model (138th shot at 1.9 s in time). (A) based on the conventional
acoustic equation and (B) based on the pseudo-space-domain acoustic equation.
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We applied the conventional acoustic wave equation and pseudo-
space-domain acoustic wave equation FD (with FD order being
second-order in time and eighth-order in space and pseudo-space) to
perform RTM. Figures 13A,B show the snapshots of the 138th shot
based on the two methods at 1.9 s. Figures 14A,B show the RTM
profiles based on the two methods, respectively.

Figure 13 shows that the pseudo-space-domain acoustic wave
equation has a significantly weakened reflectionwave in the wavefield
compared with the conventional acoustic wave equation. It indicates
the validity of the pseudo-space-domain acoustic wave equation in
suppressing reflected waves during wavefield extrapolation.

Comparing the local migration profiles in the red
rectangular region in Figure 14, we can see that the
pseudo-space-domain acoustic wave equation has a clearer
structure and better continuity of the event where the arrows
point the conventional acoustic wave equation. This
demonstrates that the imaging quality of RTM by using
the pseudo-space-domain acoustic wave equation is better
than that obtained by using a conventional acoustic wave
equation.

CONCLUSION AND DISCUSSION

Based on the first-order velocity-stress acoustic wave equation
in the pseudo-space-domain, we derived a 2Nth-order-

accuracy staggered-grid FD expression and its PML
boundary condition, deduced the stability conditions of the
staggered-grid FD expression, and realized RTM in the
pseudo-space-domain. At the same time, numerical
experiments were carried out based on a dipping interface
model and the Marmousi model. Experimental results were as
follows:

1) The RTM method based on the pseudo-space-domain
acoustic wave equation could solve the problem of velocity
interface distortion that appears in the conventional RTM
profile.

2) Wavefield extrapolation based on the pseudo-space-
domain acoustic wave equation could significantly
weaken interface false scattering and reflection waves,
thereby further improving the quality of the migration
imaging.

Of course, the high-order FD RTM method for the acoustic
wave equations in the pseudo-space-domain is not ideal for
reflection waves suppression under non-normal incidence.
Therefore, the focus of future research work will be the further
improvement of the reflection waves suppression effect of the
method and accuracy of RTM imaging, along with developing it
into the elastic wave equation and the RTM of the three-
dimensional wave equation.

FIGURE 14 |Reverse timemigration profile for the Marmousi model. (A) based on the conventional acoustic equation and (B) based on the pseudo-space-domain
acoustic equation.
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