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Uplift of the Qinghai-Tibetan Plateau has resulted in rapid incision of rivers along the
margin of the plateau. Landslides occur frequently as a consequence of increasing bank
slope and potential landslide energy due to stream bed incision or lateral bank erosion on
the concave banks at bends. The Fencha Gully is on the eastern margin of the Qinghai-
Tibetan Plateau and is developing on a huge landslide body. Flume experiments were
conducted on the base of the field investigation to study the mechanism of landslides
induced by stream bed incision. The experiments were designed with a length scale ratio
of 1:20. Landslides and stream bed incision with loose sediment were observed and
analyzed. The results show that landslides are induced as a result of stream bed incision.
The potential landslide energy is defined, which increases quickly with an effective
incision depth coupling vertical incision and lateral bank erosion. The occurrence of
landslides can be attributed to increasing incision depth and potential landslide energy.
Results indicate that the critical effective incision depth is 4.0–6.0 m. A critical value of the
potential landslide energy is found from the experiments. Landslides occur if the potential
energy exceeds the critical energy, which is 2.24×104 t·m/s2 for the Fencha Gully. The
incision depth and potential energy of landslides from the Fencha Gully agree well with
the results.
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INTRODUCTION

Bed incision occurs widely in mountain rivers no matter with sediment-bed or rock-bed (Ouimet
et al., 2008; Wohl, 2010; Berger et al., 2011; Hobley et al., 2011). The margin of Qinghai-Tibetan
Plateau is one of the most rapidly uplifting and eroding regions on Earth, especially in the
Hengduan Mountain Region. As shown in Figure 1, the rivers along the margin of the plateau are
deeply incised and accompanied by frequent landslides and other forms of bank failures, triggering
disaster chains and catastrophic damages in the regional scale (Ouimet et al., 2009, Ouimet et al.,
2010; Xu et al., 2012; Kirschbaum et al., 2015; Zhao et al., 2019). Our field investigations show that
many of these rivers are characterized by steep slope and loosely deposited bed and hillslopes (see
Figures 1A–E).

The idea is well-recognized that landslide is triggered fundamentally by increasing weight and
reduced shear strength (Azanon et al., 2005; Ouimet et al., 2007; Zhou et al., 2016). However, the
incision still provide a fundamental inducement at the basin - or channel-scale, and therefore has
become a major concern for mountain river management (Whipple, 2004; Safran et al., 2005; Wang
et al., 2015). This can be interpreted as that with the lack of support from slope toe, the destabilization
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of landslides is promoted (Gonzalez-Diez et al., 1999; Lacoste
et al., 2011; Larsen and Montgomery, 2012; Doi et al., 2020).
Rapid incision steepens hillslope to critical conditions that
followed by an increase in mass movement from slope to river
channel or even formation of knickpoints, e.g., landslide barrier
dams (Ouimet et al., 2008; Dahlquist et al., 2018). In turn, slope
gradient tends to reach a stable level as a result of the increase of
sediment supplying to river and reduction of bed incision rate,
which contributes to a steady-state topography (Mudd and
Furbish, 2007; Wohl, 2010; Li et al., 2021). It is also indicated
that mass movement rate is highly correlated to incision rate
(Larsen and Montgomery, 2012), implying that stream bed
incision could be a driving force for hillslope morphology
(Mudd and Furbish, 2007; Korup et al., 2010; Chang et al., 2018).

Previous studies on the relationship between stream bed
incision and hillslope evolution mainly focus on basin- or
orogeny-scale (Sidorchuk, 2006; Mudd and Furbish, 2007;
Korup et al., 2010), rarely reveal the situation of small
watersheds (Reinhardt et al., 2007; Larsen and
Montgomery, 2012; Egholm et al., 2013; Yanites et al.,

2013; Messager et al., 2014). More specifically, the
relationship between slope failure or landslides and stream
bed incision is rarely quantified for small watersheds, which
deserves further study.

Based on preliminary field observations, we designed and
conducted laboratory experiments to specifically study the
critical conditions and mechanisms for landslides triggered
by stream bed incision. The first-order tributaries along the
margin of Qinghai-Tibetan Plateau were referred when we
designed the flume experiments. The aim of our study is 1)
to explore the topography change of the slope along with
aggravation of stream bed incision, 2) to reveal the critical
conditions for landslide occurrence, i.e., thresholds of
effective incision depth and potential landslide energy. To
achieve these goals, steady flow and no sediment feed
conditions were applied in the experiments for the
observation of the topography variation of channel bank as
stream bed incised. The volume of landslide, stream bed incision
and potential landslide energy were recorded and analyzed,
then, their relation was revealed and interpreted.

FIGURE 1 | Regional topography and landslide sites of the eastern and south-eastern margin of the Qinghai-Tibetan Plateau, and nature hazard: (A) rapid stream
bed incision (Fencha Gully, photo by Kehan Huang in December 2020); (B) collapse (Guxiang Gully, photo by Liqun Lyu in May 2015); (C) landslides (Jinsha River, photo
by Yunlong Lei in October 2019); (D) debris flow (Palong River, taken by Kehan Huang in October 2019); (E) landslide dam (Diexi landslide, photo by Zhaoyin Wang in
2006).
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FIGURE 2 | (A) Layout of the flume. (B) Top view of the flume. (C) Layout of the initial cross section. (D) Cross section undergoing stream bed incision.

FIGURE 3 | Topography measured with TLS.
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FLUME EXPERIMENTS

Flume experiments were carried out in State Key Laboratory of
Hydroscience and Engineering, Tsinghua University, Beijing,
China. Figure 2A shows that the flume is 12 m long and 2 m
wide with brick walls, and equipped with a recycled flow system, a
reservoir and an operation room. The water pump was controlled
through a frequency converter, which maintained the flow steady,
and a flowmeter was used for indicating the flow discharge. An
8 m long section of the flume was designed to simulate a field
gully. A sedimentation basin was set at the outlet of the flume.

The process of stream bed incision and landslides was recorded
with the Terrestrial Laser Scanner (TLS) and two cameras, as
shown in Figure 2B. The TLS (RIEGL VZ-1000, made in Austria)
was set on a fixed platform upstream, 0.28m from the left wall and
2.0 m high from the ground, to measure the on-time surface
topography of the bank slope and stream bed (Figure 3). The
TLS was set to scan automatically at an interval of 1 min. The two
cameras (Canon 80D), fixed on a platform that was 2.2 m high over
the flume, located at 2.0 and 4.2 m upstream of the flume outlet,
respectively, were controlled by the EOS Utility.

The flume experiments were designed to generally simulate the
Fencha Gully (Figure 1A, 102°16′32″E, 28°6′42″N). The Fencha
Gully is located in the midstream region of the Reshuihe River,
which is a tributary of the Anning River in Sichuan Province. The
study site is developing on a huge landslide body and the banks of the
gully are composed of loose sediment. Landslides occur frequently in
the gully due to intensive stream bed incision. The sections with
incision and landslides of the gully aremainly straight. A length scale
ratio of 1:20 was applied for the experiment. The initial streamwidth
of the flume was 0.5 m, which responded to the gully width of about
10 m. The right flume bank was set at 31°, which is roughly equal to
the bank slope of the Fencha Gully (Figure 2C). The gradient of the
stream bed in the flume was 0.1, which was roughly the same as the
bed gradient of the Fencha Gully. The thickness of the loose
sediment layer on the bank was 0.1–0.7 m and the thickness of
the stream bed was 0.4 m in the flume.

Figure 4 shows the size distributions of sediments of the
Fencha Gully, the Guxiang Gully (Lyu et al., 2017), the Shengou
Gully and A’wang Gully (Zhang, 2017, Zhang et al., 2018). All the
four gullies are in the Hengduan Mountain and are debris flow
gullies with landslides from their slopes. The size distribution of
sediment used in the experiment is shown in figure. A size
distribution curve calculated with a length scale ratio 1:20
from the experiment sediment is also shown (gray dot line),
which is very close to the size distribution of the Fencha Gully.
The density ρ of the loose sediment is 1,660 kg/m3. The discharge
scale ratio is 1: 202.5 and the volume scale ratio is 1:203 based on
Froude similarity (Finnemore and Franzini, 2003).

RESULTS AND DISCUSSION

Flume experiments were conducted to study the impact of stream
bed incision on the bank stability and the mechanism of
landslides. Table 1 lists the main results of nine runs of
experiments. The flow discharge (Q), the location of the
landslide section, the total volume of landslides (Vtotal) in each
run, and the total volume of sediment transported to the
downstream end of the flume (Sm) are listed. The
corresponding discharge (Qp) in the field and landslide
volume (Vp) are calculated with the discharge scale ratio and
the volume scale ratio are listed in the table as well.

Incision, Landslides and Sediment
Transportation
The stream flow scoured the bed and caused bed incision in the
experiment. Figure 5 shows the incision processes of three runs of
the experiment with different discharges.

For each run, the upstream (8.0 m), middle (4.0 m), and
downstream (0.0 m) are incised quickly at first and tend to be
stable later. The upstream section is incised deeper than the
middle and downstream, since the latter is supplied with
sediment from the upstream reach.

It was observed that numerous landslides occurred following
stream bed incision and lateral erosion at the bank toe. Figure 6A
shows a landslide in the experiment. As a comparison, a landslide
occurred in the Fencha Gully with similar characteristics about
20 times larger in the length scale is shown in Figure 6B.

The sediment eroded from the bed and the bank was transported,
in the form of bed loadmotion, to the downstream end of the flume.
There was almost no suspended load motion in the experiment
because the sediment is coarse and non-cohesive. The rate of
sediment transportation was measured at the outlet of the flume
with the sedimentation basin. The scouring rate of sediment from
the bed is defined as the weight of sediment scoured from the stream
bed per area per time. Figure 7 shows the varying processes of the
scouring rate (Rscour), the rate of sediment transportation (S) and
volume of landslide (V, see Figure 2D) in six runs, which are
calculated from the variation of the topography in the flume and the
sedimentation basin measured with TLS. In the runs with large flow
discharge (runs 3–1, 3–2, and 3–3) the volume and frequency of
landslide are larger than that with low discharge (run 1–1).

FIGURE 4 | Grain size distributions of sediment used in the experiment
and calculated size distribution curve, and size distributions of sediment from
the Fencha, Guxiang, Shengou and A’wang gullies.
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The bed souring is influenced by many factors including
flow discharge, incoming sediment from upstream, bed slope
and particle size. The scouring rate (Rscour) fluctuates because
landslides affect the rate (Figure 5). In the initial stage (in
light gray area), the high Rscour results in a high S (Shao et al.,
2002), whereas the frequency and scale of landslides are
relatively low during this time. As the test goes on, the
stream bed is scoured to a deep position, landslides occur

frequently with a large scale and high frequency (in dark gray
area).

The flow was maintained along the left wall in the upstream
section, and it flew to the right and scoured the right bank. Most
landslides occurred mainly in section 3 m downstream of the
entrance (see landslide section given in Table 1), because the
stream bed incision and lateral bank erosion were more obvious
than that in other sections. It was observed that lateral bank

TABLE 1 | Experimental results.

Run Q (L/s) Landslide section (m) Vtotal (m3) Sm (m3) T (min) Qp (m3/s) Vp (m3)

Weighed By TLS

1–1 4.17 3.6–5.2 0.308 2.48 2.57 59 7.46 2,464
1–2 3.0–5.0 0.160 2.56 2.51 53 1,280
1–3 2.4–3.2 0.083 2.42 2.32 46 664
2–1 5.56 1.0–3.4 (#1) 0.416 1.98 2.07 57 9.95 3,328

3.4–6.0 (#2) 0.154 1,232
2–2 3.0–4.0 (#1) 0.084 2.36 2.43 46 672

4.0–5.7 (#2) 0.104 832
2–3 2.0–4.0 (#1) 0.382 2.73 2.68 51 3,056

4.0–5.0 (#2) 0.200 1,600
3–1 6.94 2.0–4.5 0.337 2.60 2.52 37 12.41 2,696
3–2 1.0–4.0 0.384 2.54 2.58 32 3,072
3–3 1.3–4.6 (#1) 1.034 2.99 3.05 41 8,272

5.0–7.0 (#2) 0.247 1976

FIGURE 5 | Incision processes of runs 1–1, 2–2, and 3–3.

FIGURE 6 | (A) A landslide in the flume experiment. (B) A landslide in the Fencha Gully with similar characteristics.
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erosion played the same role as bed incision to cause landslides.
Therefore, an additional bed incision depth in vertical direction
can be calculated from the horizontal distance of bank retreatW,
as discussed in the next section.

Critical Conditions for Landslides
The critical conditions for landslides are associated with the
volume of landslide, incision depth and the potential landslide

energy (Wang et al., 2012, Wang et al., 2015), which depends on
the slope angle, incision depth and lateral bank erosion. Bed
incision is the dominant triggering mechanism for landslides in
the study area. Figure 8A shows the accumulated volume of
landslides of each section,VL, as a function of the average incision
depthH (see Figure 2D). The accumulated volume increases with
incision depth and grows suddenly and sharply as the incision
depth exceeds a critical value.

FIGURE 7 | Scouring rate (Rscour), rate of sediment transportation (S) and volume of landslide (V) at the main landslide section.
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Lateral bank erosion is another important triggering
mechanism for landslides (Wang et al., 2009; Lévy et al., 2012;
Malatesta et al., 2017). An effective incision depth denoted as HE

combines stream bed incision and lateral bank erosion (see
Figure 9), which can be expressed as follows,

HE � H +W tan α (1)

where H is the incision depth, W is the distance of bank retreat
and α is the angle of repose, which is 31° in this study.

Figure 8B shows an interval of critical effective incision depth
for sharply increasing accumulated volume of landslides. The

interval of critical effective incision depth HE is 0.2–0.3 m
(i.e., 4.0–6.0 m by length scale). When HE is less than this
range, the VL is generally less than 0.05 m3, which is mainly
caused by water erosion rather than gravitational erosion.

As shown in Figure 9, the potential landslide energy E is
defined as the potential energy of loose sediment per length on the
bank slope over a surface of repose angle to stream bed, which is
given by:

E � ∫H′

0
csB(z)zdz (2)

where H′ is the vertical distance from the top of a landslide to the
stream bed, cs is the specific weight of sediment, B is the width of
loose sediment over the surface of repose angle in horizontal
direction, and z is the vertical coordinate. The initial bank slope of
31° is used as the repose angle in the calculation of the potential
landslide energy E.

Figures 10A,B show the accumulated volume of landslidesVL,
and volume of each landslide V as function of the potential
landslide energy E, respectively. The landslide scale increases as
the stream bed incises and potential energy increases (Wang et al.,
2021). A critical value of E is found at 2,800 kgm/s2, above which
VL increases abruptly. This critical value in the Fencha Gully is
2.24 × 104 t·m/s2 according to the scale ratio of energy per length
of 1:203.

The experimental results are compared with field
measurements of three landslides in the Fencha Gully, the
locations of which are shown in Figure 11. Table 2 lists the
measured data and potential landslide energy calculated with Eq.

FIGURE 8 | (A) Accumulated volume of landslides VL vs. incision depth H. (B) Accumulated volume of landslides VL vs. effective incision depth HE.

FIGURE 9 | Schematic diagram of effective incision and potential
landslide energy.
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2. The potential landslide energy is larger than the critical value,
and the incision depth is critical, which agrees with the results in
the experiments.

CONCLUSION

An experimental study of landslides was done with a flume of
high bed gradient and bank slopes consisting of loose sediment, to
study the mechanism of landslides induced by stream bed
incision and the increasing potential energy for landslides. The
experiments were designed to generally simulate the Fencha

Gully. The results show that stream bed incision and lateral
bank erosion occur due to water flow scouring. Landslides or
bank failures are induced as a result of stream bed incision and
lateral bank erosion.

The mechanism of landslides is related to incision depth and
potential landslide energy. A critical value of effective incision
depth coupling vertical incision and lateral bank erosion for
landslides is illustrated. Landslides increase sharply if the
effective incision depth is higher than the critical value, which is
4.0–6.0 m in the Fencha Gully. The critical value of potential
landslide energy in the Fencha Gully is calculated with energy
scale ratio 1:203, which is 2.24 × 104 t·m/s2. Three landslides caused

FIGURE 10 | (A) Accumulated volume of landslides VL vs. potential landslide energy E. (B) Volume of landslide vs. potential landslide energy E.

FIGURE 11 | The locations of the computed cross sections of landslides in the Fencha Gully.

TABLE 2 | Details of three landslides in the Fencha Gully.

Landslide Volume of
landslide (m3)

Incision depth
(m)

Bank slope
angle (°)

E (t·m/s2) Critical E
(t·m/s2)

A 1.2 × 106 6.0 38.4 8.89 × 104 2.24 × 104

B 5.0 × 103 4.5 37.8 5.73 × 104

C 1.2 × 105 4.3 35.0 4.61 × 104
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by stream bed incision and lateral bank erosion in the Fencha Gully
are measured, and compared with the critical conditions obtained
from the experiments. The potential landslide energy is larger than
the critical value, and the incision depth is critical, which agrees
well with the results in the experiments.
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