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The mud areas of East Asian marginal seas record considerable information about regional
environmental evolution. However, debate continues regarding the relative importance of
the major factors in regional sedimentary dynamics, i.e., the East Asian summer monsoon,
East Asian winter monsoon, and oceanic circulation. In this study, we investigated the
characteristics of grain size from a gravity core obtained in the South Yellow Sea to reveal
changes in sedimentary dynamics since 6,000 years BP, and to elucidate the relationship
between the East Asian summer monsoon and the East Asian winter monsoon. We found
that the mean grain size was in the range of 6.9–7.8 Φ, the sediment was poorly sorted
within a small range (1.2, 1.5), and the M values from 4.7 to 6.7 μm and most of the C
values from 24 to 65 μm suggested pelagic suspension transport. Results indicated that
the intensity of both the East Asian summer monsoon and the East Asian winter monsoon
showed a fluctuating trend of decrease after approximately 6,000 years BP, and that the
relationship between them was generally anticorrelated. Based on these results, we
suggest that positive correlation between the East Asian summer monsoon and the
East Asian winter monsoon usually results in the fall or establishment of ancient dynasties in
the Central Plains of China and that negative correlation between them is controlled by
strong solar radiation. Weakening of solar radiation diminishes its control of the intensity of
(and thus the correlation between) the East Asian summer monsoon and the East Asian
winter monsoon, at which time the North Atlantic Oscillation plays a modulating role.
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HIGHLIGHTS

1) Trends for the EASM and the EAWM and for their
relationship since 6,000 years BP were extracted.

2) Negative correlation between the EASM and the EAWM is
controlled by strong solar radiation.

INTRODUCTION

In recent years, the South Yellow Sea (SYS) has become an area of
active research for paleoclimate, sedimentary environment, and
marine current/hydrodynamics studies (Kong et al., 2006; Xiang
et al., 2008; Zhao et al., 2013; Liu et al., 2014; Yang et al., 2018;
Zhang et al., 2018; Wang et al., 2019). As a typical shelf sea, the
SYS is an important reservoir of and transportation channel for
sediments from the Yellow River, Yangtze River, and some local
rivers. It has the largest area of mud in the shelf area of the eastern
China Seas, and its sediments are sensitive to changes of sea level
and climate (Yang and Youn, 2007). Many studies have shown
that the volume of river input into the SYS is determined mainly
by precipitation that is controlled by the East Asian summer
monsoon (EASM) (Dykoski et al., 2005; Ding et al., 2008; Hu
et al., 2008; Zhou et al., 2012). Recent studies have also revealed
that the modern circulation system of the SYS, which largely
comprises the Yellow SeaWarm Current (YSWC) and the Yellow
Sea Coastal Currents (YSCC), was established approximately
6,000 years BP and that it has a relationship with the East
Asian winter monsoon (EAWM) (Yuan and Hsueh, 2010;
Xing et al., 2012; Zhao et al., 2013). Therefore, studies on the
sediment sources and current systems of the SYS are actually
linked to the East Asian monsoon (EAM).

The EAM climate system is an important component of the
global climate system. Thus, further study of the patterns and
forcing mechanisms associated with the EAM will help explain
global climate change. Previous studies have used multiple
proxies archived in lakes (Yancheva et al., 2007; Li et al., 2015;
Li et al., 2018), peat (Hong et al., 2001; Hong et al., 2009),
stalagmites (Hu et al., 2008; Wang K. et al., 2008; Cheng et al.,
2019; Liu et al., 2020), ice cores (Thompson, 1997), and loess (Sun
et al., 2006; Song et al., 2014; Beck et al., 2018) to reveal the long-
term change of the EAM system and its effects. With the
extension of the research effort toward the ocean, the
extraction of EAM information from continental shelves has
increased (Wang Y. et al., 2008; Zheng et al., 2010; Qiao et al.,
2011; Hu et al., 2012; Zhou et al., 2012) and the most extensive
proxy is the grain size of shelf sediment. However, it remains to be
confirmed whether the winter monsoon or the summer monsoon
is the dominant factor controlling grain size. For example, Xiao
et al. (2006) used the sensitive grain size from the mud area of the
inner shelf of the East China Sea to reconstruct a high-resolution
record of the EAWM. Qiao et al. (2011) used the key grain size
component from the East China Sea to reconstruct the record of
the late Holocene EAWM. Hu et al. (2012) suggested that the
grain size parameters of cores from the central mud area of the
SYS are controlled mainly by the EAWM, and thus they recurved
the variations of the EAWM since the middle Holocene.

However, Wang Y. et al. (2008) suggested that the mean grain
size of a sediment core obtained from the inner shelf of the East
China Sea had no direct link to the EAWM, but that the rate of
deposition exhibited a trend consistent with the EASM. Based on
high-resolution magnetic analysis, Zheng et al. (2010) also
believed that the sediment from the same core contains
information relating to the EASM. Zhou et al. (2012) found
that the sedimentary characteristics of a sediment core from the
mud area of the Northern Yellow Sea correlated well with
spatially averaged precipitation around the Yellow River,
which could serve as reasonable proxies for summer monsoon
strength. Therefore, it is necessary to confirm the role of EASM
and EAWM in the sediment change.

It is also important to investigate the relationship between
EASM and EAWM. Previous studies have shown that the EAM
has an important impact on East Asia, especially China, and that
there is negative correlation between the EAWMand temperature
in winter and positive correlation between the EASM and
precipitation in summer (Wu and Chan, 2005; Huang et al.,
2007; Ding et al., 2008; Ding et al., 2009; Li and Wang, 2012).
Thus, strong positive correlation often results in an anomalously
strong or weak EASM and EAWM, which can lead to serious
flood and drought disasters in different regions of China (Ding
et al., 2008; Ding et al., 2009).

The nature of the relationship between the EASM and the
EAWM during the Holocene remains controversial (Xiao et al.,

FIGURE 1 | Schematic illustration of the EAM and currents, the location
of cores HS2 (used in this study), B60 (Lyu et al., 2020), and ZY-1 (Hu et al.,
2012), and the central mud area in the South Yellow Sea (shaded area).
(Modified from Li G. et al., 2016; Wessel et al., 2019; Ding et al., 2017).
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2006; Yancheva et al., 2007; Zhang and Lu, 2007; Zhou and Zhao,
2009; Steinke et al., 2011; Ge et al., 2017), although antiphase
correlation has been identified on orbital timescales (Ding et al.,
1995). The main reasons for ambiguity could include dating
issues, the extraction of proxies, and different resolutions used in
different studies. Therefore, it is vital to document monsoonal
variability from different sedimentary sequences to clarify the
factors controlling sedimentation on the continental shelves of
the SYS, and thus to elucidate the relationship between the EASM
and the EAWM.

In the current study, we analyzed the sediment grain size of
core HS2, which was obtained in the central mud area of the SYS,
and we reconstructed the EASM and EAWM records in the SYS
for the period since 6,000 years BP. Based on the results, the
dominant sedimentary dynamics within the study area and the
relationship between the EASM and the EAWM were
investigated.

MATERIALS AND METHODS

Core HS2
The studied core (HS2) was collected from the central mud area
of the SYS (35°30.0′N, 122°59.9′E; water depth: 88 m) in
September 2015 during a research cruise of the R/V DONG
FANG HONG ER HAO (Figure 1), which was organized by
the National Natural Science Foundation of China. The length of
core obtained from the drill site was 290 cm, and the section of
22–290 cm below the core top, which was undisturbed and well
constrained by radiocarbon dating, was selected for this study.

This 269-cm-thick interval was sampled into 1-cm sections for
analyses that included accelerator mass spectrometry (AMS) 14C
dating and sediment grain size measurements.

Age Model
Five foraminiferal samples were collected for AMS 14C dating at
the Beta Analytic Radiocarbon Dating Laboratory, Miami,
United States. We converted the radiocarbon ages to calibrated
calendar ages using the Calib 7.0 program (Stuiver and Reimer,
1993) and by applying the regional marine reservoir effect (ΔR
value � −81 ± 60 years) chosen from the Marine Reservoir
Correction Database (Table 1).

The age–depth correlation for the core record is shown in
Figure 2. According to Qiao et al. (2017), the average modern
sedimentation rate of the central Yellow Sea mud area is 1.4 mm/
year, and that the mixed section of our core from 0 to 22 cm
might have accumulated over approximately 157 years.
Comparison of the modern sedimentation rate ages at the
depth of 13 cm (1950 AD or 0 year BP) with the age at the
same level determined from interpolation between the five AMS
14C dates suggests that the radiocarbon age is in excess of the
modern sedimentation rate age by 500 years. In consideration of
both the benthic foraminiferal effect and the reservoir effect on
the measurements of bulk organic carbon, we subtracted a value
of 500 years from all 14C ages prior to calibration.

Sediment Grain Size
In all, 269 grain size samples were measured at 1-cm intervals. An
amount of approximately 0.5 g of material was collected from
each sample, which was then pretreated with both a 10–20 ml

FIGURE 2 | Age model and profiles of core HS2 with grain size changes: clay, silt, and sand content, mean grain size, sorting, skewness, and kurtosis.
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H2O2 solution (30%) to remove organic matter and a 10 ml HCl
solution (10%) for 12 h to remove carbonates. Prior to
measurement, all samples were rinsed with deionized water in
a centrifuge at a rotation speed of 4,000 rpm and dispersed by
ultrasonic treatment over a 10-min period. Measurements were
obtained using a Malvern Mastersizer 2000 laser particle size
analyzer (Malvern Panalytical Ltd., United Kingdom) at the Key
Laboratory of Marine Sedimentology and Environmental
Geology, First Institute of Oceanography, MNR. Fifty grain
size classes in the range 0.3–2000 μm were selected for further
analysis.

RESULTS AND ANALYSES

We chose the moment method of McManus (1988) to calculate
grain size parameters, includingmean grain size (Mz), sorting (σ),
skewness (Sk), and kurtosis (Ku), as follows:

mean grain size : Mz � ∑ fmϕ

100
, (1)

sorting : σ �
�������������∑ f (mϕ −Mz)2

100

√
, (2)

skewness : SK � ∑ f [mϕ −Mz]3
100σ3

, (3)

kurtosis : Ku � ∑ f [mϕ −Mz]4
100σ4

, (4)

where mΦ represents grain size (unit: Φ), f represents the
percentage content of each grain grade, ∑ f � 100, and σ, Sk,
and Ku are nondimensional parameters.

In addition, we selected one coupled parameter, i.e., the C-M
pattern (Passega, 1957; 1964), where the one percentile C reflects
the initial hydrodynamic energy and the median diameter M
reflects the average hydrodynamic energy.

As a result, the range of Mz was 6.9–7.8 Φ, most of which was
between 7.4 and 7.8 Φ, and the material was poorly sorted within
a small range (1.2, 1.5) (Figures 2, 3B). There was negative
correlation between Mz and σ, which could be divided into two
parts with different slopes (Figure 3B). For most samples,

FIGURE 3 | Sediment grain size analysis of core HS2 samples: (A) relationship between C (the one percentile) and M (the median diameter), (B) relationship
between mean grain size (represented by Mz, Φ values) and sorting (represented by σ, nondimensional parameters), (C) ternary diagrams for clay, silt, and sand
components, and (D) VPCA results of core HS2
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sediment sorting improved slowly with the decrease of Mz. The
values of Sk and Ku were largely in the range of 0.6–1.0 and
1.5–1.9, respectively (Figure 2), indicating that the samples had
positive skewness and normal kurtosis. The contents of silt
(55–70%) and clay (30–40%) particles changed little, while the
content of sand particles was mostly <1%, except for a small
number of layers in which it was <10% (Figures 2, 3C). As shown
in the ternary diagrams and parameter scatter plots (Figure 3C),
the sedimentary environment was reasonably stable with no
significant change.

The C-M pattern is useful for analyzing both the mode of
sediment transport and the hydrodynamic intensity. As shown,
the M values from 4.7 to 6.7 μm indicate that the average
hydrodynamic energy was stable and weak, while the C values
varied widely from 25 to 600 μm (Figure 3A). Most points are
located in a small area in which the C values are in the range of
25–65 μm (Figure 3A), indicating that the initial hydrodynamic
energy was weak. However, the C values in the range of
125–600 μm indicate a wide range of unstable initial
hydrodynamic energy, which might be related to a change of
sediment source or to a highly dynamic sedimentary event.
According to Passega (1957, 1964), the points located in the
range of 25–65 μm suggest pelagic suspension transport. These
results showed that the sedimentary environment was reasonably
stable, and the sediments can be used to extract
paleoenvironmental information.

For further analysis of grain size, we used a varimax-rotated
principal component analysis (VPCA) method based on a
correlation matrix for grain size spectra. Because the content
of grain sizes >105.6 μm is usually <0.01%, we extracted 34 grain
size classes in the range of 0.3–105.6 μm for the VPCA. Three
components extracted from the VPCA procedure, i.e., GSC-1,
GSC-2, and GSC-3, accounted for 81.08% of the total variance
(Figure 4D). GSC-1 (31.44% of the data variance) consisted of
two groups (2.8–7.9 and 15.8–62.8 μm), of which the fine part and
the coarse part provided high negative and positive loading,
respectively. Conversely, for GSC-2 (26.19% of the data
variance) and GSC-3 (23.45% of the data variance), the fine
part (GSC-2: 0.35–1.97 μm, GSC-3: 1.18–3.32 μm) and the coarse

part (GSC-2: 7.88–13.24 μm, GSC-3: 7.88–18.72 μm) provided
positive and negative loading, respectively.

To integrate the information on various sedimentary
dynamics, we obtained a new series (i.e., GSC-23) according to
the data variance of GSC-2 and GSC-3:

GSC − 23 � GSC − 2 × 26.19 + GSC − 3 × 23.45 (5)

DISCUSSION

Variability of the East Asian Monsoon
For the study of the EAM, a reliable information carrier is crucial.
Generally, fine-grained sediments can be used as an effective
carrier, but the premise is that their sedimentary records are
complete, continuous and can be extracted smoothly. The
temporal variability of grain size parameters, along with C-M
pattern, ternary diagrams, and the relationship between sorting
and mean grain size, confirms a relatively stable depositional
environment (Figures 2, 3A–C–C). Thus, the sediments from
core HS2 are well-suited for extracting paleoenvironmental
information, e.g., monsoonal variability, sedimentary dynamics.

Based on previous studies (Yang et al., 2003; Yang and Youn,
2007; Zhou et al., 2015), it is known that the development of the
mud area in the SYS is affected primarily by oceanic currents and
the supply of sediment, both of which have obvious seasonal
differences. In combination with the VPCA results shown in
Figure 3D, i.e., the different loadings of fine and coarse particles
between GSC-1, GSC-2, and GSC-3, we infer that GSC-2 and
GSC-3 mostly represent the influence of weaker hydrodynamic
conditions in summer, when the change of grain size is controlled
principally by sediment supply. Conversely, GSC-1 most likely
reflects the sedimentary processes in winter, when the study area
is influenced primarily by the YSCC and YSWC.

It is usually considered that finer sediments on the continental
shelves of East Asian marginal seas can be used as a proxy for the
EASM because sediments dominated by the EAWM are relatively
coarser. For example, the median grain size (8–14 μm) of core

FIGURE 4 | VPCA results from different types of samples: GSC-1, GSC-2 andGSC-3 of core HS2 (this study), F1 and F2 of core ZY-1 (Hu et al., 2012) and G-1 and
G-2 of core B60 (Lyu et al., 2020).
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M38002 from the North Yellow Sea (Zhou et al., 2012) and the
grain size VPCA results (10–40 μm) of core B60 from the Bohai
Sea (Lyu et al., 2020) were extracted as proxies for the EASM,
whereas in a record of the EAWM, a sandy component
contributes substantially to sediment grain size variation
(Qiao et al., 2011; Hu et al., 2012; Zhang S. et al., 2020). We
chose the grain size VPCA results of core ZY-1 from the SYS
(Hu et al., 2012) and core B60 for comparison with our results
(Figure 4). The same structure of data is evident between GSC-1
of core HS2 and F1 of core ZY-1, which was a proxy for the
EAWM. The same structure of data also exists between GSC-2
of core HS2 and G-2 of core B60, as well as GSC-3 and G-1,
GSC-3 and F2 of core ZY-1. It is also confirmed that G-12 of
core B60 (combination of G-1 and G-2 according to their

variance percentages) is a proxy for the EASM, F2 of core
ZY-1 is speculated to reflect sedimentary processes in summer.
Thus, we conclude that GSC-1 and GSC-23 of core HS2 could be
used as proxies for the EAWM and the EASM, respectively.
Furthermore, we find that GSC-2 of core HS2 has the same
factor loadings in different grain sizes as G-2 of core B60, while
the grain size of GSC-3 is finer than that of G-1 of core B60. The
fine part plays a dominant role in GSC-2, which represent the
weaker hydrodynamic conditions in summer. Through the
comparison between GSC-3, F2 and G-1, considering the
distance from the Yellow River Estuary (the main source
area), it is consistent with the characteristics that the grain
size gradually becomes finer after long-distance transportation.
Thus, we infer that GSC-2 of core HS2 might represent

FIGURE 5 | Comparison between various paleoenvironmental proxies since 6,000 years BP: (A) the GSC-1 curve and sea surface temperature (SST) records of
sediment core 38,002 in the North Yellow Sea (Zhang et al., 2019), (B) the GSC-1 curve and Ti content records of Lake HuguangMaar (Yancheva et al., 2007), and (C,D)
the GSC-23 curve and stalagmite δ18O series of Heshang Cave (Hu et al., 2008) and Dongge Cave (Dykoski et al., 2005), indicating EASM intensity.
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sedimentary dynamics, and that GSC-3 represents river supply
in summer.

In East Asia, a stronger EASM often brings increased
precipitation. This can lead to augmentation of the transport
capacity of rivers, which in turn leads to increase in both the
sediment supply and the grain size values in the SYS. Given that
the coarse part indicates negative loading in GSC-2 and GSC-3,
but the fine part indicates positive loading, the low (high) values
indicate greater (less) impact of coarse part, thus denote a strong
(weak) EASM. In winter, the sedimentary processes are
dominated mainly by the EAWM. A stronger EAWM would
lead to resuspension of more coarse sediment and to an increase
of the suspended sediment concentration. Meanwhile, the YSCC
and YSWC would also both be strengthened by a stronger

EAWM, which would lead to enhancement of the transport of
the coarser part to the central mud area. Given that the coarse
part indicates positive loading in GSC-1, the low (high) values
denote a weak (strong) EAWM. In summary, of the factors
extracted by VPCA, we conclude that GSC-1 and GSC-23
could be used as proxies for the EAWM and the EASM,
respectively.

To validate our inference, we compared our proxies with other
published proxies of the EAM (Figure 5). It can be seen that our
proxy for the EASM (GSC-23) has reasonable correspondence
with stalagmite δ18O from Heshang Cave (Hu et al., 2008) and
Dongge Cave (Dykoski et al., 2005), which are generally accepted
as proxies for the EASM. Lower (higher) values of stalagmite δ18O
that reflect an enhanced (a weakened) EASM correspond to lower

FIGURE 6 | (A,B) Variations of the EASM and the EAWM. The black lines represent the 5-point running average. (C) The 101-years moving correlation between the
EASM and the EAWM (capital letters represent the times when certain ancient Chinese regimes were established, i.e., A: Xia Dynasty, B: Shang Dynasty, C: Eastern Zhou
Dynasty, D: Han Dynasty, E: Xin Dynasty, F: Ming Dynasty, and G: Qing Dynasty). (D) Total solar irradiance (Steinhilber et al., 2009). (E) North Atlantic Oscillation index
reconstructed from Lake SS1220 (Olsen et al., 2012).
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(higher) values of GSC-23. Additionally, GSC-1 has reasonable
correspondence with both the Ti content records from Lake
Huguang Maar (Yancheva et al., 2007) and the sea surface
temperature (SST) records from sediment core 38,002 in the
North Yellow Sea (Zhang et al., 2019). The Ti content records
could be used as an indicator of the and Zhou et al. (2012) have
suggested that SST records from the Yellow Sea reflect the
intensity of the YSWC, which is controlled by the EAWM.
Thus, the SST records could also be used as an indicator of
the EAWM. Higher (lower) values of Ti content and SST that
reflect an enhanced (a weakened) EAWM correspond to higher
(lower) values of GSC-1. Moreover, we compared our proxies
with proxies from core ZY-1 and B60, and proxies documented in
more recent studies in central mud area in the South Yellow Sea
and nearby regions (Hu et al., 2012; Li and Morrill, 2014; Lyu
et al., 2020; Wang et al., 2020; Chen et al., 2021; Zhong et al.,
2021), the results showed that there are corresponding
relationships between proxies of EASM and EAWM,
respectively (Supplementary Figure S1).

Using the proxies, we recovered the variability of the EAM and
confirmed the main factor controlling the sedimentary process on
the continental shelves of the SYS. Generally, the intensity of both
the EASM and the EAWM has shown a fluctuating trend of
decrease since approximately 6,000 years BP. Moreover, EAWM
intensity can be divided into three periods: strong and relatively
stable during approximately 6,000–4,000 years BP, weakened
during approximately 4,000–700 years BP, and strong and
highly fluctuating since approximately 700 years BP.
Conversely, EASM intensity can be divided into just two parts:
strong and relatively stable during approximately
6,000–3,700 years BP (similar to the EAWM), and weakened
and highly fluctuating since approximately 3,700 years BP.

Relationship Between the East AsianWinter
Monsoon and the East Asian Summer
Monsoon and Possible Paleoenvironmental
Mechanisms
The nature of the relationship between the EASM and the EAWM
during the Holocene remains controversial. One of the main
reasons for this uncertainty is the lack of an appropriate archive
that could represent the intensity of the two monsoon systems
simultaneously (Ge et al., 2017). The proxies for the EASM and
the EAWM extracted from the same sedimentary record of core
HS2, which remove the influence of dating, provide an excellent
opportunity to test their relationship. In this study, the
evolutionary history of the EASM and the EAWM showed a
similar downward trend on the millennial timescale (Figures
6A,B); however, on the centennial timescale, their relationship
was mostly anticorrelated (Figures 6A,B). This finding supports
the results of Zhou and Zhao (2009), who concluded that the
variability of the EAM during the Holocene was more complex
than the simple antiphase relationship between the EASM and
the EAWM that has been assumed previously (Xiao et al., 1995;
Yancheva et al., 2007).

Moving correlation techniques have been applied widely in the
field of climate research (Xu et al., 1997; Zong et al., 2010; Lyu

et al., 2020) After comparison of various methods, we chose the
101-years moving correlation between the EAWM (GSC-1) and
the EASM (GSC-23) to examine the relationship with global
climate change. In addition, we also explored the driving factors
of the relationship between the EASM and the EAWM and found
reasonable correlation with the total solar irradiance
reconstructed from ice cores (Steinhilber et al., 2009)
(Figure 6D).

The results showed positive correlation of the value of total
solar irradiance to the value of the correlation between the EASM
and the EAWM, i.e., high (low) intensity of solar radiation
corresponded to negative (positive) correlation between the
EASM and the EAWM. Previous studies (Yan et al., 2011;
Zhou et al., 2011; Li and Xu, 2016; Li Y. et al., 2016; Xiao and
Huo, 2016) have suggested that the EAM is caused by the thermal
difference between land and sea. When solar radiation is strong in
summer (winter), the thermal difference between land and sea
increases (reduces) owing to the faster rate of increase (slower rate
of reduction) of the land surface temperature, which leads to the
strengthening (weakening) of the EASM (EAWM). Thus, we can
conclude that the negative correlation between the EASM and the
EAWM is controlled by strong solar radiation. However, we
believe that the weakening of solar radiation diminishes the
contribution of solar radiation to the thermal difference
between land and sea, which in turn leads to the weakening of
its ability to control the intensity of the EASM and EAWM.
Therefore, without the regulation of strong solar radiation, the
EAM exhibits the original correlation, i.e., positive correlation
between the EASM and the EAWM, which supports the
conclusions of many previous studies (Chen et al., 2000; Yan
et al., 2003; Yan et al., 2011).

We also found that the North Atlantic Oscillation (NAO)
correlated negatively with the relationship between the EASM
and the EAWM (Figure 6E). Previous studies have identified
strong links between the EAM system and the NAO; however,
these links can change substantially depending on the phase and
intensity of the NAO (Sung et al., 2006; Jia and Lin, 2011; Qiao
and Feng, 2016; Zuo et al., 2016). Ignoring dating errors, we
believe that the NAO has a distinct modulating effect on the
relationship between the EASM and the EAWM, particularly the
positive correlation during significantly positive NAO phases
(Figure 6E). Thus, we conclude that when solar radiation is
weak, the correlation between the EASM and the EAWM is
modulated by the NAO.

Influence of the East Asian Monsoon on
Ancient Civilizations
We used the 101-years moving correlations between the EAWM
(GSC-1) and the EASM (GSC-23) to examine the relationship
with the evolution of ancient Chinese civilizations.

Through comparison with a table of Chinese historical
dynasties, we found that the correlation between the EASM
and the EAWM correspond to the fall or establishment of
certain dynasties (Figure 6C). Moreover, all the dynasties
represnted by letters in Figure 6C had a similar background
of an arid climate and a peasant uprising. Peasant uprisings that
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cause regime change often happen when people have experienced
prolonged periods of serious drought. Thus, we infer that
sustained and serious drought occurs in China as a result of
positive correlation between the EASM and the EAWM, rather
than simply as the consequence of the role of the EASM.
Furthermore, we found positive correlation between the EASM
and the EAWM at approximately 4,200 years BP that
corresponds to the 4.2-ka cooling event recorded in historical
archives (Zhang X. et al., 2020). Previous studies have shown that
the 4.2-ka cooling event, with the background of a population
explosion in the HoloceneWarm Period, promoted the formation
of the Chinese civilization (Wu and Liu, 2001; Wang, 2005; Ma
et al., 2008). On this basis, our results showed that the EASM and
the EAWM weakened simultaneously during 4,700–4,000 years
BP. Thus, the concentration of the population in Central China
caused by the EAWMand the flooding caused by the EASM led to
the establishment of the Xia Dynasty, which is regarded
symbolically as the beginning of the Chinese civilization.

CONCLUSION

Through establishment of an age model and grain size analysis,
we extracted proxies for the EASM and the EAWM, and we
investigated the main factors controlling the sedimentary
dynamics in the SYS and the relationship between the EASM
and the EAWM. Results suggested that the intensity of both the
EASM and the EAWM showed a fluctuating trend of decrease
after approximately 6,000 years BP. It was established that the
intensity of the EAWM could be divided into three periods:
strong and relatively stable during approximately
6,000–40,000 years BP, weakened during approximately
4,000–700 years BP, and strong and highly fluctuating since
approximately 700 years BP. Conversely, the EASM intensity
could be divided into only two parts: strong and relatively
stable during approximately 6,000–3,700 years BP, and
weakened and highly fluctuating since approximately
3,200 years BP.

The evolutionary history of the EASM and the EAWM showed
a similar downward trend at the millennial timescale; however, on
the centennial timescale, their relationship was mostly
anticorrelated. Moreover, it was determined that periods of
positive correlation usually coincided with the fall or
establishment of ancient dynasties on the Central Plains of
China. It was established that negative correlation between the

EASM and the EAWM is controlled by strong solar radiation.
Weakening solar radiation leads to weakening of the ability to
regulate the correlation between the EASM and the EAWM, at
which time the NAO plays a modulating role.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization, SC; methodology, WL and TF; formal
analysis, WL, ZH, YT, GC, and XX; original draft preparation,
WL and TF; review and editing,WL and SC. All authors have read
and agreed to the published version of the manuscript.

FUNDING

This research was supported by the National Natural Science
Foundation of China (No. U1706214 and 41706068), Basic
Scientific Fund for National Public Research Institutes of
China (2019Q01), the China Scholarship Council (No.
201906140151).

ACKNOWLEDGMENTS

The authors thank the captain and crew of the 2015 public
cruise of R/V DONG FANG HONG ER HAO organized by the
National Natural Science Foundation of China. We thank James
Buxton MSc from Liwen Bianji, Edanz Group China (www.
liwenbianji.cn/ac), for editing the English text of this
manuscript.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2021.689508/
full#supplementary-material

TABLE 1 | AMS14C ages and calendar ages of core HS2.

Depth (cm) Conventional 14C age (a BP) Calendar age (cal a BP) 2δ age range (cal a BP)

86–90 2,430 ± 30 2,161 1996–2,325
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