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The scalar images (PP and PS) can be effectively obtained in vector-based elastic reverse
time migration by applying dot product–based scalar imaging conditions to the separated
vector wavefields. However, the PP image suffers from polarity reversal issues when
opening angles are greater than 90+ and backscattering artifacts when opening angles are
close to 180+. To address these issues, we propose the pseudo-Laplace filter for the dot
product–based scalar imaging condition. Based on the analysis of the Laplace filter in the
scalar image of vector-based wavefields, the second-order parallel-oriented partial
derivatives of Cartesian components cross-correlation results are selected to construct
the pseudo-Laplace filter. In contrast, second-order normal-oriented partial derivatives of
the Cartesian component’s cross-correlation results are omitted. The theoretical analysis
with the plane wave assumption shows that the proposed pseudo-Laplace filter can solve
the problems of backscattering artifacts and polarity reversal in PP images by the scalar
imaging condition. Due to additional polarity correction and backscattering attenuation,
numerical examples show excellent performance in PP images with a pseudo-Laplace
filter. Furthermore, the application of the pseudo-Laplace filter requires trivial additional
computation or storage.

Keywords: elastic RTM, scalar imaging condition, backscattering suppression, polarity correction, pseudo-Laplace
filter

INTRODUCTION

Reverse time migration (RTM) is a seismic data processing method for migrating seismic reflection
data to obtain subsurface images that effectively describe geological structures (Baysal et al., 1983;
McMechan, 1983; Whitmore, 1983). Multicomponent seismic data processing techniques have been
evolved with seismic acquisition techniques and high-performance computing technologies to
acquire more precise images. Elastic reverse time migration (elastic RTM) is one of the most
reliable multicomponent seismic data imaging techniques that can provide surface PP and PS
reflection information using P-wave and S-wave reflection data. Unlike acoustic RTM, which
analyzes P-wave propagation in the subsurface medium, elastic RTM integrates elastic P-wave and
S-wave propagation with wave conversion. As a result, the wave conversion-related elastic
response and vector-based propagation characteristics are more accurate than the acoustic
approximation.
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Like acoustic RTM, the early elastic RTM (Sun and
McMechan, 1986) used elastic wave equation to forward and
backward extrapolation wavefields and extract images by cross-
correlation imaging conditions for Cartesian components. For
these images, the migration results of different modes are
intermixed together. The interference would result in
crosstalks in final images and make it difficult to highlight the
advantages of S-wave information. The S-wave information can
be further used to supplement P-wave images in imaging targets
with poor PP reflectivity or under gas clouds. Therefore, in
addition to applying wavefield extrapolation and imaging
conditions, a more suitable approach for elastic RTM to
obtain decoupled elastic wavefield is wavefield separation.
Early attempts of wavefield separation use divergence and curl
operators. The P wave separated by a divergence operator is
usually represented by a scalar-based wavefield, and the S wave
separated by a curl operator is usually represented by a scalar-
based wavefield in a 2D case or a vector-based wavefield in a 3D
case. Their amplitude and phase are different from the original
elastic wavefield. Recently, the decoupled wave equation
approach has been proposed. The decoupled wave equations
(Ma and Zhu, 2003; Li, 2007; Wang and McMechan, 2015; Du
et al., 2017) have been proposed to decouple the wavefields of
displacement or particle velocity. Zhu (2017) has used Helmholtz
decomposition and vector Poisson’s equation to decompose P-
and S-mode wavefields with correct phases, amplitudes, and
physical units similar to the decoupled wave equation.
Furthermore, the decoupled wave equation with the
assumption of heterogeneous medium (Elita Li et al., 2018;
Tang and McMechan, 2018) has also been proposed to handle
the wavefield coupling problem at interfaces. The separated P
wave and S wave are represented by vector-based wavefields and
have the same amplitude and phase as the original elastic
wavefield. Therefore, we apply the decoupled wave equations
to construct the decoupled source and receiver wavefields.

In addition to wavefield separation, imaging conditions are
also the key ingredient for the elastic RTM algorithm to
determine the accuracy and quality of imaging results.
According to different wavefield separation methods and
wavefield representations, imaging conditions are also
different. As for scalar-based P wave and vector-based S wave
based on divergence and curl operators, various imaging
conditions include cross-correlation imaging conditions or
divergence- and curl-based imaging conditions (Yan and Sava,
2008; Du et al., 2014). As a result, the migrated PP image may
encounter backscattering artifacts whose opening angle is near
180+, and the migrated PS image may encounter a polarity
reversal problem at the normal incident, which is caused by
the sign change of the S wave from the curl operator on two sides
of the normal incident. The Laplace filter (Youn and Zhou, 2001)
could suppress backscattering noise in PP images with trivial
computation and storage costs.

Furthermore, the S wave’s polarization by Poynting vector (Du
et al., 2013) or the modified imaging condition (Duan and Sava,
2015) can correct the polarity reversal problem to a certain
degree. As for the vector-based P wave and S wave by the
decoupled wave equation, the scalar PP and PS images are

required to facilitate further interpretation. There are some
imaging conditions, such as the cross-correlation imaging
condition of Cartesian components (Claerbout, 1971), the
scalar imaging condition (Wang and McMechan, 2015; Du
et al., 2017; Zhu, 2017; Yang et al., 2018), and energy cross-
correlation imaging condition (Rocha et al., 2016). The cross-
correlation imaging condition of Cartesian components generates
multiple imaging results for interpretation, while the energy
cross-correlation imaging condition only generates one image
of elastic energy, which misses some important convert-wave
information. Therefore, the dot product–based scalar imaging
conditions, extended from cross-correlation imaging conditions
and sum up these cross-correlation images of Cartesian
components together, have been used to obtain the final scalar
images (PP and PS).

The scalar imaging condition can output scalar images (PP
and PS) of vector wavefields but an encounter with polarity
reversal problem and backscattering artifacts in PP images.
Different from the polarity reversal in the PS image in which
P wave and S wave are separated by divergence and curl
operators, the polarity reversal problem is introduced to PP
images by scalar imaging conditions while the opening angle
exceeds 90+. Du et al. (2017) have used Poynting vectors to
analyze the sign change of PP images by scalar imaging
conditions versus opening angles. Then, Tang and McMechan
(2018) have used Poynting vectors to extract their angle gathers to
correct the polarity reversal. These methods, as mentioned above,
can solve the polarity reversal problem and lead to a significant
extra cost of computation and storage. As for the attenuation of
backscattering noise, the angle attenuation factors (Yoon and
Marfurt, 2006) and high-pass filters can be used to suppress the
image of large opening angles. As a widely used approach, the
high-pass filter is easy to implement. Among high-pass filters, the
Laplace filter (Youn and Zhou, 2001) has successfully suppressed
backscattering noise in PP images by cross-correlation imaging
conditions.

In this article, based on the analysis of the Laplace filter in the
vector-based scalar image, we select the parallel-oriented partial
derivatives and abandon normal-oriented partial derivatives of
the Cartesian component’s cross-correlation results to propose
the pseudo-Laplace filter and produce an optimized image.
Theoretical analysis with the plane wave assumption is then
carried out to show that the PP image with a pseudo-Laplace
filter succeeds in backscattering attenuation and polarity
correction. Finally, the numerical experiments prove that the
pseudo-Laplace filter can guarantee its stability and practicability
without increasing additional computation burdens.

METHODOLOGY

The vector-based elastic RTM algorithms are as follows: 1)
forward extrapolated decoupled source wavefields using the
decoupled wave equation and retaining their boundary values
at imaging time points; 2) back extrapolated decoupled receiver
wavefields using the decoupled wave equation and reconstructing
the source wavefields by the retained boundary values at the same
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imaging time point; 3) applying scalar imaging conditions to
construct scalar imaging results (PP and PS). Here, we analyze the
scalar imaging condition based on the decoupled wave equation
and apply it using a Laplace filter or pseudo-Laplace filter.

The Decoupled Wave Equation
In a homogeneous and isotropic medium, the elastic wave
extrapolation (Aki and Richards, 1980) can be expressed as
follows:

ρ€u � (λ + 2μ)∇(∇ · u) − μ∇ × ∇ × u, (1)

where u and €u are the displacement vector wavefield and its
second-order time derivative; λ, μ and ρ are the Lame’s moduli
and density, respectively. Based on the Helmholtz theorem
(Dellinger and Etgen, 1990), the elastic wavefield in an
isotropic case can be separated into a curl-free P wavefield
(∇ × uP � 0) and a divergence-free S wavefield (∇ · uS � 0). uP
and uS are the P-wave and S-wave displacement vector
wavefields. Analogous to the separation of displacement
wavefield, the second-order time derivative of displacement
wavefield can be decomposed as €u � €uP + €uS, where

⎧⎪⎨⎪⎩
€uP � (λ + 2μ)∇(∇ · u)
€uS � −μ∇ × ∇ × u
u � uP + uS

. (2)

Decoupled Equation 2 is embedded in the update of the
displacement wavefield. The P and S wavefields are
constructed by the first two equations, respectively, and their
summation can obtain the total elastic wavefield in the third
equation (Ma and Zhu, 2003; Li, 2007; Zhu, 2017). In contrast to
the summing of decoupled P wavefield and S wavefield, the
decoupled S wavefield can be constructed by subtracting the P
wavefield from the total elastic wavefield. Decoupled Equation 2
produces displacement vector wavefields of pure P- and S-waves.
Correspondingly, the first-order stress-particle velocity wave
equation has been proposed (Li, 2007; Du et al., 2017; Zhou
et al., 2018):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

_τ � (λ + 2μ)∇ · v − μ(∇v + ∇vT)
ρ _v � ∇ · τ
_τp � (λ + 2μ)∇ · v
ρ _vP � ∇τp
vS � v − vP

, (3)

where v and τ are particle velocity and stress of elastic wave,∇ and
∇· represent the operators of gradient and divergence,
superscripted T represents the transpose, and subscripted P
and S represent the P wave and S wave, respectively. Firstly,
the particle velocity and stress tensor of elastic wave and the
synthetic seismic records are computed by the first two equations,
the conventional stress-particle velocity wave equation. Then, the
auxiliary wavefield τp can be constructed by the third equation
_τp � (λ + 2μ)∇ · v and is used to compute the P-wave particle
velocityvP. Finally, the S-wave particle velocity can be constructed
by subtracting P wavefield particle velocity vP from total elastic
wavefield particle velocity v. The source and receiver wavefield
can be generated by the forward and backward extension,

respectively, based on the decoupled wave equation. The
decoupled wavefields are all vector, and their amplitude and
phase are consistent with the original elastic wavefield.

The Scalar Imaging Condition for the PP
Mode
For the decoupled vector wavefields, we obtain scalar imaging
results by imaging conditions, including cross-correlation
imaging condition of Cartesian components generating too
many results to interpret, and dot product–based scalar
imaging conditions. Regardless of source normalization, the
dot product–based scalar imaging condition (Du et al., 2017;
Zhu, 2017; Yang et al., 2018) for the PP wave can be written as
follows:

Ipp(x) � ∫ sp(x, t) · rp(x, t)dt (4)

in terms of source particle velocity vector sp and receiver particle
velocity vector rp. Here, Ipp is the migrated PP image by
integrating the dot product over time t, symbol “·” denotes the
dot product of two vectors, and tilde above wavefield variable
denotes its conjugation.

Algebraically, the dot product is the sum of some related
Cartesian components products, which means
sp · rp � spxrpx + spyrpy + spzrpz . Since the Cartesian components are
independent over time t, the migrated PP image Ipp can be
disintegrated into three parts Ippxx , Ippyy, and Ippzz , where
Ippxx � ∫ spxrpxdt, Ippyy � ∫ spyrpydt, and Ippzz � ∫ spzrpzdt represent

FIGURE 1 | Sign distributions of PP images via the opening angles. The
green arrows and blue arrows represent the P-wave incident vectors of the
source wavefield and the reflected vectors of the receiver wavefield,
respectively. Regardless of the incident and reflected vector’s modulus,
the amplitude of PP images by the dot product scalar imaging condition
implicitly depends on the scaling factor cos θ, where the opening angle θ is
equal to the sum of the P-wave incident angle α and the reflected angle β. As
for the unconverted reflection wave, the reflected angle β is equal to the
incident angle α. The sign reversal of the factorcos θ � cos 2 α is observed
when the incident angle αapproaches the critical angle 45+, which indicates
that polarity reversal occurs in the PP image. As marked by the red circle, the
factor cos θ reaches -1 while the incident angle is near 90+, which exists in the
propagation path of the backscattering wave. The backscattering artifacts
with 180+ or near 180+ scattering angles (i.e., opening angles) also
contaminate the PP image.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6878353

Du et al. The Pseudo-Laplace Filter

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


cross-correlation imaging results of the x-axis, y-axis, and z-axis
Cartesian components, respectively.

By introducing the opening angle θ shown in Figure 1, the dot
product scalar imaging condition can be equivalently expressed as
follows:

Ipp � ∫|sp||rp| cos θdt. (5)

Here, | · | is the modulus of a vector. The amplitude of the PP
image depends on the modulus of the incident wave, modulus of
the reflected wave, and the extra weighting factor cos θ.
Depending on the seismic source and Green function between
the source and scattering point, the modulus of the incident wave
is desired in the PP image. The modulus of a reflected wave
depends on the Green function between the receiver and
scattering point and the reflection coefficient Rpp. The
reflection coefficient Rpp quantitatively describes the amplitude
and phase of the reflected wave while P wave is incidence on the
interface. The modulus of the incident and reflected waves is
desired information in an image to provide a reliable basis for
seismic interpretation inversion. Regardless of wavefields
modulus, the additional factor cos θ will cause destructive
interference in the final PP image. On the one hand, this extra
factor cos θ changes its sign when the opening angle θ > 90° or the
incident angle α> 90°, which will cause the polarity reversal
problem (Du et al., 2017; Zhou et al., 2018) at a large incident
angle. On the other hand, Ipp is also contaminated by
backscattering artifacts with the incident angles close to 90+ or
opening angles near 180+.

The Scalar Imaging Condition With the
Laplace Filter
In acoustic RTM or scalar-based elastic RTM, the Laplace filter
(Youn and Zhou, 2001) has been used to suppress the
backscattering artifacts in the PP image. As for the PP image
in vector-based elastic RTM, the scalar imaging condition with a
Laplace filter can be expressed as follows:

Ilappp � ∇2IPP

� ∇2 ∫(sp(x, t) · rp(x, t))dt. (6)

Here, Ilappp is the migrated PP image with a Laplace filter, ∇2 � z2x +
z2y + z2z is the Laplace filter operator, z

2
x , z

2
y , and z

2
z are the second-

order partial derivatives along the x-axis, y-axis, and z-axis
direction, respectively. Since partial derivatives are
independent of time integration, the PP image Ilappp can also be
disintegrated by Cartesian components’ cross-correlation
imaging results. As for 2D vector-based wavefields, the PP
image Ilappp can be separated into four items:

Ilappp � z2x ∫ spxr
p
xdt + z2x ∫ spzr

p
zdt + z2z ∫ spxr

p
xdt + z2z ∫ spzr

p
zdt

� z2xIppxx + z2xIppzz + z2z Ippxx + z2z Ippzz .
(7)

Here, z2xIppxx and z2z Ippxx are second-order derivatives of x-axis
Cartesian component cross-correlation imaging result along the

x-axis direction and z-axis direction, respectively; z2xIppzz and
z2zIppzz are second-order partial derivatives of z-axis Cartesian
component cross-correlation imaging result along the x-axis
direction and z-axis direction, respectively. Thereinto, z2xIppxx
and z2zIppzz are parallel-oriented partial derivatives of Cartesian
component cross-correlation imaging result. Meanwhile, z2z Ippxx
and z2xIppzz are normal-oriented partial derivatives of Cartesian
component cross-correlation imaging result. The fault model
(shown in Figure 2) has been introduced for reverse time
migration to highlight the interaction characteristics of these
decoupled migrated results on the flat and inclined interface.
Figures 3A–D are the decoupled migrated results of z2xIppxx,
z2xIppzz , z

2
zIppxx , and z2z Ippzz , respectively.

Backscattering noise has been suppressed in all decoupled
images. Moreover, these decoupled images have different
migration capabilities. On the one hand, the decoupled items
z2xIppxx (shown in Figure 3A) and z2xIppzz (shown in Figure 3B)
related to second-order partial derivative associated with x-axis
direction show similar migrated images sensitive to inclined
structures. Compared with the ideal parallel-oriented result
z2xIppxx , the decoupled normal-oriented item z2xIppzz would
encounter severe crosstalks, causing destructive interference in
the final stacked image. On the other hand, the decoupled items
z2zIppxx (Figure 3C) and z2zIppzz (Figure 3D) related to second
-order partial derivatives along the z-axis direction migrate good
images in flat-layer structures. Compared with the ideal parallel-
oriented migrated result z2z Ippzz , the decoupled normal-oriented
item z2z Ippxx fails to image near-zero offset, contrary to the final PP
wave image. Furthermore, the phase of z2z Ippxx is opposite to
z2zIppzz . The opposite phase between z2z Ippzz and z2zIppxx will result
in the Laplace filter’s disability in correcting the polarity reversal
problem in the PP image. The scalar imaging condition with the
Laplace filter successfully suppresses backscattering but fails to
correct the polarity reversal.

The Scalar Imaging Condition With the
Pseudo-Laplace Filter
Since normal-oriented partial derivative related items of the
Laplace filter are greatly affected by crosstalk noise, the
horizontal derivative related decoupled items have been
selected to migrate the PP image. Analogous to the scalar
imaging condition with the Laplace filter, we propose the
scalar imaging condition with the pseudo-Laplace filter. To
characterize the scalar imaging condition with a pseudo-
Laplace filter mathematically, we first define the pseudo-
Laplace operator ∇̃ 2

as follows:

∇̃ 2 � (z2x, z2y , z2z) (8)

and the PP wave’s Hadamard product image IPP as follows:

IPP � ∫ sp+rpdt � (Ippxx , Ippyy, Ippzz), (9)

where + is the Hadamard operator (see also Appendix A). The
pseudo-Laplace operator ∇̃ 2

comprises three array components,
which are second-order partial derivatives along the x-, y- and
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z-axis, respectively. Their summation is just the Laplace operator.
Meanwhile, the PP wave Hadamard product images IPP are
composed of three array components: cross-correlation
imaging results of the x-axis, y-axis, and z-axis Cartesian
components. The summation of array components is just a PP

wave scalar product image Ipp. There is some specific connection
between the pseudo-Laplace operator ∇̃ 2

and the Laplace
operator ∇̃ 2

and between the PP wave Hadamard product
image IPP and the PP wave scalar product image Ipp. Unlike
the scalar Laplace operator ∇2 and PP wave scalar product image

FIGURE 2 | The P-wave velocity, S-wave velocity, and density of a fault model. The model contains 600 points of dx � 10min the x-axis and 400 points of
dz � 10min the z-axis. The inverted triangle marks the location of the explosive source with a Ricker wavelet of 30 Hz, and triangle represents receivers with 20 m interval.

FIGURE 3 | The decoupled migrated images of z2x Ippxx (A), z
2
x Ippzz (B), z

2
z Ippxx (C), and z2z Ippzz (D). The sum of decoupled migrated images z2x Ippxx , z

2
x Ippzz , z

2
z Ippxx ,

and z2z Ippzz is equal to the scalar imaging condition with a Laplace filter Ilappp . Otherwise, the sum of decoupled migrated images z2x Ippxx and z2z Ippzz is equal to the scalar
imaging condition with a pseudo-Laplace filter Ipse−lappp .
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Ipp, the pseudo-Laplace operator ∇̃ 2
and PP wave Hadamard

product image IPP are both vectors.
Combining the pseudo-Laplace operator with the PP wave

Hadamard product image vector, we propose a scalar imaging
condition with a pseudo-Laplace filter for vector-based wavefields
as follows:

Ipse−lappp � ∇̃ 2 · IPP � ∇̃ 2 · (∫ sp+rpdt). (10)

Here, Ipse−lappp is the PP image by the scalar imaging condition with
a pseudo-Laplace filter. As for 2D vector-based wavefield, the
scalar imaging condition with a pseudo-Laplace filter for the PP
wave should be simplified, and components related to y-axis
should be neglected:

Ipse−lappp � z2x ∫ spxr
p
xdt + z2z ∫ spzr

p
zdt

� z2xIppxx + z2zIppzz.
(11)

The scalar imaging conditions with a Laplace filter (Eq. 4) and a
pseudo-Laplace filter (Eq. 8) depend on second-order partial
derivatives of Cartesian components cross-correlation results.
Different from the Laplace filter composed of parallel-oriented
and normal-oriented items, only the parallel-oriented items are
selected to form the pseudo-Laplace filter. As shown in Figure 4,
we migrate the PP images of the fault model by the scalar imaging
condition with the Laplace filter and with the pseudo-Laplace
filter. Figure 4A is the migrated PP scalar image with a Laplace
filter, the sum of Figures 3A–D. Similarly, the sum of Figures
3A,D is just one scalar migrated PP image with a pseudo-Laplace
filter, as shown in Figure 4B. Compared with the PP image with a
Laplace filter (Figure 4A), backscattering noise suppression
(marked by red arrows) and polarity reversal correction
(marked by red circles) have been shown in the PP image
with a pseudo-Laplace filter (Figure 4B).

For the application in elastic RTM, we should migrate three
Cartesian component’s images (or two images in a 2D case) by
time integration and then sum second-order derivatives of three

images together. Compared with the scalar imaging condition,
additional storage of three Cartesian component’s images and
computation of second-order derivative operation are introduced
in scalar imaging conditions with a pseudo-Laplace filter.
Compared with the storage and computation costs consumed
by the wavefield extrapolation of elastic RTM, the additional
calculation introduced by the proposed filter can be ignored to a
certain degree. Thus, the scalar imaging condition with a pseudo-
Laplace filter is easy to perform and does not require additional
processing or storage, which is essential for elastic RTM.

Backscattering Attenuation and Polarity
Correction
Based on the above-tested fault model, the suppression of
backscattering and correction of polarity reversal have been
shown in the PP scalar image with the proposed pseudo-
Laplace filter. The section will theoretically illustrate how the
pseudo-Laplace filter suppresses backscattering noise and correct
polarity reversal in PP images with the assumption of a
plane wave.

For the vector-based elastic wavefields, the source-side particle
velocity vector sp and receiver-side particle velocity vector rp are
related to the polarization and propagation of the P wave.
Decomposing the particle velocity wavefield of pure P wave in
plane waves, we obtain the following:

sp � |sp|pseik(ns ·x−vpt), (12A)

and

rp � |rp|Rppp
reik(vpt−nr ·x). (12B)

Here, |sp|and |rp| � |sp|Rpp are the modulus of the incident and
reflected wave, respectively. p and n are polarization unit vector
and propagation unit vector, respectively. Superscripts s and r
represent incident wave and reflected wave. vp, k � ω/vp, and ω
are P wave’s propagated velocity, wavenumber and angular
frequency, respectively. Assuming that vectors n and p vary

FIGURE 4 | PP images by the scalar imaging condition with a Laplace filter (A) and with a pseudo-Laplace filter (B). Compared with the PP image with a Laplace
filter (Panel A), backscattering noise suppression (marked by red arrows) and polarity reversal correction (marked by red circles) have been shown in the PP image with a
pseudo-Laplace filter (Panel B).
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slowly in the space-time domain, their temporal and spatial
derivatives are small enough to be ignored.

Substituting the plane wave definitions (Eq. 12) into Eqs 4, 7,
11, we obtain an expression with the assumption of the plane
wave as follows:

Ipp � ∫|sp||rp|Rpp(ps · pr)eik(ns−nr)·xdt, (13A)

Ilappp � −∫|sp||rp|Rppω
2{[(nsx − nr

x)2 + (ns
z − nr

z)2](psxprx + pszp
r
z)}

eik(n
s−nr)·xdt,

(13B)

and

Ipse−lappp � −∫|sp||rp|Rppω
2[(ns

x − nr
x)2psxprx

+ (nsz − nr
z)2pszprz]eik(ns−nr)·xdt. (13C)

In the 2D case of incident pure P wave, the reflected P wave
without wave conversion would be obtained in an observation
coordinate system along the horizontal surface and vertical depth.
As shown in Figure 5A, the geological structure information of
the reflector has been introduced in the descriptions of particle
velocity vectors in the observation coordinate system. A local
coordinate system (as shown in Figure 5B) is constructed along
with tangential and vertical directions of the reflector to simplify
the representation of vectors in the source and receiver wavefield.
As for pure P wave, the polarization vector ps is parallel to the
propagation vector ns with the same positive direction. In the
local coordinate system, the polarization vector ps and
propagation vector ns of incident vector sp in source wavefield
should be described by the incident angle α as follows:

ps � sin α i
→+ cos α k

→
, (14A)

and

ns � sin α i
→+ cos α k

→
. (14B)

Unlike source wavefield, the pure P wave in receiver wavefield
should be described by conjugation of a reflected vector rp. Its

propagation direction is the opposite to that of the reflected wave,
and polarization direction is the same as the reflected wave. The
polarization vector ps is parallel to the propagation vector ns with
the same positive direction for reflected pure P wave rp. When it
comes to reflected pure P wave, the polarization vector pr and
propagation vector nr should be described in the local coordinate
system by the reflected angle α as follows:

pr � − sin α i
→+ cos α k

→
, (15A)

and

nr � sin α i
→− cos α k

→
. (15B)

According to the descriptions of incident vector (Eq. 14) and
conjugation of reflected vector (Eq. 15), we can rewrite the scalar
imaging condition, the scalar imaging condition with a Laplace
filter, and the scalar imaging condition with a pseudo-Laplace
filter in the local Cartesian coordinate system as follows:

Ipp � ∫|sp||rp|Rpp cos θe
ik(ns−nr )·xdt, (16A)

Ilappp � −∫|sp||rp|Rppω
22 cos θ(cos θ + 1)eik(ns−nr)·xdt, (16B)

and

Ipse−lappp � −∫|sp||rp|Rppω
2(cos θ + 1)2eik(ns−nr )·xdt. (16C)

Here, θ � 2α is the opening angle. The above-mentioned
imaging algorithms need to be separated into terms related to
amplitude and phase. As for the phase-related item, they agree
with each other by the form of eik(n

s−nr)·x . The phase-related item
is dependent on the illumination vector isr � ns − nr , defined by
Lecomte (2008). The illumination vector isr satisfies the following
relationship isr � ns − nr � 2 cos (θ/2)n̂, where n̂ is a unit normal
vector at each reflector. In a local coordinate system, a unit normal
vector can be described as n̂ � (0, 1) regardless of the inclination of
a reflector. Phase-related items are dependent on the opening angle
θ. In particular, isr � 0 while θ � 180°. It indicates that isr will be
zero at the reflectors when the incident wave and reflected wave are
with the same propagating path.

FIGURE 5 | The incident vector and reflected vector of pure P wave in observation coordinate system (A) and local coordinate system (B). The coordinate
observation system is constructed along the horizontal surface and vertical depth. The illumination vector isr , used to describe the relationship between the incident wave
and reflected wave, is related to the vertical directions of the reflector and opening angle. To simplify their representation, the local coordinate system is constructed along
with tangential and vertical directions of the reflector. In a local coordinate system, the incident vector and reflected vector can be described by the incident angle α
or opening angle θ.
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Otherwise, the amplitude-related items in Ipp, I
lap
pp , and Ipse−lappp

imaging algorithms are different from each other. Factor
|sp||rp|Rpp, coexisting in The above-mentioned imaging
conditions, is useful for seismic inversion interpretation. Once
the Laplace filter and pseudo-Laplace filter are introduced, the
scalar imaging algorithms are influenced by angular frequency
ω2. The introduction of ω2 weakens the amplitude of low-
frequency data and enhances the amplitude of high-frequency
data, changing the spectrum of images and damaging effective
low-frequency information. To maintain the spectrum of images
and recover their effective low-frequency information, reasonable
time integration is needed (Liu et al., 2010). Furthermore, the
above-mentioned imaging algorithms are dependent on different
weighting factors:

wpp � cos θ, (17A)

wlap
pp � −2 cos θ(cos θ + 1), (17B)

and

wpse−lap
pp � −(cos θ + 1)2. (17C)

Here, wpp,w
lap
pp , and w

pse−lap
pp are the introduced weighting factor

of the scalar imaging condition, the scalar imaging condition with
a Laplace filter, and the scalar imaging condition with a pseudo-
Laplace filter, respectively. From Eq. 17, we can see that weighting
factors vary with the opening angle θ.

The variation of the weighting factor for the opening angle θ is
shown in Figure 6. For visual display, the amplitude is
normalized by the corresponding max value. When the
opening angle θ increases from 0+ to 180+, the weighting
factor wpp (represented by the blue curve) in the scalar
imaging condition ranges from 1 through 0 to −1. The
polarity of the image is reversed while the sign of weight
factor changes from positive to negative near 90+, and the
backscattering noise is generated by dot product cross-
correlation of two wavefields with an opening angle of 180+ or
close to 180+. By introducing the Laplace filter, the weighting
factor wlap

pp (represented by the red curve) will be 0 near 180+,
which indicates that backscattering noise has been suppressed.

However, the sign of the weighting factor wlap
pp still changes from

positive to negative around 90+. In other words, the Laplace filter
fails to correct the polarity reversal in PP images by scalar imaging
conditions. Furthermore, the pseudo-Laplace filter has been
introduced in scalar imaging conditions, and its weighting
factor wpse−lap

pp (represented by the yellow curve) is in the range
of 1–0. Similar to the Laplace filter, for backscattering waves with
180+ or near 180+ opening angles, the weighting factor wpse−lap

pp is
zero. Unlike the Laplace filter, the weighting factor wpse−lap

pp only
ranges from 1 to 0, and its sign is always positive. Therefore, the
weighting factor can suppress backscattering noise and correct
the reversed polarity. As for the PP image by the scalar imaging
condition with a pseudo-Laplace filter, the backscattering noise
has been suppressed and polarity reversal has been corrected.

NUMERICAL EXAMPLES

This section presents a two-layer flat model and a four-layer inclined
model to demonstrate the challenges of backscattering noise and
polarity reversal in PP images caused by scalar imaging conditions.
Moreover, it shows how to suppress them by the pseudo-Laplace
filter. Then, using numerical values, we investigate the amplitude
variation versus the opening angle to demonstrate the consistency of
the pseudo-Laplace filter. The Marmousi 2 model (Martin et al.,
2006) is then used to demonstrate the effectiveness and advantages of
the pseudo-Laplace filter in the suppression of backscattering
artifacts and correction of polarity reversal.

When it comes to vector-based elastic RTM, the decoupled
elastic wave equation (Xiao and Leaney, 2010; Du et al., 2017)
generates source and receiver wavefield of decoupled P wave.
Furthermore, the source normalization by decoupled P-wave
source wavefield should be introduced to balance the energy
between the shallow and deep layers.

The Two-Layer Flat Model
The two-layer flat model shown in Figure 7 is 10 × 2km. At a
depth of 1 km, there is one flat interface. The first and second
layer’s P-wave velocities would be 2400 m/s and 2700 m/s,

FIGURE 6 | The variation of a weighting factor in the scalar imaging condition, the scalar imaging condition with a Laplace filter and with a pseudo-Laplace filter.
Note that the blue curve of the weighting factor cos θ will cross through the axis whose amplitude is zero and reach -1 while the opening angle is 180+. The red curve of
the weighting factor 2 cos θ(cos θ + 1) goes through the axis whose amplitude is zero and reaches 0 while the opening angle is 180+. The yellow curve of the weighting
factor (cos θ + 1)2 range 1–0 without change of positive and negative sign.
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respectively. The S-wave velocity is consistent with the
relationship vs � vp/1.73, and density is set to 1.0 g/cm3. It
contains 1000 points in the horizontal direction and 200
points in the vertical direction, with a space interval of 10 m.
Figure 8 shows a synthetic seismic record generated using
double receiving observation geometry, with a shot located at
a depth of 10 m. At a depth of 10 m, there are 500 receivers with
a 20 m receiver interval. As a result, the maximum offset is up to
5 km. The synthetic seismic data are generated using an
explosive source of Ricker wavelet with a peak frequency of
20 Hz. The time interval is 0.8 ms, and the total record time
is 2.4 s.

The migrated PP images by scalar imaging conditions, scalar
imaging conditions with a Laplace filter, and scalar imaging
conditions with a pseudo-Laplace filter are shown in Figure 9. It
is evident that backscattering artifacts (marked by the red arrow)
influence the PP image by the scalar imaging condition (shown in
Figure 9A) and have been attenuated effectively in the PP image
with the application of a Laplace filter (shown in Figure 9B) and
with a pseudo-Laplace filter (shown in Figure 9C). Apart from
backscattering noise, the other noise, such as polarity reversal, also
occurs at the interface. As for the interface of 1 km depth, the
maximum incident angle reaches 68.2+, over critical angle
arcsin(vp1/vp2) � 62.73° and polarity reversed angle 45+. Thus, all

FIGURE 7 | The P-wave velocity of the two-layer flat model, whose S-wave velocity and density are satisfied with vs � vp/1.73 and ρ � 2300g/cm2, respectively.

FIGURE 8 | The synthetic multicomponent seismic record without direct wave: (A) x-component and (B) z-component.
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three migrated PP images are similar and encounter phase-distorted
inhomogeneous waves, such as refracted waves (marked by blue
arrows) around 1.9 km distance. Besides, only PP images without or
with the Laplace filter suffer from the polarity reversal around 1 km

distance (marked by red circles), whichwould have been corrected in
the PP image with a pseudo-Laplace filter. Therefore, the phase axis
of the PP image with the pseudo-Laplace filter is more continuous
than the PP image with the Laplace filter.

FIGURE 9 | PPmigrated images of the two-layer flat model by the scalar imaging condition (A), the scalar imaging condition with a Laplace filter (B), and the scalar
imaging condition with a pseudo-Laplace filter (C). The backscattering noise (marked by the red arrow) has been effectively suppressed in PP images by scalar imaging
conditions with a Laplace filter and a pseudo-Laplace filter. Furthermore, the polarity reversal (marked by the red circle) has been corrected in the PP image by the scalar
imaging condition with a pseudo-Laplace filter.
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FIGURE 10 | The comparison between the analytical reflection coefficient Rpp (yellow curves), the weighting theoretical reflection coefficient (red curves) and
normalized amplitudes (blue curves) extracted from PP images by the scalar imaging condition (A), the scalar imaging condition with a Laplace filter (B), and the scalar
imaging condition with a pseudo-Laplace filter (C) in Figure 9. The reflection coefficient (yellow curves) is solved by the Zoeppritz equation with the elastic parameters of
the two-layer layer model, and the normalized amplitudes in PP images have been converted to variation with the opening angle.

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 68783511

Du et al. The Pseudo-Laplace Filter

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Additionally, wemeasure the amplitudes of these images at the
interface at a depth of 1 km and convert the offset variable to the
opening angle variable using geological and elastic parameters.
Then, we compare these amplitudes (blue curves) from Figure 9
with the theoretical reflection coefficient Rpp (yellow curves) and
the corresponding weighting factor (red curves), respectively. The
analytical solution Rpp (yellow curves) is calculated by solving the
Zoeppritz equation with the elastic parameters of the two-layer
layer model. The opening angle ranges from 0 to 120° to avoid
phase distortion when the incidence angle is greater than the
critical angle of 62.73°. The extracted amplitudes (blue curves)
match well with the weighting theoretical reflection coefficient
(red curves) up to approximately 80°, verifying the correctness of
the theoretical analysis.

What is more, the extracted amplitudes have higher values
than the corresponding weighting theoretical reflection
coefficient at large angles of incidence and then decline to zero
due to the limited acquisition space. Both Laplace and pseudo-
Laplace filters would fail to maintain the amplitude of images at
large incidence. Figure 10A shows the extracted amplitudes from
Figure 9A and weighting theoretical reflection coefficient
Rpp cos θ; Figure 10B shows the extracted amplitudes from
Figure 9B and weighting theoretical reflection coefficient
Rpp cos θ(cos θ + 1). They both change their signs at
approximately 90° angle of incidence. However, Figure 10C
shows the extracted amplitudes from Figure 9C and weighting
theoretical reflection coefficient Rpp(cos θ + 1)2, and its sign
remains unchanged at any opening angle. Therefore, the
consistency of the pseudo-Laplace filter has been demonstrated
by the analysis of amplitude variation versus the opening angle,
which indicated that polarity reversal had been corrected.

The Four-Layer Inclined Model
The four-layer inclined model, as shown in Figure 11, is
10 × 4km. There are three inclined interfaces with a 10+ dip
angle at 1.5, 2.5, and 3.5 km depth, respectively. The P-wave
velocity of the first layer, second layer, third layer, and fourth
layer would be 2500 m/s, 2600 m/s, 2700 m/s, and 2800 m/s,
respectively. The S-wave velocity satisfies the relationship
vs � vp/1.73, and density is set to constant 1 g/cm3. It contains
1000 points and 400 points in the horizontal and vertical

directions with a space interval of 10 m. Synthetic data are
generated with double receiving observation geometry, where
the shot is located at a depth of 10 m and a distance of 7 km. There
are 500 receivers with a receiver interval of 20 m at a depth of
10 m. Therefore, the maximum offset is 7 km. The explosive
source of the Ricker wavelet with 30 Hz peak frequency is set to
generate the synthetic seismic data. The time interval is 1.0 ms,
and the total record time is 3 s.

The migrated PP images by scalar imaging conditions with a
Laplace filter and scalar imaging conditions with a pseudo-
Laplace filter are shown in Figure 12. It is evident that
backscattering artifacts (marked by the red arrow) influence
the PP image by scalar imaging conditions (shown in
Figure 12A) and have been attenuated effectively in the PP
image with the application of a Laplace filter (shown in
Figure 12B) and with a pseudo-Laplace filter (shown in
Figure 12C). Apart from backscattering noise, the other noise,
such as polarity reversal, also occurs at images along with the
interfaces. As for the first interface, the maximum incident angle
reaches 75+, which is over critical angle arcsin(vp1/vp2) � 74.05°,
and polarity reversed angle 45+ at the maximum offset of 7 km.
Therefore, the polarity reversal around 5 km (marked by a red
circle) and phase-distorted homogeneous wave such as refracted
wave (marked by the blue arrow) would be introduced in PP
images without or with a Laplace filter. As for the second
interface, the maximum incident angle of 58+, equal to 116+

opening angle, is less than the critical angle arcsin(vp2/vp3) �
74.35° and bigger than the polarity reversed angle of 45+. PP
images without or with the Laplace filter of the second interface
only encounter a polarity reversal problem around 4 km without
phase aberration. As for the third interface, the maximum
incident angle of 43+ is near the polarity reversed angle of 45+

and less than the critical angle arcsin(vp2/vp3) � 74.64°. The
amplitude of the phase-reversed image is too little to influence
the final stacked result. Furthermore, the polarity reversals at
three interfaces have been corrected in the PP image with a
pseudo-Laplace filter. Therefore, the phase axis of the PP image
with a pseudo-Laplace filter is more continuous than the PP
image with a Laplace filter.

To analyze the amplitude variation versus opening angle, we
pick up the max amplitude of these images along the second
interface and convert the offset variable to the opening angle
variable with a geological structure. Since the first interface is
affected by the direct wave and heterogeneous wave such as
refracted wave, the second interface has been utilized. Once the
amplitude variation has been picked up, the smoothing and
normalization are required to avoid interference of other
factors such as phase. As shown in Figure 13, the variations
of normalized amplitude in three images match the variations of
normalized weighting with an opening angle ranging from 0 to
near 116+, the maximum opening angle of the geometry. Once
the opening angle exceeds the maximum, normalized
amplitudes would be zero. Around 90+ opening angle,
change the numerical symbols of amplitude that occurs in
the PP image (represented by the blue curve) and the PP
image with a Laplace filter (represented by the red curve).
However, the yellow curve, representing the PP image with a

FIGURE 11 | The P-wave velocity of the four-layer inclinedmodel, whose
S-wave velocity and density are satisfied with vs � vp/1.73 and
ρ � 2300g/cm2, respectively.
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FIGURE 12 | PP migrated images of the four-layer inclined model by the scalar imaging condition (A), the scalar imaging condition with a Laplace filter (B), and the
scalar imaging condition with a pseudo-Laplace filter (C). The backscattering noise (marked by the red arrow) has been effectively suppressed in PP images by scalar
imaging conditions with a Laplace filter and a pseudo-Laplace filter. Furthermore, the polarity reversal (marked by the red circle) has been corrected in the PP image by
the scalar imaging condition with a pseudo-Laplace filter.
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pseudo-Laplace filter, has a consistent numerical symbol in
amplitude. Therefore, the consistency of the pseudo-Laplace
filter has been demonstrated by the analysis of amplitude
variation versus the opening angle, which indicated that
polarity reversal had been corrected.

Marmousi 2 Model
The Marmousi 2 model is used in this example to show how the
pseudo-Laplace filter can effectively suppress backscattering
noise, resolve polarity reversal, and generate a high-quality PP
image in complex geological structures.

FIGURE 13 | The variation of normalized amplitude in PP images with the opening angle. Numerically, amplitude symbols change with the P-wave incident angle
reaching 45+, and the offset is around 3500 m in both the PP image by the scalar imaging condition (blue curve) and the scalar imaging condition with a Laplace filter (red
curve). In contrast, amplitude symbols are consistent in the PP image by the scalar imaging condition with a pseudo-Laplace filter (yellow curve).

FIGURE 14 | The P-wave velocity of the elastic Marmousi 2 model (A) and the S-wave velocity of the elastic Marmousi 2 model (B) and the density is constant of
1 g/cm3.
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As shown in Figure 14, the modified Marmousi 2 model
(Martin et al., 2006) contains 1325 points in the horizontal
direction with 10 m sample interval and 934 points in the
vertical direction with 5 m sample interval. Thus, the size of
the Marmousi 2 model is 13.25 × 4.67km. The P-wave velocity
ranges from 1800 m/s to 4600 m/s, the S-wave velocity ranges
from 1000 m/s to 2000 m/s, and density is the constant of 1 g/
cm3. The full-receiving geometry, where 265 shots are excited
with a 50 m shot interval at a depth of 10 m, and 1325 receivers
are located with a 10 m receiver interval at the surface, is
constructed to generate the seismic record. The source
function is a Ricker wavelet with a peak frequency of 30 Hz.
The recording time interval is 1.0 ms, and the recording length
is 4.3 s.

Figure 15A is the migrated PP image by the scalar imaging
condition with the Laplace filter, and Figure 15B is the migrated
PP image by the scalar imaging condition with a pseudo-Laplace
filter. The backscattering noise contamination has been

suppressed successfully in these two images, while some
backscattering noise still resides in the PP image with Laplace
(marked by the red arrow). Furthermore, both of them have
embodied the structural character of the model. Compared with
the PP image with Laplace of Figure 15A, the overall appearance
of Figure 15B is more apparent, including the shallow fault in
detail. That is related to the weighting factor of the pseudo-
Laplace filter is stronger than that of the Laplace filter.
Furthermore, the events in the shallow layer of Figure 15B are
more continuous than those of Figure 15A.

We further extracted the traces from PP images with a Laplace
filter (Figure 15A) and a pseudo-Laplace filter (Figure 15B) at a
depth of 1.32 km. As shown in Figure 16, we compare the
amplitude of trace extracted from Figure 15A (blue curve)
and Figure 15B (red curve) with the theoretical reflection
coefficient Rpp (yellow curves). The Zoeppritz equation
calculates the theoretical reflection coefficient Rpp at normal
incidence. The variation trends of traces are consistent with

FIGURE 15 | The PP images of the Marmousi 2 model by the scalar imaging condition with the Laplace filter (A) and with the pseudo-Laplace filter (B). The two
images embody the structural characteristics of the model. The overall appearance of Panel B is more apparent and events in the shallow layer are more continuous than
those in Panel A. Furthermore, the backscattering noise of Panel A is more serious than that in Panel B.
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the theoretical reflection coefficient. Moreover, the amplitude of
trace from Ipse lap

pp (red curve) is generally slightly larger than that
from Ilappp (blue curve) because the weighting factor
2 cos θ(cos θ + 1) of PP images with a Laplace filter is
stronger than the weighting factor (cos θ + 1)2 of PP images

with the pseudo-Laplace filter at small incident angles. However,
there is a big difference between amplitudes and theoretical value
in the fault area at 5–6 km and 7–8 km. The inaccuracy is caused
by a false reflected wave where diffraction wave and multiple
waves exist. Moreover, at the cover of anticline where sub-cover

FIGURE 16 | The comparison between normalized amplitudes of theoretical reflection coefficient Rpp (yellow curves) calculated by Zoeppritz equation and traces
extracted from Figure 15A (blue curve) and Figure 15B (red curve) at a depth of 1.32 km. The variation trends of traces are consistent with the theoretical reflection
coefficient, and the amplitude of trace from Ipse lap

pp (red curve) is generally slightly larger than that from Ilappp (blue curve). However, the amplitude of trace from Ipse lap
pp (red

curve) is smaller than that from Ilappp (blue curve) in the fault area (marked by the red arrow). Moreover, the phase of Ilappp (blue curve) is opposite to that of Ipse lap
pp (red

curve) and theoretical solution (yellow curve) at the cover of anticline where sub-cover oil and gas reservoirs develop, marked by a black rectangular box.

FIGURE 17 | The partial enlargements of the P-wave velocity of the elastic Marmousi 2 model (A) and the S-wave velocity of the elastic Marmousi 2 model (B).
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oil and gas reservoirs develop with 10–11 km distance, the phase
of stacked Ilappp (blue curve) is opposite to that of stacked Ipse lap

pp

(red curve) and theoretical solution (yellow curve), as marked by
a black rectangular box. The phase reversal originates from
polarity reversal in the PP image with the Laplace filter and
polarity correction in the PP image with the pseudo-Laplace filter
at large incidence.

To observe clearly, we intercept the part of the Marmousi 2
model with a distance from 7–13 km and a depth from 0.5 to
4 km. Figures 17A,B are the partial enlargements of the P-wave
velocity of the elastic Marmousi 2 model and S-wave velocity of
the elastic Marmousi 2 model amplified, respectively.
Correspondingly, Figure 18A is a partial enlargement of the
PP image of the Marmousi 2 model by the scalar imaging
condition with a Laplace filter (Figure 15A), and Figure 18B
is a partial enlargement of the PP image of the Marmousi 2 model
by the scalar imaging condition with the pseudo-Laplace filter
(Figure 15B). Even as the polarity reversal described by
Figure 16, the phase of the stacked PP image with a Laplace
filter is opposite to that of the stacked PP image with a pseudo-
Laplace filter and is no longer continuous at the cover of the
anticline. As marked by the blue curve, the phase of the event in
Figure 18B is more persistent than in Figure 18A, especially at
the cover of an anticline. Furthermore, there is an oil and gas
reservoir at sub-cover with the variation of S-wave velocity in
Figure 17B. The disturbance at sub-cover (marked by the red
arrow) succeeds to be imaged in Figure 18A but fails to be imaged
in Figure 18A. Overall, the scalar imaging condition with a
pseudo-Laplace filter generates a high-quality PP image in
complicated geological structures.

DISCUSSIONS

The dot product cross-correlation scalar imaging condition,
similar to the cross-correlation scalar wave field imaging
condition, is a simple and effective imaging condition for
vector-based wavefields. Naturally, the PP image by the dot
product scalar imaging condition encounters backscattering
noise, also being in cross-correlation imaging results, and
polarity reversal problem caused by the weighting factor
cos θ. The scalar imaging condition with a pseudo-Laplace
filter has been developed as an analogy to the cross-
correlation imaging condition with the Laplace filter.
Analogous to the cross-correlation imaging condition with
the Laplace filter, the scalar imaging condition with pseudo-
Laplace filter has been proposed.

Table 1 is the comparative table for the Laplace filter and
pseudo-Laplace filter characters from the backscattering noise,
the polarity reversal, the spectral variation, and the computation
cost. Overall, the pseudo-Laplace filter is similar to the Laplace
filter in backscattering suppression, spectral variation, and
computation cost. However, it is only the pseudo-Laplace filter
that could correct the polarity reversal problem at large incidence.
Therefore, the field data with large offset are suitable for the
proposed pseudo-Laplace filter. As for the filters composed of
second-order spatial derivatives, the angular frequency ω2 has
been introduced into the final image. Similar to spectrum
modification of a Laplace filter, some low-frequency effective
information of the PP image with a pseudo-Laplace filter would
be suppressed due to the introduction of ω2. Further study of the
low-frequency compensation should be carried out.

FIGURE 18 | The partial enlargements of PP images of the Marmousi 2 model by the scalar imaging condition with the Laplace filter (Panel A) and with the pseudo-
Laplace filter (Panel B). The polarity of the event (such as events marked by the blue curve) in Panel B is more continuous than that in Panel A. Furthermore, clearer
interfaces and less disturbance of the oil and gas reservoirs at sub-cover (marked by the red arrow), indicated by the partial enlargements of the elastic Marmousi 2 model
in Figure 17B, are located in Panel B.
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Once the low-frequency information is compensated, the weighting
factor (cos θ + 1)2 can be extracted by deciding the modulus of the
incident wave and reflected wave. The weighting factor (cos θ + 1)2is
in a linear relationship with the opening angle. Furthermore, the scalar
imaging conditionwith pseudo-Laplace can be used to extract common
imaging point gathers. The SS image by the dot product–based scalar
imaging condition suffers from the backscattering and polarity reversal,
whose generating mechanism is similar to the PP image. The pseudo-
Laplace filter can be extended to the SS image.

CONCLUSION

The PP image by the dot product–based scalar imaging condition will
encounter the problem of polarity reversal when the opening angle
exceeds 90+ and backscattering noise when the opening angle is close
to 180+. Based on the application of the Laplace filter for vector-based
wavefield, we propose the pseudo-Laplace filter. Unlike the Laplace
filter, the scalar imaging condition with a pseudo-Laplace filter only
consists of second-order parallel-oriented partial derivatives of
Cartesian components cross-correlation results and omits normal-
oriented partial derivatives of Cartesian components cross-correlation
result. Derivation with plane wave assumption shows that the
proposed pseudo-Laplace filter, which depends on the weighting
factor (cos θ + 1)2, can correct polarity reversal and attenuate
backscattering artifacts in the PP image. Numerical experiments of
the two-layer flat model, four-layer inclined model, and Marmousi 2
model have verified the efficiency and accuracy of the pseudo-Laplace
filter. The proposed pseudo-Laplace filter can provide the image with
backscattering suppression and continuous phase, which can be
further used to extract common imaging point gathers.
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APPENDIX A: HADAMARD PRODUCT AND
ITS APPLICATION

For the vectors s and t with the same dimension, we can obtain a
new vector w by the Hadamard product ◦. The new vector w of
Hadamard product, whose element is equal to the element-wise
product of vectors s and t, is described as follows:

w � s+t � (sxtx, syty, sztz). (A1)

By introducing the Hadamard product into vectors sp and rp,
the imaging vector sp°rp at each imaging time can be expressed by
the components as follows:

(spxrpx, spyrpy , spzrpz). (A2)
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