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Chain disasters often cause greater casualties and economic losses than single disasters.
It plays an important role in the prevention and control to draw the susceptibility map and
hazard map of geological hazards. To the best of our knowledge, the existing models are
not suitable for the study of earthquake–geological disaster chains. Therefore, this study
aims to establish a DNN model suitable for the study of earthquake–geological disaster
chains. Firstly, nine key factors affecting geological disasters were selected and multi-
source data sets were established based on geological disaster points in the study area.
Secondly, the DNN model is trained to calculate the susceptibility of landslides and is
discussed with the Support Vector Machine (SVM) model, Logistic Regression (LR) model,
and Random Forest (RF) model. Finally, verify with the ROC curve. The verification results
show that the DNN model has the highest accuracy among the proposed models. It is
suitable for drawing geological hazard susceptibility maps and hazard maps. Therefore, it
is proved that the model can be applied for the prediction of chain disasters and is a
promising tool for geological hazard assessment.

Keywords: hazard assessment, earthquake disaster chains, geological disasters, deep neural networks (DNN)
model, machine learning

1 INTRODUCTION

Geological disasters are one of the major natural disasters in China (Yu and Cheng, 2013). The
occurrence of geological disasters is not independent; rather, their formation and activity process
have a chain phenomenon (Fan et al., 2019). The occurrence of a main disaster often leads to a series
of secondary disasters. This phenomenon is called the disaster chain. The secondary disasters caused
by earthquakes can be categorized into mountain disasters, social disasters, economic disasters, and
ecological environment disasters (Pourghasemi et al., 2012). Major secondary disasters induced by
earthquakes are as follows (Table 1). The disaster chain can be divided into causal chain, homologous
chain, mutually exclusive chain, and even row chain. A causal chain disaster only directly or
indirectly causes another disaster. A homogeneous disaster chain is a series of disasters that are
induced by the same cause and occurring in the same area simultaneously. Chain disasters will drive
gradually enlarged accumulation of disasters, leading to more serious damage than a single disaster
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(Liu and He, 2018). For example, a magnitude 9.0 earthquake in
Sumatra, Indonesia in 2004 triggered a huge tsunami across the
Indian Ocean, claiming 232,000 deaths. In fact, the number of
deaths due to the tsunami far exceeded that due to the earthquake
(Rajendran et al., 2005; Tsuji, 2006). In another example,
Hurricane Katrina in the United States in 2005 caused large-
scale floods and killed thousands of people (Fritz et al., 2007).
Similarly, the 2011 Fukushima earthquake in Japan resulted in a
tsunami and a leak in a nuclear power plant, killing tens of
thousands of people (Shi et al., 2010). Therefore, research from
the chain perspective would facilitate prevention and reduction of
risks with chain disasters (Zhou et al., 2015; Fan et al., 2019;Wang
et al., 2020b; Liu et al., 2020).

As a destructive natural disaster, most of the losses in an
earthquake are caused by its chain disaster. The earthquake
disaster chain is one of the four major disaster chains (Shi,
2002). The magnitude eight earthquake in Wenchuan, China
on May 12, 2008, is a typical earthquake–geological disaster
chain. The earthquake caused tens of thousands of large-scale
landslides and collapses, killing more than 80,000 people. More
than 100,000 km2 of land was destroyed. Then, it was followed by
two heavy rainstorms, which increased the probability of
mudslides and floods. Meanwhile, landslides blocked the rivers
to form barrier lakes, part of the landslide dam collapsed, and the
flood caused serious damage downstream (Xu et al., 2009; Kumar
et al., 2017; Singh, 2020). Therefore, it is very important to assess

the hazard of earthquake disaster chain for comprehensive
disaster risk management.

At present, deep learning has been widely used in various
fields due to its powerful self-learning function. Based on
unsupervised learning methods, it can optimize training data
based on feature learning. Compared with the traditional neural
network model, the deep learning model has more layers of
structure, stronger learning ability, and stronger ability to
express the characteristics of research objects than traditional
methods. Therefore, it has the potential applications in natural
disaster spatial modeling and prediction (Liu and Wu, 2015;
Wang et al., 2020a; Wu et al., 2020; Fang et al., 2021). Plenty of
studies have applied machine learning models to produce
reliable susceptibility maps (Singh and Kumar, 2017; Singh
and Kumar, 2018; Hussain et al., 2019). At present, Bayesian
network models, Convolutional Neural Network (CNN) models
(Wang et al., 2019b), Logistic Regression (LR) models (Bui et al.,
2016), Decision Trees (Hong et al., 2018), Support Vector
Machines (SVMs) (Wang et al., 2019a; Deb et al., 2020;
Mansaray et al., 2020; Mohebbi Tafreshi et al., 2020), and
Random Forests (RFs) (Kim et al., 2018; Mansaray et al.,
2020; Sahin, 2020) are often used for geological disaster risk
assessment. However, most of the existing models describe a
single disaster and cannot fully describe the structure and
probability of chain disasters. Therefore, a model suitable for
earthquake–geological disaster chains was established by using

TABLE 1 | The potential secondary disasters caused by earthquakes.

1 landslide 8 surface collapse
2 debris flow 9 toxic gas leak
3 collapse 10 fire
4 flood 11 ground fissure
5 barrier lake 12 outbreaks of infectious diseases such as plague
6 tsunami 13 degradation of ecosystem and sharp decline of biodiversity
7 snowslide 14 public health problems such as destruction of drinking water sources and food shortages

FIGURE 1 | The location and geological disaster points of Mao County, China.
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deep learning in this study. To verify the reliability of the model,
this model was compared with several advanced machine
learning technologies. As a case study, the susceptibility and
hazard of geological disasters in Mao County area are evaluated,
and the receiver operating characteristics (ROC), Kappa index,
and various statistical evaluation indicators are used to assess
and verify the optimality of the model established in this study.

2 STUDY AREA AND DATA

2.1 Study Area
Mao County is located in the northwestern part of Sichuan
Province, the southeastern edge of the Qinghai-Tibet Plateau in
the southeastern part of the Aba Tibetan and Qiang
Autonomous Prefecture, and the upper reaches of the
Minjiang River. The total area is 3,885.6 km2, the annual
mean temperature is 11.2°C, the annual precipitation is 490.7
mm, the sunshine duration is 1,557 1°h, and the total population
is 110,000 people. Most of Maoxian peaks are about 4,000 m
above sea level; the terrain is dominated by alpine valleys, and
they are located in the Longmenshan fault zone. Due to
numerous mountains and valleys, strong neotectonics
movement, and frequent and destructive disasters such as
earthquakes, landslides, collapses, and mudslides, the
complex disaster-generating environment and the
distribution pattern of disaster-bearing bodies have made the
regional characteristics of the symbiosis of multiple disasters
increasingly apparent. The geographical location of Maoxian
County is shown in Figure 1.

2.2 Longmenshan Fault Zone
The Longmenshan fault zone is a northeast–southwest trending
fault zone, 500°km long and about 50–70°km wide. It belongs to
an important transitional zone of terrain, climate, soil, vegetation,
and biodiversity in China (Verberne et al., 2010). It is formed by
the eastward extrusion of the Qinghai-Tibet Plateau and the
blocking of the South China Plate. The geological structure and
evolutionary history are quite complex. The surface topography
and rock properties are completely different in various sections,
with strong segmentation characteristics (Ran et al., 2010),
including three main fault zones: the Longmenshan-Houshan
fault zone, also known as the Wenchuan-Maowen fault; the
Longmenshan main central fault zone, also known as Yingxiu-
Beichuan fault; and the Longmenshan-Qianshan fault zone, also
known as Guanxian-Pengxian fault (Lichun et al., 2013). The
Longmenshan fault zone is an earthquake-hazard zone, with all
three main stems at risk of earthquakes of magnitude seven and
above. TheWenchuan earthquake in 2018 occurred in the middle
section of the Longmenshan fault zone, which was severely
damaged after the earthquake (Lei and Zhao, 2009)
(Figure 2). (Fault zone data come from the China
Seismological Network Center.)

2.3 Data
This study considered eight impact factors, namely, six
topographic factors (elevation, slope, aspect, plane curvature,

profile curvature, land use type, and distance from fault line),
a geological factor (lithology), and a meteorological factor
(annual mean rainfall). The 30-m-resolution digital elevation
model (DEM) was used to extract the topographical factors in
this study. Geological seismic factors come from the websites of
the China Earthquake Administration and China Geological
Administration. The specific description of these control
factors is as follows (Figure 3).

Earthquake intensity refers to the intensity and influence of
ground motions caused by earthquakes and is an important
inducing factor in the chain of earthquake–geological disasters.
Based on 153 isoseismal data and statistical analysis, the intensity
I, magnitude M, and epicenter distance (or distance from the
earthquake fault zone) R are given. The relationship between
(km) (Sun, 2009):

I � 0.92 + 1.63M − 1.39R (1)
Assuming that an earthquake with a magnitude of 6.0 on the

Richter scale occurs in the demonstration area, Eq. 1 can be
rewritten as a function of the seismic intensity I and the
epicenter distance (or the distance from the seismic fault
zone) R:

I � 10.7 − 1.39R (2)

FIGURE 2 | Longmenshan fault zone.
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Based on Eq. 1 and Eq. 2, the seismic intensity map of the
study area in case of an earthquake with a magnitude of 6.0 on the
Richter scale can be obtained (Figure 3).

Elevation is strongly affected by earthquakes, and high
altitudes affected by earthquakes may produce relatively strong
vibrations and are prone to geological disasters such as landslides.
The DEM data used in this study come from the ASTER-GDEM
digital elevation data jointly developed by Japan’s METI and the
United States’NASA. The DEM data with a precision of 30 m are
obtained and processed by ArcGIS to obtain terrain data such as
slope, aspect, and curvature.

The difference in the aspect of the slope will lead to different
precipitation, sunlight, vegetation distribution, and the degree of
weathering of the slope (Dai and Lee, 2002; Pourghasemi et al.,
2012). The aspect direction is divided into flat (−1°–0°), shade
(0°–45°, 315°–360°), semi-shady slope (45°–90°, 270°–315°), semi-
sun slope (90°–135°, 225°–270°), sunny slope (135°–225°), and flat
slope 5 grades. Slope describes the degree of inclination of the
slope. Due to gravity, steep slopes are more prone to geological
disaster (Xu and Xu, 2012).

The curvature reflects the complexity of the terrain. Plane
curvature is the degree to which the curve deviates from a straight
line, and the profile curvature is essentially the rate of change of
the ground slope. A positive curvature means that the slope is
convex outward, a negative curvature means that the slope is
concave inward, and a zero value means a straight slope (Xu et al.,
2014).

Different types of land cover will also cause differences in
hydraulic parameters such as mineral composition, structural
structure, density, porosity, seismic strength, and permeability
coefficient (Pham et al., 2016). According to the ratio of count of
disasters to area of disasters in each land use type, classify them;
the first category: cropland and water; the second category:
shrubland and impervious surface; and the third category:
forest, grassland, bare land, and land cover types that do not
exist in the study area: wetland, tundra, and snow/ice.

Lithology is one of the commonly used geological factors.
Some rocks have high seismic strength and some are relatively
brittle. A total of 12 strata of different lithologies are distributed
in the study area, which are divided into six categories:
carbonate, shale, sandy rock, granite, slate, and volcanic rock.
The lithology map and geochronometer map were digitized
from geological maps obtained from the China Geology Survey.
Faults control the formation and development of landslides and
geological processes near the faults are more active. The distance
to faults were calculated by using spatial shortest distance
method.

Rainfall is one of the important factors that induce geological
disaster. The complex pores and cracks in the landslide provide
channels for water. The pore pressure causes changes in the
seismic strength of the rock and soil, which affects the stability of
the slope. The rainfall data were downloaded at the China
Meteorological Data Service Center and the annual average
rainfall data are averages from 1981 to 2018. To quantify the

FIGURE 3 | Thematic maps of key factors. (A) Seismic intensity, (B)
elevation (C) aspect, (D) slope, (E) profile curvature, (F) plane curvature, (G)
land cover, (H) lithology (I) rainfall, and (J) distance to fault zone.
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above influencing factors of earthquake disaster chains, the
classification system of these influencing factors is listed in
Table 2.

Aiming to establish the hazard model of earthquake disaster
chains, the study firstly established a 30 m * 30 m grid net in the
study area and classified the data set into binary categories, that is,
disasters have occurred and no disasters have occurred. The
assigned value of geological disasters that have occurred is “1”,
and the value of non-occurring disasters is “0”. Then, the
continuous variables of each factor feature are re-divided and
recorded in the attribute table of each grid net, and the reclassified
method of natural breaks is used to classify them to construct the
multi-source data set of earthquake disaster chain. We extracted
4,753,899 pieces of data from the study area. If the whole area of
geohazards is used as positive samples, it will produce serious
spatial autocorrelation; therefore, each geohazard needs to be
represented by one point (Dou et al., 2020). It is known that there
are 427 geological disaster points caused by earthquakes, namely,
106 unstable slopes, 89 collapse disasters, 181 landslide disasters,
and 51 debris flow disasters. An equal number of 427 non-
hazardous points are randomly selected from the data set, and
the disaster points are used as a sample set. Select 70% of the
sample set as the training set and 30% of the test set.

3 METHODS

3.1 System Components of the Earthquake
Disaster Chains
The earthquake disaster chain in the study area is mainly
composed of earthquake–collapse–landslide–debris flow. There

are some correlations between them, and the relationship is
shown in Table 3.

3.2 Deep Learning Method and Comparison
Algorithms
In this study, a total of four classifiers, namely, Deep Neural
Network (DNN), SVM, RF, and LR, are selected for comparison.
Integrate all the samples of disasters into a data set to model the
entire chain of geological disasters. Use Python programming
environment, Tensorflow, Matlab 7.11, and ArcGIS 10 for
analysis (Figure 4).

3.2.1 Deep Neural Network (DNN) Model
DNN can be understood as a neural network with many hidden
layers; it can also be called multi-layer perceptron (MLP). A
typical neural network model usually contains three layers,
namely, the input layer, the hidden layer, and the output layer
(Wang et al., 2009), which is composed of several Restricted
Boltzmann Machine (RBM) models. RBM is an available
stochastic neural network. When the first layer of RBM model
is trained, the result is used as the input layer of the next layer of
RBM model to continue training, and so on, until the final result
is obtained. Compared with the traditional neural network, the
DNN model can contain multiple hidden layers, which can
enhance the expressive ability of the model; the neurons in the
output layer can also have more than one output, and can have
multiple outputs, so that the model can be flexibly applied to
classification return. The model parameter settings in this
experiment are shown in Table 4. The other three models all
use the default parameters of the Sklearn (Scikit-Learn) module.

TABLE 2 | The classification of each influencing factor value.

Influencing factors Class

1 2 3 4 5

Elevation 889–2,063 2,063–2,685 2,685–3,253 3,253–3,836 3,836–5,148
Aspect Sunny slope Semi-sunny slope Flat Semi-shady slope Shady slope
Slope 0–16.69 16.69–26.56 26.56–35.42 35.42–45.30 45.30–86.85
Plane curvature >0.33 0.10–0.33 −0.10–0.10 −0.33~ -0.10 ＜ -0.33
Profile curvature >0.42 0.11–0.42 −0.11–0.11 −0.42~ -0.11 ＜ -0.42
Land cover Impervious surface Cropland, Bare land Shrubland Forest, Grassland Wetland, Water, Snow/Ice
Lithology Carbonate Shale Sandy rock Granite Slate
Rainfall ＜50 50–60 60–70 70–80 >80
Distance to fault zone ＜500 500–700 700–1,000 1,000–2,000 >2,000

TABLE 3 | Variables of earthquake disaster chains.

Events Variables

Earthquake Magnitude and intensity
Collapse Earthquake, elevation, aspect, slope, curvature, land cover, lithology, rainfall, distance to fault zone
Landslide Earthquake (or not), collapse (or not), seismic intensity, elevation, aspect, slope, curvature, land cover, lithology, rainfall,

distance to fault zone
Debris flow Earthquake (or not), collapse (or not), landslide occurs or not, seismic intensity, elevation, aspect, slope, curvature, land

cover, lithology, rainfall, distance to fault zone
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DNNs can play an important role in risk assessment due to their
strong nonlinear learning and fitting capabilities (Lecun et al.,
2015).

3.2.2 Random Forest (RF) Model
RF refers to a classificationmodel that uses multiple decision trees
as classifiers to train and predict samples. The basic principle is to
use bootstrap resampling technology to randomly select a certain
number of samples from the original training samples to generate
a new training sample set, repeat this, and then generate multiple
completely independent decisions based on the selected new
training samples tree classifier, and these combined decision
trees are RF models (Youssef et al., 2016; Chen et al., 2017b).
The RF model has the advantage of processing high-dimensional
samples and does not need to reduce the latitude.

3.2.3 Logistic Regression (LR) Model
The LR model is a multivariate regression method, a supervised
multivariate statistical learning method mainly used to classify
samples; its purpose is to find the best-fitting model, a set of
independent parameters to describe the existent or non-existent
relationship (Chen et al., 2017a).

3.2.4 Support Vector Machines (SVM) Model
SVM is a machine learning method based on statistical learning
theory that transforms original input space into a higher-
dimensional feature space to find an optimal separating
hyperplane (Abe, 2001; Kavzoglu and Colkesen, 2009). It is
mainly used to solve data classification problems in the field
of pattern recognition. It shows many unique advantages in
solving small sample, nonlinear, and high-dimensional pattern
recognition, and can be extended to other machine learning
problems such as function fitting.

3.3 Model Evaluation
Model evaluation is an absolutely essential component in the
development of hazard assessment of earthquake disaster chains
(Pourghasemi et al., 2012). In order to evaluate the overall
performance of the three geological hazard susceptibility
models, the true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) are chosen as the statistical basis, and
use Precision, Recall, F1 value, Accuracy, the overprediction rate
(OPR), the unpredicted presence rate (UPR), Matthews correlation
coefficient (MCC), and receiver operating characteristic (ROC)
curve methods to verify the accuracy of the model (Rong et al.,
2020).

Precision refers to the proportion of correctly categorized
grids identified by the model (Shen and Cao, 2017):

Precision � TP

TP + FP
(3)

Recall is the proportion of the landslide grids rightly detected
by the model; its formula is as follows:

Recall � TP

TP + FN
(4)

The F1 value is the weighted harmonic average of Precision
and Recall, which can be calculated by the following formula:

F1 � 2 ×
Precision × Recall

Precision + Recall
(5)

Accuracy is the proportion that the model can correctly
classify all positive and negative samples, which can be
estimated using Eq. 6:

Accuracy � TP + TN

TP + TN + FP + FN
(6)

FIGURE 4 | Flow chart of this paper.
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OPR, also called the commission error, is the proportion of the
wrongly classified disaster grids identified by the model:

OPR � FP

TP + FP
� 1 − Precision (7)

UPR is the proportion that the model fails to classify correctly
in the actual disaster point grid, which is calculated using Eq. 8:

UPR � FN

TP + FN
� 1 − Recall (8)

MCC can evaluate a binary classification model. The MCC
formula is as follows:

MCC � TP × TN − FP × FN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (9)

The range of MCC values is from −1 to 1. The larger the value,
the more accurate the model.

The ROC curve is a common method for evaluating
landslide prediction models (Bui et al., 2016). It is plotted
based on the “Sensitivity” and the “1 − Specificity,”
which helps to indicate the quality of the probabilistic
prediction system (Akgun, 2012), and it has been used for
this study:

Sensitivity � TP

TP + FN
(10)

Specificity � TN

TN + FP
(11)

The model performance can be indicated by calculating the
area under the curve (AUC). The threshold for AUC values is
0.5–1. The closer it is to one, the more accurate is the model
(Alatorre et al., 2011).

3.4 Geological Disaster Hazard Assessment
Model
Geological disaster hazard assessment model is established as
follows:

H � S × T (12)
whereH is the hazard of geological disasters, S is the susceptibility of
geological disasters, and T is the seismic intensity. From this, the
hazard assessment map of the study area is obtained. The hazard
assessment of earthquake disaster chainmaps was classified into very
high, high, medium, low, and very low.

4 RESULTS

In the environment of python 3.7, this study firstly uses the graded
factor levels in the database as input data for the DNN model, and
uses the extracted control factor information to train and test the
DNN model. Then, based on the training data obtained by the
DNN model, the geological disaster sensitivity value of each grid
point is obtained through ArcGIS, and the Natural Breaks
approach is used to divide it into five categories, as shown in
Figure 5. The areas with very high susceptibility of geological
hazard in red are concentrated near the locations with high
earthquake intensity. This is the same as we expected (Figure 5).

According to Eq. 12, the hazard assessment of earthquake
disaster chain maps is shown in Figure 6. High-risk areas of
geological disasters are mainly concentrated near the fault zone.
The higher the seismic intensity is, the stronger the geological
activity is. What is more, it has a higher risk of geological disasters.

5 DISCUSSION

In order to verify the model, this study chooses a variety of
evaluation methods based on TP, TN, FP, and FN to evaluate

TABLE 4 | DNN model hyper-parameter setting table.

Parameter Description Settings

Lr Float (> = 0) Learning rate 0.001
beta_1 Float type, 0 < beta <1 (~1) 0.9
beta_2 Float type, 0 < beta <1 (~1) 0.999
Epsilon Float > = 0, Blur factor, If set to None, the default is Kepsilon (). This parameter is a very small number, and its main function is

to prevent division by zero
1e-08

Decay Float > = 0. The learning rate drops with each update 0.0

FIGURE 5 | Geological disaster susceptibility map.
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different models. TP is the data in which the predicted value and
actual value obtained by the model are both positive samples. FP is
the data whose predicted value obtained by the model is a positive
sample and the actual value is a negative sample. TN is the data in
which the predicted value and actual value obtained by themodel are
both negative samples. FN is the datawhose predicted value obtained
by the model is the negative sample and actual value is the positive
sample. Get their values through statistics. Table 5 shows the
multiple validation indexes of DNN, RF, LR, and SVM models.

From the results, several models generally have higher prediction
effects, especially the DNN model. The higher the precision, the
better the model predicts negative samples. A higher recall value
proves that the model has a better prediction effect on negative
samples. The MCC coefficient is an indicator of the comprehensive
performance of the model. So, the DNN model is more sensitive to
the prediction of non-landslide points. Figure 7 shows the ROC
curves of the four models. The DNN model has the highest AUC
value, followed by LR, SVM, and RF.

The formation of geological disasters is a very complex
process, which is influenced by several topographic conditions
and environmental factors. A geological hazard map is of great
significance to the spatial analysis of geological hazards.

This study proposes a DNN model suitable for the
earthquake–geological disaster chain, which evaluates the risk
of geological disasters in Maoxian County. According to the
visual analysis of the disaster risk map of the
earthquake–geological disaster chain, the places with high risk
of geological disasters are concentrated. It is near the fault zone
and is mainly affected by earthquakes. The higher the seismic
intensity, the stronger the geological activity and the more likely
that geological disasters will occur.

The properties and applicability of these models need to be
validated and evaluated by different perspectives andmethods. It can

FIGURE 6 | The hazard map of geological disaster.

TABLE 5 | Model validation results using multiple methods.

Model Test data set Validation methods Results

DNN TP 117 Precision 0.914
TN 122 Recall 0.951
FP 11 F1 0.932
FN 6 Accuracy 0.830

OPR 0.086
UPR 0.049
MCC 0.868
AUC 0.975

RF TP 119 Precision 0.952
TN 118 Recall 0.922
FP 6 F1 0.937
FN 10 Accuracy 0.823

OPR 0.048
UPR 0.078
MCC 0.874
AUC 0.954

LR TP 118 Precision 0.930
TN 120 Recall 0.930
FP 9 F1 0.930
FN 9 Accuracy 0.826

OPR 0.071
UPR 0.071
MCC 0.859
AUC 0.967

SVM TP 115 Precision 0.898
TN 121 Recall 0.943
FP 13 F1 0.920
FN 7 Accuracy 0.819

OPR 0.102
UPR 0.057
MCC 0.845
AUC 0.964

FIGURE 7 | The ROC curve of the four models.
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be seen from the data in Table 4 that the model is very effective in
predicting positive and negative samples, especially for negative
samples. This article discusses and compares the DNN model
created in this article with the other three commonly used
models. From the results, it can be seen that the AUC values of
the fourmodels are DNN, LR, SVM, and RF, and the accuracy of the
DNNmodel created in this article (Accuracy = 0.830, AUC = 0.975)
is higher than that of the other three models, which proves that this
model has good performance. It is suitable for the chain of geological
disasters induced by earthquakes and provides good ideas for future
prevention and early warning.

6 CONCLUSION

Geological disasters are one of the most common natural
disasters. Collapses, landslides, and debris flows are the three
most important types. This study proposes a hazard assessment
model suitable for the earthquake–geological disaster chain. The
model is created by DNN, and ArcGIS is used to generate the
earthquake–geological disaster chain susceptibility map and the
hazard map. Through the observation of the hazard map of the
earthquake disaster chain, it is found that the high-risk area is
mainly located in the location with high earthquake intensity and
close to the fault zone. This article also lists three commonly used
models, RF, SVM, and LR, for comparison, and the results show
that the accuracy AUC value of the DNNmodel is higher than the
other three. It shows that the model is suitable for the study of the
earthquake–geological disaster chain. It performs well and plays

an important role in the prediction of potential landslides in the
future. Besides, it can provide a decision-making basis for
landslide warning and prevention.
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