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The Zhangbaoshan (ZBS) super-large Rubidium deposit, located in the Eastern Tianshan,
is a typical granite-type Rb deposit. The ZBS deposit is mainly hosted in the highly evolved
Baishitouquan (BST) pluton enriched in F and Rb, which exhibits five lithological zones from
the bottom to the top: leucogranite (zone-a), amazonite-bearing granite (zone-b),
amazonite granite (zone-c), topaz-bearing amazonite granite (zone-d) and topaz albite
granite (zone-e), as well as minor small lodes of amazonite pegmatite. Two types of zircon
were identified from the BST pluton. Type-I zircons mainly occur in the zone–a, are
characterized by obvious oscillatory zoning, high Zr contents (47.4–67.3 wt% ZrO2) and
Zr/Hf ratios (21.72–58.23), low trace element concentrations, and heavy
rare earth elements (HREE)–enriched patterns with prominent positive Ce anomalies
(Ce/Ce* � 1.21–385) and strong negative Eu anomalies (Eu/Eu* � 0.008–0.551),
indicative of early magmatic zircon. Type–II zircons mainly occur in the upper zones
(zone-c to zone-e), exhibit porous and dark Cathodoluminescence images,
inhomogeneous internal structure, plenty of mineral inclusions, low Zr (38.7–51.0 wt%
ZrO2) and Zr/Hf ratios (3.35–11.00), high Hf (34,094–85,754 ppm), Th (718–4,980 ppm), U
(3,540–32,901 ppm), Ta (86.7–398 ppm), Y (1,630–28,890 ppm) and rare earth elements
(REEs) (3,910–30,165 ppm), as well as slightly HREE–enriched patterns and significant
M–type tetrad patterns with t3 values (quantification factor of tetrad effect) of 1.51–1.69. It
is suggested that the type–II zircons are crystallized from a deuteric F–rich fluid coexisted
with the highly evolved residual magma during the transition from the magmatic to
the F–rich hydrothermal stage of the BST pluton. The F–rich fluid exsolution during the
magmatic–hydrothermal transition is one of the most important factors controlling
the modification of highly evolved granite and related Rb enrichment and
mineralization. The type–I zircon samples from zone–a yield concordant ages of 250 ±
2.5 Ma and 250.5 ± 1.7 Ma, respectively, indicating that the BST pluton was emplaced
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in the Early Triassic. The type–II zircons from zone–c to zone–e yield lower intercept U–Pb
ages between 238 and 257Ma, which may represent the age of F–rich fluid–melt
interaction during the transition from the magmatic to the hydrothermal stage. The
mineralization of the ZBS super–large Rb deposit should have occurred shortly after
emplacement of the BST pluton in the Early Triassic. Combined with available data, it is
suggested that the Triassic is an important period for granitic magmatism and rare metal
metallogeny in the Eastern Tianshan.

Keywords: rubidium deposit, f-rich highly evolved granite, hydrothermal zircon, zircon alteration, Eastern tianshan

INTRODUCTION

As a common accessory mineral in a variety of rocks, zircon has
long been recognized as an excellent geochronometer due to its
high U, Th and low common Pb contents, and high closure
temperature for the U–Th–Pb system (Geisler et al., 2007; Harley
et al., 2007). Zircon can also incorporate considerable amounts of
temperature–or process–sensitive trace elements, including Hf, Y,
Ti and REEs during crystallization, which make it a useful tool to
fingerprint the mineral–melt–fluid processes during crust
formation and evolution, hydrothermal alteration and
mineralization (Belousova et al., 2006; Geisler et al., 2007;
Hanchar and Van Westrenen, 2007; Harley et al., 2007).

Zircon is ubiquitous in granitoids and has generally been
considered as magmatic in origin (e.g., Hoskin, 2005; Jiang
et al., 2020). However, zircons of both magmatic and
hydrothermal origin commonly occur in highly evolved
granite and pegmatite (e.g., Yang et al., 2014; Li H. et al.,
2018; Li X.-C. et al., 2018; Huang et al., 2020). In addition,
recent studies have suggested that zircons are susceptible to
hydrothermal alterations (Erdmann et al. 2013; Yang et al.,
2014; Li and Zhou, 2015; Takehara et al., 2018; Liu et al.,
2019), and the crystal structure, chemical composition and
isotopic system of zircons could be disturbed during
hydrothermal alteration processes, including recrystallization,
dissolution–reprecipitation and metamictization (Geisler et al.,
2007; Kusiak et al., 2009). Zircon has been proved to be modified
by F–rich fluids (Veksler et al., 2005; Han et al., 2019), and Zr and
trace elements (e.g., REEs, Ta, Ti, Hf, Th, and U) within zircon
have been suggested to be mobile in alkali–and F–rich highly
evolved magmatic systems (Veksler et al., 2005; Ayers et al.,
2012). Therefore, zircons in F–rich highly evolved magmatic
systems are generally complex, and caution should be taken to
interpret their elemental and isotopic data.

The Zhangbaoshan (ZBS) super–large rubidium deposit is a
typical granite–type Rb deposit, which is mainly hosted in the
highly evolved Baishitouquan (BST) pluton and partly in the
other pluton around the BST in the Eastern Tianshan, Northwest
China (GPGSI, 2015). The BST pluton is characterized by high
SiO2, Na2O, K2O, Li, Rb, Cs and F, low Ti, Fe, Ca, and Mg
contents, is weakly peraluminous (A/NKC � 1.00–1.11), and has
low K/Rb, Al/Ga, Y/Ho, Zr/Hf and Nb/Ta ratios (Gu et al., 2003).
It can be divided into five lithological zones based on the mineral
compositions, which are considered to be formed by successive
fractionation crystallization and F–rich fluid–melt interaction

(Gu et al., 2011). Previous studies have mainly focused on the
petrology and geochemical feature of the BST pluton (Gu et al.,
2003; Gu et al., 2011;Wu et al., 2011), however, little attention has
been paid to the associated Rb enrichment and mineralization
mechanism. Although it is generally suggested that Rb
mineralization is related to highly evolved granitic systems,
our current understanding of the geological processes
governing Rb mineralization is still limited and controversial
(Han et al., 2021). Furthermore, the emplacement age of the BST
pluton and the timing of the Rb mineralization are still unclear
(Gu et al., 1994; Liu et al., 2008), which has hindered a better
understanding of the formation of the granite and the Rb
mineralization mechanism.

In this paper, we present new results of detailed petrographic
characteristics, chemical composition and LA–ICP–MS U–Pb
ages of zircons from each lithological zone of the BST pluton.
Using these data, we identify two types of zircons and constrain
their origin, which is crucial for correctly determine the age of
granite emplacement and Rb mineralization. We also discuss the
implications of our results for illustrating the magmatic and
hydrothermal evolution process of the BST pluton and Rb
deposit, which may provide new insights for the formation of
Rb and F–rich highly evolved granites.

GEOLOGICAL BACKGROUND

The Central Asian Orogenic Belt (CAOB) is the world’s largest
Phanerozoic accretive orogenic belt, surrounded by the Siberian,
European, Tarim and North China cratons (Figure 1A; Xiao
et al., 2004; Jahn, 2004; Windley et al., 2007; Wang et al., 2014;
Xiao et al., 2015; Li et al., 2017; Deng et al., 2017). The Eastern
Tianshan is considered as the southernmost segment of the
CAOB, located at the junction of the Junggar Block and
Turfan–Hami Block (Figure 1B). From north to south, the
Eastern Tianshan is composed of the Bogda–Harlik Arc, the
Jueluotag Arc belt, and the Central Tianshan Block, respectively
(Figure 1C; Coleman, 1989; Sengor et al., 1993; Xiao et al., 2004;
Shu et al., 2011; Zhang et al., 2016).

The Bogeda–Harlik Arc is mainly composed of
Ordovician–Carboniferous volcanic rocks, granites and
mafic–ultramafic complexes (Gu et al., 2001). The Jueluotag
Arc belt can be subdivided into three subunits from north to
south, which are the Dananhu–Tousuquan Arc, the Kanggur
Basin, and the Aqishan–Yamansu Arc, respectively (Figure 1C).
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The Dananhu–Tousuquan Arc, north of the Kanggur Fault,
mainly consists of Ordovician–Carboniferous volcanic and
pyroclastic rocks and accretionary complexes (Xiao et al.,
2004; Wang Y. et al., 2018; Muhtar et al., 2020b). The
Kanggur Basin, located between the Kanggur Fault and
Yamansu Fault, is mainly composed of Carboniferous
volcanic–sedimentary rocks, with intense ductile shearing
and a large right–lateral slip throughout the basin (Xu et al.,
2003; Wu et al., 2018). The Aqishan–Yamansu Arc, south of the
Yamansu Fault, mainly consists of Carboniferous volcanic,
volcani-clastic, terrigenous clastic sedimentary rocks and
limestones (Hou et al., 2014; Wang Y. et al., 2018). The
Central Tianshan Block is mainly composed of Precambrion
volcano–sedimentary rocks (Chen, 1999; Shu et al., 2004; Xiao

et al., 2004; Lei et al., 2011). Most of these rocks have been
metamorphosed to migmatized schists, gneisses, marbles and
amphibolites (Hu et al., 1997).

The Eastern Tianshan has a wide distribution of magmatic
rocks, which are mainly emplaced during the Paleozoic (e.g., Gu
et al., 2006; Zhou et al., 2010; Chen et al., 2011; Zhang et al., 2014;
Chen et al., 2019). Triassic granitoids have been identified in the
Eastern Tianshan during the past decade and various Triassic
granite–relatedW, Mo and Rb deposits have also been discovered
in the Eastern Tianshan (shown in Supplementary Appendix
Table 1). The mineralizing characteristics and zircon U-Pb ages
of Rb-bearing granites in the Eastern Tianshan are listed in
Supplementary Appendix Table 2. This suggests that the
Triassic was an important magmatic and metallogenic period

FIGURE 1 | (A) Tectonic sketch map of the Central Asian Orogenic Belt (modified from Sengor et al., 1993). (B) Topographic and tectonic sketch map of Xinjiang,
Northwest China, and adjacent areas (modified fromMuhtar et al., 2020a). (C)Geological map of the Eastern Tianshan (modified fromWang et al. (2006) and Deng et al.
(2017)). (a–r represents dated Triassic granitoids and related metal deposits, please see name and reference information in Supplementary Appendix Table 1).
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in the Eastern Tianshan (Wu et al., 2010; Deng et al., 2017; Zhang
et al., 2017; Lei et al., 2020).

GEOLOGY OF THE ZHANGBAOSHAN RB
DEPOSIT

The ZBS Rb deposit, located in the eastern section of the Central
Tianshan Block, Eastern Tianshan, (Figure 1C), is a typical
granite–type Rb deposit (GPGSI, 2015). Recent exploration
identified that it is a super large Rb deposit, with ore reserves
(Rb2O) of about 67,080 tons (GPGSI, 2015). The main
Rb–bearing minerals in the deposit are microcline
(0.36–0.41 wt% Rb2O) and zinnwaldite (0.35–0.67 wt% Rb2O).
The Rb deposit is mainly hosted by the BST pluton, which
intruded into the Mesoproterozoic schists and gneisses and the
Carboniferous diorite. The BST pluton exhibits intrusive contacts
with the overlying Permian tonalite andmonzogranite (Figure 2).
Based on detailed petrological and mineralogical studies, the BST
pluton can be divided into five progressive lithological zones from
the bottom to the top, namely leucogranite (zone–a),
amazonite–bearing granite (zone–b), amazonite granite
(zone–c), topaz–bearing amazonite granite (zone–d) and topaz
albite granite (zone–e) (Gu et al., 2003; Gu et al., 2011).

Leucogranite (zone–a) is weakly altered and ash gray in color,
which is the main part of this pluton. This zone is mainly
composed of plagioclase (22–36%), K–feldspar (25–35%),
quartz (28–35%) and zinnwaldite (3–5%), exhibiting
medium–to fine–grained texture and massive structure. The

main difference between zone–b and zone–a is the occurrence
of amazonite (2–5%), as well as microcline (2–5%). As the content
of amazonite generally increases upwards from the zone–b to
zone–c (mainly 5–15%, and up to 20%), the lithology gradually
evolved from amazonite–bearing granite to amazonite granite
(Figure 3A). Correspondingly, the content of microcline
increases to 5–15% in zone–c, which is generally characterized
by cross–hatched twinning (Figure 3B). The zone–d is
characterized by the appearance of topaz (1–5%) in the form
of phenocrysts, and the main composition of this zone is
essentially similar to the amazonite granite (Figure 3C). The
zone–e exhibits an abrupt transition with zone–d below: this zone
mainly contains phenocrysts of topaz (10–20%) and quartz
(15–30%), and matrix of albite (45–60%), K-feldspar (10–15%)
and zinnwaldite (5–10%). Accessory minerals of the BST pluton
mainly consists of zircon, fluorite, garnet, cassiterite, magnatite,
apatite, monazite and columbite–group minerals.

Veins of the topaz albite granite (zone–e) cut and replace the
overlying tonalite locally (Figure 3D). There are several
amazonite pegmatite veins cutting through both the pluton
and overlying tonalite (Figure 3E). These amazonite pegmatite
veins show compositional zoning from a marginal
fine–grained muscovite–feldspar zone to a central pegmatitic
muscovite–quartz–microcline zone, with a thickness
of 0.3–1 m and length of 2–10 m. The high concentration of
volatiles (F and H2O) in zone–e and the appearance of amazonite
pegmatite veins indicate that the magmatic–hydrothermal
transition stage has played an important role in the formation
of the pluton (Gu et al., 2011).

FIGURE 2 | Simplified geological map of the Baishitouquan (BST) in the Central Tianshan Block.
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FIGURE 3 | Field photographs and microphotographs showing lithological characteristics of the BST pluton. Mineral symbols: Qz–quartz, Pl–albite, Kf–K-feldspar,
Amz–amazonite, Zwd–zinnwaldite, Mc–microcline, Tp–topaz, Gn–garnets. (A) Porphyritic texture of amazonite granite from zone–c. Hand specimen. (B)
Microphotograph showing the texture of amazonite granite. Microcline with cross–hatched twins has corroded K-feldspar and albite grains into optically continuous
relict. Crossed polarizers. (C) Prismatic topaz crystals occur as a phenocrysts in zone–d. Hand specimen. (D) The zone–e has penetrated and replaced the
overlying tonalite (country rock). (E) Amazonite pegmatite vein in zone–a. (F) Clustered crystals of hydrothermal mica occuring in the contact between the zone–e and
tonalite. (G) White mica and twin-free albite occurring as vein along mineral grains and fractures in zone-e. (H) Prismatic topaz crystals were replaced by
hydrothermal mica.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6827205

Zhi et al. Zircon in Zhangbaoshan Rubidium Deposit

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Hydrothermal alteration in the ZBS Rb deposit occurs mainly
in zone-e, including muscovitization, sericitization, albitization,
and fluoritization, which is principally represented by secondary
fluorite, white mica and albite. White mica and twin-free albite
replacing topaz and K-feldspar (Figure 3F) or occurring as veins
along mineral grain and fractures in zone-e (Figure 3G) can be
observed, indicating that they are produced by subsolidus
metasomatism. Moreover, clustered crystals of hydrothermal
mica with low Rb, Cs, Fe, Mn, Al and high Si, Ti, Mg
contents (unpublished data) can be observed at the contact of
zone–e and tonalite (Figure 3H), indicative of a hydrothermal
origin.

SAMPLING AND ANALYTICAL METHODS

Zircons from seven samples from zone–a (BST–27, 19KH–231),
zone–b (19KH–235), zone–c (19KH–238), zone–d (19KH–253),
and zone–e (19KH–250, xxx–22), with sampling depth of
1,490 m, 1,498 m, 1,509 m, 1,540 m, 1,558 m, 1,521 m, 1,573 m,
respectively, were extracted for zircon petrography observation,
U–Pb dating, and trace element analyses.

The distribution and paragenesis of the zircons in the granite
were examined in transmitted light using an optical microscope.
Zircon grains from each sample were separated by gravity and
magnetic methods, and mounted in one–inch epoxy resin disk.
The internal structure of single zircon crystals was studied by
Cathodoluminescence (CL) and Backscattered electron (BSE)
imaging. The CL and BSE images were collected by using a
JEOL JXA–8100 electron microprobe at the State Key Laboratory
for Mineral Deposits Research (SKLMDR), Nanjing University
(China), with operating conditions of 15 kV accelerating voltage
and 20 nA beam current. The U–Pb isotopes (206Pb, 207Pb,
208Pb,232Th and 238U) and trace elements (49Ti, 91Zr, 93Nb,
181Ta and rare earth elements (REEs) analyses were conducted
by a laser ablation–inductively coupled plasma–mass
spectrometer (LA–ICP–MS) in the SKLMDR. Coherent Geolas
Pro 193 nm laser ablation system and Thermal iCAP RQ
inductively coupled plasma mass spectrometry (ICP–MS) were
connected for the in situ dating, with a laser beam diameter of
32 μm. The zircon STDGJ (600 Ma, Jackson et al., 2004) was used
as an external standard to correct mass bias of the ICP–MS and
residual elemental fractionation. Mud Tank zircon (735 Ma) was
analyzed to observe the stability and reproducibility of the
instrument. NIST 610 and 91Zr were used as external and
internal standards for quantitative calculation of trace
elements in all zircons. The experimental data were processed
by GLITTER (Van Achterbergh et al., 2001). The concordia
diagrams and weighted mean calculations were obtained using
Isoplot (ver 3.70) (Ludwig, 2008).

ZIRCON PETROGRAPHY

Two types of zircon can be identified in the BST pluton. Type–I
zircons are mainly distributed in the lower zone (zone–a) of the
pluton embedded in K-feldspar and the amount of type–I zircons

gradually decreases upwards (Figure 4A). They are transparent,
colorless, prismatic and euhedral under the optical microscope
(Figure 4D), exhibiting clear oscillatory zoning in CL images
(Figure 5A). These zircon grains are generally 100–200 μm in
size, with length–width ratios of 3:1–6:1. BSE images show that
type–I zircons are dark in color and show growth zoning
(Figure 6A). The observation of distinctive alteration textures
with pores and microcracks, as well as the occurrence of fluorite
inclusions, show that deuteric hydrorhermal overprinting (H.O.
for short) occurs along the boundary of type–I zircon grains
(Figure 6A) or restrictedly replace the growth zoning and core
(Figures 5B, 6B).

Type–II zircons are found in the samples from upper zones
(zone–c to zone–e) of the BST pluton, and are mainly in contact
with or interstitial to late magmatic K-feldspar, albite and
zinnwaldite grains (Figures 4B,C), and the content of the
type–II zircons increases gradually from zone–c (10–20%) to
zone–e (70–80%). They are dark brown, translucent, dirty and
subhedral to anhedral under the optical microscope (Figure 4D).
Type–II zircon grains are generally 150–300 μm in length, with
length–width ratios of 2:1–3:1. They are generally characterized
by extremely dark, porous, microcracks–rich and
inhomogeneous structures in CL images (Figure 5C).
Numerous mineral inclusions, including fluorite (Fl) and
columbite–group minerals (CGM), in voids and microcracks
were observed in these zircons (Figure 6C). Type–II zircons
with an inhomogeneous internal structure, can be subdivided into
two domains in BSE images (Figure 6D). The light domains (LD)
show a flat and smooth zircon surface. The dark domains (DD)
show a rough surface and a veinlet–disseminated structure. It is
noticed that some zircons show core–rim structure with the H.O.
type–I zircon core and the overgrowth of type–II zircon (Figures
4D, 5D).

RESULTS

Zircon U–Pb Ages
Seven groups of zircon samples from five lithological zones of the
BST pluton are used for U–Pb dating, and the results are
presented in Supplementary Appendix Table 3.

Two zircon samples from zone–a (19KH–231 and BST–27)
are type–I zircon. They have Th contents of 117–2020 ppm, with
a mean of 787 ppm, and U contents of 239–2,202 ppm, with a
mean of 928 ppm. The Th/U ratios vary from 0.33 to 1.37.
Analyses of sample 19KH–231 give closely concordant ages
and all the analyzed spots fall on the concordia, yielding a
weighted mean age of 250 ± 2.5 Ma (n � 9, MSWD � 0.082,
1 σ) (Figure 7A). Analyses of sample BST–27 are mostly
concordant and fall on the concordia. Except for five
discordant spots (No. BST–27–22 to –26), the remaining
concordant analyses yield a weighted mean age of 250.5 ±
1.7 Ma (n � 21, MSWD � 0.35, 1 σ) (Figure 7B).

Zircons from zone–b (19KH–235) mainly belong to type–I
zircon. They have low Th (157–2,487 ppm) and U
(297–2,812 ppm) contents, with Th/U ratios of 0.40–1.39. All
of the analyses deviate from the concordia, and fifteen analyses
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yield a lower intercept age of 248 ± 3.1 Ma (n � 15, MSWD � 0.18,
1 σ) (Figure 7C). These results indicate that there was radiogenic
Pb loss probably due to metamictization of these zircons (Nasdala
et al., 1996).

Fourteen analyses were conducted on the zircons from zone–c
(19KH–238), including twelve type–I zircons and two xenocrysts
(according to the Miller et al., 2007). The type–I zircons show
variable Th (78–4,857 ppm) and U (165–3,301 ppm) contents,
with Th/U ratios of 0.29–1.48. The two xenocrysts have Th
contents of 294–313 ppm, U contents of 375–698 ppm and
Th/U ratios of 0.45–0.78. These xenocrysts show apparent
238U/206Pb ages of 297 Ma and 441 Ma, respectively. Notably,
the apparent 238U/206Pb ages of 297 Ma is consistent with the
previous zircon U–Pb age obtained from zone–c (Liu et al., 2008).
All analyses of the type–I zircons deviate from concordia, yielding
a well–defined lower intercept age of 255 ± 10 Ma (n � 12, MSWD
� 3.4, 1 σ) (Figure 7D).

Sixteen analyses were obtained from the zircons from
zone–d (19KH–253), including eight type–I zircons, four
type–II zircons, and four xenocrysts. The Th
(260–1,237 ppm) and U (457–4,666 ppm) contents of type–I
zircons are much lower than those of the type–II, which have
Th and U contents of 1,138–4,976 ppm and 3,542–32,901 ppm,
respectively. The xenocrysts have Th contents of
187–1,032 ppm, U contents of 254–1,247 ppm, and Th/U
ratios of 0.61–0.83. Except for the xenocrysts and one
analysis of type–II zircons, zircons from zone–d yield a
lower intercept age of 238 ± 5.9 Ma (n � 11, MSWD � 0.36,
1 σ). Two analyses of type–I zircons (No. 19KH–253–01 and
–07) give concordant ages of 242 ± 4 Ma and 239 ± 7 Ma,
respectively (Figure 7E). Remarkably, the xenocrysts from the
zone–d show concordant apparent 238U/206Pb ages of
298–299 Ma (Figure 7E), which are also consistent with
previous zircon U–Pb ages (Liu et al., 2008).

FIGURE 4 | Transmitted–light microscopic images of zircons from the BST pluton. H.O. type-I–hydrothermal overprinting type–I zircon. (A) Type–I zircon
embedded in the K-feldspar crystal. Single polarizer. (B) H.O. type–I zircon contact with zinnwaldite. Single polarizer. (C) H.O. type–I zircon embedded in the K-feldspar
and the type–II zircons contact with K-feldspar. Crossed polarizers. (D) Photomicrographs showing the feature of different types of zircons. The black circle in the type–I
zircon is the laser spot. Single polarizer.
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Zircons were separated from two samples (19KH–250 and
xxx–22) in zone–e. Eight analyses obtained from the 19KH–250
zircons are type–I zircon. The Th and U contents of these type–I
zircons are range from 103 to 1,485 ppm and 145 to 2,182 ppm,
respectively, with Th/U ratios of 0.54–1.82. They define a lower
intercept age of 254 ± 13 Ma (n � 8, 1 σ, MSWD � 0.026) with a
collinear array (Figure 7F). Forty four analyses were conducted
on the zircons of sample xxx–22 (Figure 7G), including thirteen
type–I zircons, twenty four type–II zircons and six xenocrysts.
The type–I zircon show variable Th (339–3,317 ppm) and U
(516–3,688 ppm) contents, with Th/U ratios of 0.17–3.29. The
type–II zircons show extremely inhomogeneous concentrations
of Th (386–15,943 ppm) and U (1,485–12,380 ppm), with Th/U
ratios of 0.13–5.68. The xenocrysts have Th, U contents and Th/
U ratios of 112–1,385 ppm, 178–1761 ppm and 0.16–0.79,
respectively. Except for the xenocrysts, xxx–22 zircons
yield a lower intercept age of 256.5 ± 8.0 Ma (n � 38, 1 σ,
MSWD � 4.5), with all the analyses deviating from the
concordia (Figure 7H).

Type–I zircons from zone–a (19KH–231 and BST–27) in the
BST pluton show weighted average ages of 250 ± 2.5 Ma and
250.5 ± 1.7 Ma, respectively, indicating that the BST pluton was
intruded in the Early Triassic. The lower intercept ages of type–I
zircons from 19KH-235 (zone–b), 19KH–238 (zone–c) and
19KH–250 (zone–e) are also ca. 250 Ma. Type–II zircons from
19KH-253 (zone–d) and xxx–22 (zone–e) together with
coexisting type–I zircons define the lower intercept ages
(238–257 Ma), which may represent an approximate
crystallization age of the type–II zircons.

Chemical Composition of the Zircons
In situ LA–ICP–MS data for trace elements in zircons are listed in
Supplementary Appendix Table 4. Type–I zircons from the BST
pluton generally have high Zr contents between 350,744 and
498,235 ppm (≈47.4–67.3 wt% ZrO2, with a mean of 61.12 wt%
ZrO2), and low Ti (1.72–69 ppm with a mean of 9.42 ppm), Y
(498–6,510 ppmwith a mean of 2,184 ppm), Nb (1.19–1,470 ppm
with a mean of 125 ppm), Ta (0.621–219 ppm with a mean of

FIGURE 5 | Cathodoluminescence (CL) images of zircons from the BST pluton. (A) Type–I zircon with oscillatory zoning. (B) Type–I zircon with the hydrothermal
overprinting. Fluorite inclusion occur in the microcracks of the H.O. type–I zircon. (C) Subhedral, dark and inhomogeneous type–II zircon grain. (D) Zircon grains with
core–rim structure. H.O. type–I zircon in core and type–II zircon in edge.
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12.99), Hf (7,471–20,835 ppm with a mean of 11,269 ppm), Th
(78.2–2,810 ppm with a mean of 770 ppm and a median of
442 ppm), and U (165–2,810 ppm with a mean of 897 ppm
and a median of 630 ppm) concentrations, as well as minor
amounts of the light REE (LREE) (27–604 ppm with a mean
of 110 ppm), heavy REE (HREE) (388–4,029 ppm with a mean of
1,512 ppm) corresponding to total REE of 451–4,590 ppm with a
mean of 1,679 ppm. They show HREE–enriched patterns with
prominent positive Ce anomalies (Ce/Ce* � 1.21–385), strong
negative Eu anomalies (Eu/Eu* � 0.008–0.551) and low LREE/
HREE ratios (0.04–0.26 with a mean of 0.10) (Figures 8A–E).
They have Zr/Hf ratios ranging from 21.72 to 58.23 with a mean
of 41.48 (Figure 8F) and Th/U ratios from 0.29 to 2.08 with a
mean of 0.84 (Figure 9A).

Type–II zircons vary greatly in chemical composition and
are enriched in trace elements. They have low Zr contents of
286,445–377627 ppm (≈38.7–51.0 wt% ZrO2 with a mean of

47.45 wt% ZrO2), and unusually high contents of Hf
(34,094–85,754 ppm with a mean of 67,983 ppm), Y
(1,630–28,890 ppm with a mean of 8,434 ppm), Nb
(171–2,520 ppm with a mean of 1,216 ppm), Ta
(86.7–398 ppm with a mean of 167 ppm), Th
(718–4,980 ppm with a mean of 2,136 ppm and a median of
1730 ppm) and U (3,540–32,901 ppm with a mean of 7,898 ppm
and a median of 5,440 ppm). The concentrations of Ti
(0–42.6 ppm with a mean of 12.44 ppm) are similar to those
of the type–I. They have Zr/Hf ratios ranging from 3.35 to 11.00
with a mean of 5.56 (Figure 8F) and Th/U ratios from 0.12 to
0.57 with a mean of 0.36 (Figure 9A). The LREE, HREE, total
REE contents and LREE/HREE ratios vary from 267 to
6,523 ppm with a mean of 2095 ppm, 3,628–23,640 ppm with
a mean of 9,670 ppm, 3,909–30,163 ppm with a mean of
11,765 ppm, and 0.07–0.35 with a mean of 0.20, respectively,
which are much higher than those of type–I zircon (Figure 9B).

FIGURE 6 | Backscattered electron (BSE) images of zircons from the BST pluton. Fl–fluorite, CGM–columbite group minerals. (A) Hydrothermal zircon and fluorite
occur around the type–I zircon crystal. The circle is the laser spot. (B) F–rich hydrothermal alteration occurs along the growth zoning and fractures in inner zone of the
type–I zircon. Microcracks in the H.O. type–I zircon are partially filled with fluorite. (C) Type–II zircons, with a complex internal structure, contain large amount of fluorite (Fl)
and columbite group mineral (CGM) inclusions in their crystals. (D) Closeup of the type–II zircon with the light domains (LD) and dark domains (DD). The fluorite (Fl)
inclusions are embedded in microcraks and voids in type–II zircon.
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Type–II zircons exhibit gull wing–shaped, slightly
HREE–enriched patterns with lower positive Ce
anomalies (Ce/Ce* � 2.1–10.3) and deeper Eu anomalies

(Eu/Eu* � 0–0.006) than those of the type–I zircons
(Figure 9C). Chondrite–normalized REE patterns of type–II
zircons display clearer tetrad effect than the type–I. The t3 value

FIGURE 7 | (A,B) U–Pb concordia diagrams and weighted average ages of type–I zircon from zone–a. (C–H) U–Pb concordia diagrams of type–I (red circle) and
type–II (green circle) zircons from the upper zones of the BST pluton.
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(quantification factor of tetrad effect) and ∑HREE can be
used to describe the tetrad effect of the zircons, and is
calculated and listed in Supplementary Appendix Table 4.
The t3 value in zircons from the BST pluton are generally

greater than 1. The t3 values of both two types of zircons
have strongly positive correlation with ∑HREE (Figure 9D),
and increases from type–I zircons (0.89–1.46) to type–II zircons
(1.51–1.69).

FIGURE 8 | (A–E) Chondrite–normalized REE distribution patterns and (F) Zr–Hf fractionation trends for two types of zircon from the each zones of the BST pluton.
Values for magmatic stage and pegmatitic stage are from Wang et al. (2010) and Han et al. (2019) and reference therein.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 68272011

Zhi et al. Zircon in Zhangbaoshan Rubidium Deposit

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


DISCUSSION

Zircon Genesis
The zircons in the BST pluton can be divided into two types:
type–I and type–II, based on their distinct petrographic features,
crystal structures and chemical compositions.

Type–I zircons are clean, transparent, colorless and euhedral
under the optical microscope (Figure 4D), and are bright and
show clear oscillatory zoning in CL (Figure 5A), consistent with a
magmatic origin (Corfu et al., 2003). They are primarily
distributed at the bottom of the granite (zone–a), and
embedded in K-feldspar crystals (Figure 4A), indicating that
they crystallized before K-feldspar. Chemically, the type–I zircons
are characterized by high Zr and low trace element contents. They
show HREE–enriched patterns with prominent positive Ce
anomalies (Ce/Ce* � 1.21–385) and strong negative Eu

anomalies (Eu/Eu* � 0.008–0.551). The contents of LREE vary
from 27 to 604 ppm and HREE from 403 to 4,320 ppm with
LREE/HREE ratios of 0.04–0.26. The low concentrations of Th, U
and high Th/U ratios (mostly >0.4) are comparable to those
of zircons crystallized in early magmatic stages (U contents of
76–12,381 ppm with a median of 764 ppm and Th contents of
31–12,088 ppm with a median of 368 ppm, Belousova et al., 2002;
UO2 contents of 0–0.56 wt% (≈0–4,936 ppm U) with an average
of 0.30 wt% (≈2,644 ppm U) and ThO2 contents of 0–0.15 wt%
(≈0–1,318 ppm Th) with an average of 0.04 wt% (≈352 ppm Th),
Wang et al., 2011). The Hf contents of 7,471–20,835 ppm, with an
average of 11,269 ppm (≈1.33 wt% HfO2), and Zr/Hf ratios of
22–58 are consistent with primary granitic zircons crystallized at
high temperature (<2 wt% HfO2 and Zr/Hf > 27, Pupin et al.,
2000; model HfO2 contents of 1.43 wt% and Zr/Hf ratios of 38.5,
Wang et al., 2010). Gu et al. (2003) indicate that the

FIGURE 9 | Plots of (A)U vs. Th, (B)U vs.∑REE, (C) Eu/Eu* vs.∑REE, and (D) comparison of quantification factor t3 to∑HREE of two types of zircon from the BST
pluton. All data come from Supplementary Appendix Table 4.
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homogenization temperatures of melt trapped in quartz
phenocrysts decrease from the zone–a (810–860°C) to the
zone–e (680–660°C) in the BST pluton. Type–I zircons are
mainly distributed in the zone-a. Therefore, they are
considered to be high temperature magmatic zircons.

Type–II zircons are dark brown, translucent, dirty and
euhedral to subhedral under the optical microscope, and are
porous, microcracks–rich and inhomogeneous in structures in
CL and BSE images, consistent with the petrographic features of
hydrothermal zircons (e.g., Wang et al., 2011, Wang X. et al.,
2016,Wang and Ren, 2018). The contents of Hf, Nb, Ta, Y, Th, U,
LREE and total REE in type–II zircons are much higher than in
type–I. They show slightly HREE–enriched patterns with lower
positive Ce anomalies (Ce/Ce* � 2.1–10.3) and deeper Eu
anomalies (Eu/Eu* � 0–0.006) than those of the type–I
zircons. The high LREE and HREE contents and LREE/HREE
ratios of type-II zircons are consistent with a hydrothermal origin
(LREE contents of 608–2,502 ppm with a mean of 1,303 ppm,
HREE contents of 324–4,990 ppm with a mean of 2064 ppm, and
LREE/HREE ratios of 0.29–5.49 with a mean of 1.20, Yang et al.,
2014). The generally higher Th (718–4,980 ppm with a mean of
2,136 ppm), U (3,180–32,901 ppm with a mean of 7,898 ppm)
contents and lower Th/U ratios (mostly <0.4, Figure 9A) of
type–II zircons are comparable to those of zircons of
hydrothermal origin in highly evolved magmatic systems (U
contents of 560–3,820 ppm with a mean of 1710 ppm, Th
contents of 83.0–12,638 ppm with a mean of 1,594 ppm, and
Th/U ratios of 0.11–0.54, Yang et al., 2014). The extremely high
Hf contents (up to 10.1 wt% Hf2O) and low Zr/Hf ratios of
type–II zircons in the BST pluton (Figure 6F) are also
comparable to zircons from the pegmatite or highly evolved
granite (>2.4wt% HfO2 and Zr/Hf ratios ≤20, Gbelsky, 1979;
Cerny et al., 1985). The much higher Hf contents and low Zr/Hf
ratios of zircons from granitic rocks (especially hydrothermal
zircons) could be caused by low crystallization temperatures
(Wang et al., 2010, Wang X. et al., 2016). Moreover, the
positive relationship between U and ∑REE (Figure 9B), and
the increase of negative Eu anomalies from type–I to type–II
zircons (Figure 9C), suggest the increase of hydrothermal
contribution to zircon crystallization (Veksler, 2004; Hoskin,
2005). Thus, type–II zircons from the BST pluton are
interpreted to be of hydrothermal origin.

The high contents of LREE and low Zr/Hf ratios in type–II
zircon could be the result of non–charge–and–radius–controlled
(Non–CHARAC) behavior (Bau and Dulski, 1995; Bau, 1996),
which commonly occurs in volatile–rich highly evolved
magmatic systems during the transition from magmatic to
hydrothermal conditions (Veksler, 2004). Non–CHARAC
behavior is often accompanied by the lanthanide tetrad effect
of both whole–rock and minerals including zircon (Masuda and
Ikeuchi, 1979; Akagi et al., 1993; Bau, 1996; Irber, 1999; Veksler
et al., 2005). Type–II zircons in the BST pluton show obvious
M–type tetrad patterns in chondrite–normalized REE
distribution patterns with t3 values of 1.51–1.69, consistent
with the clear tetrad features of other minerals in the BST
pluton, such as quartz, plagioclase, garnet and monazite (Wu
et al., 2011). The lanthanide tetrad effect is generally attributed to

hydrothermal fluid–rock interaction (Monecke et al., 2002;
Monecke et al., 2007; Takahashi et al., 2002; Badanina et al.,
2006), and theM–type tetrad patterns are considered to be caused
by F–rich magmatic fluid–melt interaction above the solidus (Wu
et al., 2011). Thus, the formation of type–II zircons should
represent a magmatic fluid–melt interaction during the
transition from magmatic to F–rich hydrothermal conditions.
At this stage, Th, U, Hf, Ta, REEs and other trace elements in the
magmatic system were significantly concentrated in the
magmatic fluids that coexisted with the melt.

F–Rich Fluid Exsolution and
Magmatic–Hydrothermal Transition
The Rb-bearing granites in the Eastern Tianshan are
characterized by high SiO2, Na2O, K2O Li, Rb, Cs and F, low
Ti, Fe, Ca, Mg and P, Na2O > K2O, are weakly peraluminous (A/
NKC � 1.00–1.11), low K/Rb, Al/Ga, Y/Ho, Zr/Hf and Nb/Ta
ratios, and have low (La/Lu)N and deep Eu anomalies (Gu et al.,
2003; Chen et al., 2018; Li T. G. et al., 2018; Muhtar et al., 2020a).
They are generally highly evolved magmatic systems with
abundant deuteric fluid exsolution and hydrothermal
alteration occurring in the late magmatic stage. A previous
study has suggested that several fluid exsolution events
occurred during the differentiation of magma, controlling the
formation and modification of the highly evolved granite (Berni
et al., 2017; Berni et al., 2020).

The present study observed that ∑HREE and t3 values show
linear variations between two types of zircon, with t3 values
increasing markedly from type–I to type–II zircons
(Figure 9D). Such a trend of evolution may represent the
increase of F–rich fluid–melt interaction during the
differentiation of F–Rb–rich granitic magma (Wu et al., 2011).
However,∑HREE and t3 values of zircons from zone–a to zone–e
do not show linear variations, and the two types of zircons of
different origin occur together in the upper lithological zones. A
possible explanation is that turbulence in the volatile (F) –rich
magmatic–hydrothermal system disturbed the original
distribution of zircons (Gu et al., 2011), and the type–I zircons
were carried to the top of the granite contained by late magmatic
minerals. Moreover, modification of crystallized rocks and
zircons by exsolved (F–rich) fluids occurs in the BST pluton,
evidenced by large amounts of fluorite in the microcracks in
magmatic type–I zircons (Figure 6B) and in voids of some
hydrothermal type–II zircons (Figure 6D). The hydrothermal
fluorite occurs as a vein along plagioclase, K-feldspar and
zinnwaldite grains and fractures (Gu et al., 2011), also
indicating the existence of a F–rich hydrothermal event after
the crystallization of rock–forming minerals.

Both zircon types can be found in the same grain (Figure 5D),
which is crucial to study the F–rich fluid exsolution processes,
including F–rich fluid–melt interaction and hydrothermal
modification, during the magmatic–hydrothermal transition
stage. The petrography observations and geochemical
compositions of zircons suggest that type–I zircons crystallized
earlier than type–II zircons. Some type–I zircons crystallized in
the early–magmatic stage were modified by the F–rich fluids
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through dissolution–reprecipitation at the edges (Figure 6A) or
along defective magmatic euhedral zones (Figure 6B), consistent
with petrographic features of hydrothermal overprinting of
zircons (e.g., Wang and Ren, 2018; Liu et al., 2019, Han et al.,
2019). This supports the mobilization of Zr in hydrothermal
systems that are rich in F (Rubin et al., 1993; Aja et al. 1995;
Veksler et al., 2005). Such selective alteration of zircon grains
probably occurs as a result of metamictization (e.g., Geisler et al.,
2007; Van Lichtervelde et al., 2009; Liu et al., 2019).
Radiation–induced metamictization can greatly enhance (two
or three times compared to high crystallinity zircons) the
hydrothermal alteration of zircons (Ewing et al., 2003). The
alpha recoil process (i.e., recoils of the U and Th nuclei after
emitting a He particle) can be a main source of damage in
metamictization (Wasilewski et al., 1973; Smith et al., 1991;
Weber et al., 1994; Nasdala et al., 1996, 2001; Palenick et al.,
2003), which can accumulate rapidly over a period of
0.0001–1 million years in the zircon grains. Then, the deuteric
F–rich fluid locally replaced some type–I zircons, from which the
hydrothermal type–II zircon and fluorite crystallized as
overgrowth of the type–I (Figures 4D, 5D). Gradual increase
of the amount of the hydrothermal type–II zircons upward within
the zoned granite (increase from 10 to 20% in zone–c to 70–80%
in zone–e), as well as the intense modification of zircon in zone–e,
suggest that a F–rich fluid could rise and accumulate to form a
segregated fluid phase at the top of the BST magma (Burnham,
1997; Wilkinson, 2001; Gu et al., 2011), which is comparable to
the magmatic to hydrothermal evolution in other highly evolved
granites (e.g.,Yang et al., 2014; Berni et al., 2020).

Previous studies suggested that the source of the BSTmagma is
mica gneiss in the middle crust, partial melting of which can
provide large amounts of F, Rb and Cs, based on the high Na2O +
K2O, low FeO, MgO and TiO2 contents, the weakly peraluminous
character, low εNd(t) value and δ18O value (9.25–9.75 in zone-a)
(Gu et al., 2011). The Rb is transported in the form of complex
with F in highly evolved granitic magma (Hildreth, 1981; Jia,
2016), and the hydrolysis takes place with the decrease of
temperature (Webster and Holloway, 1990; Zhao et al., 2008).
The homogenization temperatures of melt trapped in quartz
phenocrysts and the petrographic studies suggest that the
mineral composition of the zone-a can approximately
represent the mineral assemblages of the early magmatic stage
(Gu et al., 2003). At this stage, F tends to enter the fluid phase and
form stable complexes with Li, Rb, Cs, Sn and other elements
(Hildreth, 1981; Cerny et al., 1985; Bhalla et al., 2005; Sun, 2013;
Jia, 2016). With the decrease of temperature hydrolysis takes
place (Webster and Holloway, 1990; Zhao et al., 2008), the F−and
Ca2+ form fluorite, and Rb replaces part of the K into the lattice of
the low temperature microcline and zinnwaldite, consistent with
the observation of the enrichment of Rb in low temperature
K-feldspar (microcline) and mica (zinnwaldite) in the highly
evolved granite (e.g., Wang et al., 2009; Badanina et al., 2010;
Seltmann et al., 2010; Tang and Zhang, 2015; Ostrooumov, 2015;
Li T. G. et al., 2018). The coupling of F and Rb in the early
magmatic stage is also consistent with the positive correlation
between Rb and F from zone-a to zone-d in the BST pluton (Gu
et al., 2003, 2011). Magmatic fluid from F–rich highly evolved

granite and related pegmatite contains high concentrations of
trace elements including Rb (Berni et al., 2020), and the ore
minerals (e.g., amazonite and zinnwaldite) in the BST pluton
generally crystallized from residual magma that has experienced
the F–fluid exsolution during the magmatic–hydrothermal
transition (Gu et al., 2003; Gu et al., 2011), indicating that the
enrichment and mineralization of Rb is closely related to the
magmatic F–rich fluids.

Therefore, F–rich fluid exsolution during the magmatic-
hydrothermal transitional stage is one of the important factors
controlling the modification of highly evolved granites (Gu et al.,
2011; Berni et al., 2017; Berni et al., 2020), as well as related Rb
enrichment and mineralization.

Implication for Rb Mineralization Age of the
Zhangbaoshan Super–Large Rb Deposit
The LA–ICP–MS U–Pb data for type–I zircons from the
leucogranite (zone–a) show a concordant age of 250.5 ±
1.7 Ma and 250 ± 2.5 Ma (Figures 7A,B), indicating that the
BST pluton was emplaced in the Early Triassic. Type–II zircons
from zone–c to zone–e show lead loss on the U–Pb concordia
diagrams, yielding lower intercept U–Pb ages between 238 and
257 Ma (Figures 7E–H), which could indicate the age of the
F–rich fluid–melt interaction above solidus during the transition
from magmatic to hydrothermal conditions. These Early Triassic
ages are also consistent with the emplacement age of the BST
granitic magma.

As discussed above, the rubidium mineralization of the ZBS
super–large Rb deposit mainly occurred during the
magmatic–hydrothermal transition stage, which was later than
the crystallization of magmatic type-I zircon, and close to the

FIGURE 10 | Age data histogram of the Triassic granitic intrusions and
related rare metal deposits from the Eastern Tianshan.
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crystallization age of the hydrothermal type–II zircon. We thus
suppose that the rubidium mineralization occurred shortly after
the emplacement age (ca. 250 Ma) of the BST pluton.

Triassic granitoids and related rare metal deposits have been
increasingly identified in the Eastern Tianshan during the past
decade (Supplementary Appendix Table 1 and Figure 10). The
ZBS granite–type super–large Rb deposit (ca. 250 Ma) and other
rare–metal granite or pegmatite deposits in the Eastern Tianshan,
including the Shadong W–(Rb) deposit (239 ± 2 Ma, Chen et al.,
2018), the Guobaoshan Rb deposit (240.3 ± 1.8 Ma, Li T. G. et al.,
2018) and the Jing’erquanbei (Li–Be–Rb) pegmatite (250.2 ±
3.5 Ma, Muhtar et al., 2020a), likely make up a >200–km–long
rare metal metallogenic belt. A summary of the rare metal
deposits in the Eastern Tianshan suggests that the Triassic
should be an important rare metal metallogenic period in the
Eastern Tianshan, and rare metal deposits are closely related to
the Triassic highly evolved leucogranite enriched in F in the
Eastern Tianshan.

CONCLUSION

1) Zircon from the BST pluton can be divided into two genetic
types. Type–I zircons are early magmatic zircons,
characterized by clear oscillatory zoning, high Zr contents
and Zr/Hf ratios, low trace element concentrations, and
HREE–enriched patterns. Type–II zircons are hydrothermal
zircons crystallized from deuteric F–rich fluid that coexisted
with residual magma. They are characterized by low Zr
contents and Zr/Hf ratios, high Hf, Th, U, Ta, Y and REEs
concentrations, and significant M–type tetrad patterns in
chondrite–normalized REE distribution patterns.

2) The formation of type–II zircons represents a magmatic
fluid–melt interaction during the transition from the
magmatic to the F–rich hydrothermal stage of the BST
pluton. The F–rich fluid exsolution during the
magmatic–hydrothermal transition is one of the important
factors controlling the modification of highly evolved granite
and related Rb enrichment and mineralization.

3) Type–I zircons from leucogranite (zone–a) show a concordant
age of ca. 250 Ma, indicating that the BST pluton was
emplaced in the Early Triassic. Type–II zircons from
zone–c to zone–e yield lower intercept U–Pb ages between
238 and 257 Ma, which could indicate the age of the F–rich
fluid–melt interaction during the transition stage from the
magmatic to the hydrothermal conditions. The mineralization

of the ZBS super–large Rb deposit should occur shortly after
emplacement of the BST pluton in the Early Triassic.

4) The Triassic should be an important rare metal metallogenic
period of the Eastern Tianshan. The rare metal mineralization
are closely related to the Triassic highly evolved F–rich
leucogranite in the Eastern Tianshan.
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