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Coastal regions of the northern South China Sea (SCS) strongly interact with the Asian
monsoon circulation (AMC). Thus, variations of sea surface temperature (SST) here are
newly suggested to document AMC changes in an effective manner, but additional
physical parameters of oceanic conditions, probably also in relation to the AMC
system, remain poorly understood. In this study, we analyzed glycerol dialkyl glycerol
tetraethers (GDGTs) from a well-dated sediment core YJ, retrieved at the northern SCS
coast, to further scrutinize the intrinsic response of water column to winter AMC strength. It
shows that within the time frame of past ∼1,000 years, the tetraether index of lipids with 86
carbon atoms (TEX86) and published alkenone (UK′

37) temperature records together confirm
a reduced thermal gradient during the Little Ice Age (LIA), in comparison to that during the
Medieval Climate Anomaly (MCA). Considering concurrent variations of the branched and
isoprenoid tetraether (BIT) and the ratio of archaeol to caldarchaeol (ACE), for example,
with decreased values (<∼0.3) for the former and relatively high values for the latter at the
LIA, indicative of stratification and salinity changes, respectively, these multiple lines of
evidence thereby call for well mixing of onsite water at site YJ correspondingly. Our results
suggest that winter AMC strength is a critical factor for mixing subsurface waters and
modifying thermal/saline conditions at the northern SCS coasts through the last millennium
and also, perhaps, on longer timescales.
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INTRODUCTION

The Asian monsoon circulation (AMC), as triggered by large-scale thermal contrast between ocean
and land, characterizes a seasonal reversal of prevailing wind directions. In the summertime, it carries
an enormous amount of moisture from the Indian and Pacific Oceans toward southern and
northeastern Asia, and, consequently, exerts a considerable influence over the water cycle and
the terrestrial ecosystem (Wang et al., 2017; Zhang et al., 2017). In this regard, much attention has
been drawn until now to explore summer AMC variability and the physical mechanism(s) from
seasonal to orbital timescales (e.g., Hu et al., 2008; An et al., 2011; Liu et al., 2015; Xie et al., 2015;
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Cheng et al., 2016). In contrast, the winter component of the
AMC itself often diverges cold-dry air from the Asian countries
such as Siberia-Mongolia toward oceans, thus with little potential
to deliver water vapor directly. Despite such fact, winter AMC is
still of importance in transporting eolian dust and/or aerosol, and
therefore in regulating the regional (and global) climate system
(Maher et al., 2010; Kok et al., 2018). Combined with its impact
upon the summer AMC precipitation subsequently (Bollasina
et al., 2011; Li et al., 2016; Cai et al., 2019), a complete
understanding of winter AMC variations at present and, if
possible, before the instrumental era (after ∼1850 AD) (e.g.,
Wen et al., 2016; Kang et al., 2020) would provide
constructive insight into their intrinsic link against both
anthropogenic and natural backgrounds. Abundant analyses
based on the grain size and geochemical proxies from Chinese
loess sequences at available sparse sites (Stevens et al., 2007; Li
and Morrill 2015), on the one hand, have indeed advanced our
knowledge about this topic, but on the other hand, these
paleorecords, distributed across continental interiors, rather
face difficulty to draw a clear picture of winter AMC behavior,
for example, its far-field effect on terrestrial ecosystem especially.
For example, at Huguangyan Maar Lake, winter AMC intensity,
as inferred from diatom assemblages (Wang et al., 2012) and
magnetic susceptibility (Yancheva et al., 2007), respectively,
presents controversial temporal features during the Holocene
(since ∼11,700 years ago before present, “yr BP” hereafter).

Next to Huguangyan Maar Lake, the South China Sea (SCS) is
also strongly involved into the AMC coupling process (e.g., Xie
et al., 1998; Lau and Nath 2009; Wang et al., 2009; Liu and Zhu
2016) and hence well suited to fingerprint its variability. In fact,
along the SCS northern coasts, sea surface temperature (SST)
apparently exhibits shore-parallel gradient and intensive vertical
mixing in winter, while horizontal homogenization and vertical
stratification in summer (Figures 1A,B; Wang, 2007; Jing et al.,
2009). Such seasonality of SST variations and their difference, for
example, at both horizontal and vertical scales, are readily capable
of revealing winter AMC signals across different timescales (e.g.,
Tian et al., 2010; Huang et al., 2011; Steinke et al., 2011; Kong,
2014a, Kong et al., 2014b). Particularly, our recent study (Zhang
et al., 2019), based on a well-dated sediment core YJ, ∼200 km far
away from the Pearl River delta (Figure 1), has shown
extraordinary decrease (by up to ∼4°C) of alkenone SSTs and
remarkable increase (by two to four orders of magnitude) of
wind-borne terrigenous hopane contents during the Little Ice Age
(LIA, ∼150–550 years BP), consequently demonstrating an
overall intensification of winter AMC, relative to the Medieval
Climate Anomaly (MCA, ∼700–1,100 years BP) and other
intervals in the context of Holocene. This explanation, albeit
well corroborated by a growing number of terrestrial paleorecords
(e.g., Yancheva et al., 2007; Kang et al., 2020), still deserves
independent evidence of oceanic conditions which, as
inherently linked to SST change, would offer excellent

FIGURE 1 | Regional setting and the site of core YJ, existing paleorecords in the northern South China Sea (black dots) and at Huguang Maar Lake (orange star) as
mentioned in the main text, are plotted against long-term (1985–2006 AD) averaged January (A) and July (B) sea surface temperature (SST, color scale) from the AVHRR
dataset (Casey, 2013). Chronology (C) and lithology (D) of core YJ are cited from Huang et al. (2018) and Zhang et al. (2019). Note that the core-top (C) is calculated
based on 210Pb/137Cs dates, to be 2013 AD when our core YJ was retrieved.
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opportunity to further illustrate the fundamental role of winter
AMC variations in affecting coastal waters. To this end, the time
window of last millennium covering both the LIA and MCA, two
well-identified climate anomaly intervals during the late
Holocene (Mann et al., 2008), is specifically focused here for a
tentative attempt to examine how the northern SCS coastal
conditions, for example, in terms of both salinity and thermal
properties, would have responded to winter AMC change at
multi-centennial timescales.

Taking the advantage of sediment core YJ, including i) high-
quality control of the chronological framework (Figures 1C,D)
and ii) limited influence of the Pearl River freshwater discharge
(Figure 2), we hence directly analyzed glycerol dialkyl glycerol
tetraether (GDGT) lipid biomarkers on its uppermost ∼65 cm
section. Together with the existing measurements of the
alkenone unsaturation index (UK′

37 , see definition in Prahl
et al., 1988) and hopane components, as earlier reported by
Zhang et al. (2019), this study aimed to investigate the
hydrological properties of the onsite water column. We
hereby present proxy records of the ratio of archaeol to
caldarchaeol (ACE), the branched and isoprenoid tetraether
(BIT), respectively, and the tetraether index of lipids with 86
carbon atoms (TEX86) over the past ∼1,000 years. These results,
although potentially associated with various parameters in view
of their original interpretations, are utilized to manifest salinity
(Turich and Freeman 2011; Wang et al., 2013), stratification
(Yamamoto et al., 2013; Wang et al., 2021), and integrated
temperature of the whole water column (Xing et al., 2015; Wei
et al., 2020), respectively. On this basis, the difference of our
paired UK′

37 -TEX86 values, a rough measure of vertical thermal
gradient, could be used to infer the water column structure
changes induced by the winter AMC. Overall, this study helps
clarify the dynamical interplay between winter AMC strength
and northern SCS coastal conditions throughout the last
millennium and, as a result, evoke a careful consideration of

regional environmental settings in properly interpreting proxy-
based temperature signals.

MATERIAL AND METHODS

Core Site and Chronology
Geographically, sediment core YJ (112°8.08′ E, 21°31.44′ N) is
raised at a water depth of ∼21 m from the inner continental shelf
offshore Yangjiang city with a distance of ∼200 km to the
southwest of the Pearl River estuary. This site, according to
modern observations (e.g., Dunn and Ridgway 2002; Casey,
2013), characterizes prominent SST variations between
∼28.3°C in summer (June-July-August, JJA) and ∼20.9°C in
winter (December–January–February, DJF), but small changes
in sea surface salinity (i.e., ∼32.4 psu in JJA and ∼33.4 psu in DJF;
Figure 2) due to limited influence of the Pearl River discharge.
Most importantly, it is located at the coastal sector outside ∼1°C
cooling effect of summer upwelling (e.g., to the east of the Pearl
River delta and northeast of the Hainan Island, Figure 1B), while
surface cooling here is largely determined by vertical mixing of
the onsite water column in winter (Figure 1A). This site is hence
well suited to examine the response of northern SCS coastal
conditions to winter AMC changes, for example, by using the UK′

37
SST record in our previous study (Zhang et al., 2019).

The age model of this core, as already published before by Huang
et al. (2018) and Zhang et al. (2019), was achieved by combining both
lead (210Pb)/cesium (137Cs) and radiocarbon (14C) methods. To
summarize, measurements of 13 210Pb/137Cs radionuclide activity
and 18 14C dates (at Beta Analytic Inc., United States) were
implemented on samples of bulk sediments above 13 cm and
complete shells below this depth, respectively. These age control
points were then operated within R script BACON software (version
2.2, Blaauw and Christen 2011) and the Marine 13 calibration curve
(Reimer et al., 2013), using default parameters and a 252-year
correction of regional reservoir age (Southon et al., 2002; Yu et al.,
2010), to compute the mean age and 2σ uncertainty at 1 cm
resolution. Such a chronological framework hints a possible hiatus
of sedimentary deposit at the depth between ∼65 and 85 cm
(Figure 1C; see details in Zhang et al., 2019). Hence, we mainly
focus on the topmost 65 cm of the core YJ, roughly spanning the past
∼1,000 years, to analyze GDGT biomarkers for detecting the AMC
signal across the LIA and MCA.

Organic Biomarkers
Core YJ was sampled continuously with a step of 1 cm down its
uppermost 65 cm, which, based on our chronology as stated in
Core Site and Chronology section, guaranteed a temporal
resolution of ∼10–15 years per sample for the past
∼1,000 years. Afterward, bulk sediment samples (∼5 g) were
freeze-dried, then grounded, and soaked to extract total lipids
by solvent dichloromethane (DCM): methanol (MeOH) (9:1; v/v)
in 60 ml vials, under an ultrasonic wave in the 40°C water bath for
three cycles (∼15 min each). The extract was subsequently
hydrolyzed with 6% KOH in MeOH to remove alkenoates and
separated into three fractions via silica gel column
chromatography with successive eluents of n-hexane, DCM,

FIGURE 2 |Comparison between temperature estimates at the topmost
sample based on UK′

37 and TEX86 proxies, respectively. Observational SSTs
and salinity near the core site (112.125°N, 21.625°E, Casey, 2013; Zweng
et al., 2013) are also shown. The dashed line represents the annual mean
SST value.
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and MeOH, respectively. Finally, GDGTs were isolated in MeOH
fraction, alkenones in DCM fraction, and n-alkanes in hexane
fraction.

Analyses of MeOH fraction were conducted on high-
performance liquid chromatography atmospheric pressure
chemical ionization (HPLC-APCI)-mass spectrometry (e.g.,
Liu et al., 2013). An aliquot of the fraction was directly dried
under N2, and then redissolved in hexane: isopropanol (99:1; v/v)
and filtered after mixing with a known amount of C46 internal
standard (Huguet et al., 2006). Selected ion monitoring (SIM),
which targets specific mass numbers for GDGT components
(membrane lipids biosynthesized as multiple homolog series of
isoprenoid or methyl-branched isomers, termed isoprenoid-
GDGTs, and branched-GDGTs, respectively, see detailed
description in Schouten et al., 2013), was used to enhance the
detection sensitivity. Quantification was carried out by
integrating the peak area of [M + H]+ ions in the extracted
ion chromatogram and comparing with the C46 internal standard.
We then calculated the ACE, BIT, and TEX86 indices using
equations as given below:

ACE � archaeol
archaeol+caldarchaeol×10 × 100 (Turich and Freeman 2011;

Wang et al., 2013),

BIT � I+II+III
I+II++III+cren (Hopmans et al., 2004),

TEX86 � GDGT2+GDGT3+cren′
GDGT1+GDGT2+GDGT3+cren′ (Schouten et al., 2002).

TEX86 values were then converted to temperature estimates, using
the calibration equation: SST � 68.4 ×log (TEX86)+38.6 (Kim et al.,
2010). Analytical uncertainties for our laboratory standards are
typically less than 5% for the BIT and ACE values and 0.01 unit
for TEX86.

RESULTS

Throughout the past millennium, ACE values appear to be
relatively high during the LIA, especially at its onset (centered
around ∼500 years BP), as compared to the MCA (Figure 3A). In
contrast, the BIT index generally experiences a gradual declining
trend from ∼0.3 during the MCA (and the earlier epochs, marked
by a possible hiatus in sediment accumulation and hence not
shown here) toward ∼0.15 in the recent years (Figure 3B). Unlike
these two modes, TEX86-based temperatures, although fluctuated

FIGURE 3 | GDGT proxies of sediment core YJ during the last
millennium, for example, (A) ratio of archaeol to caldarchaeol (ACE) (higher
values downward), (B) the branched and isoprenoid tetraether (BIT), (C)
TEX86-based temperatures, (D) UK′

37-SST record, and (E) sedimentation
rates (Zhang et al., 2019). Color bars outline the Little Ice Age (LIA,
∼150–550 years BP) (green) and Medieval Climate Anomaly (MCA,
∼700–1,100 years BP) (red), and triangles denote 14C age control points.

FIGURE 4 | Organic geochemical proxies of core YJ over the last
millennium, including (A) UK′

37-SST record (Zhang et al., 2019), (B)
TEX86-based temperature, (C) vertical thermal gradient at site YJ
(UK′

37 − TEX86 values), (D) UK′
37-SST difference between two sites YJ and

NS02G (YJ minus NS02G), (E) hopane compounds (Zhang et al., 2019), (F)
the branched and isoprenoid tetraether (BIT), and (G) the ratio of archaeol to
caldarchaeol (ACE). Note that magnetic susceptibility at Lake Huguangyan
Maar (higher values downward, Yancheva et al., 2007) is also plotted (H) for
comparison (with a possible shift of their peaks due to the age uncertainty).
Color bars mark the same intervals as in Figure 3 (two cold epochs within the
LIA, e.g., ∼250 years BP and ∼500 years BP, are further highlighted).

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6801804

Zhang et al. Monsoon Impacts SCS Coastal Waters

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


within a large range (nearly about 3°C in terms of magnitude,
Figure 3C), are apparently trendless over the investigated
interval. However, when placed together with the existing
UK′

37 -based SST record of the same core YJ (Figures 3D,E),
there exists certain similarity in the overall temporal patterns
between SST (despite a substantial cooling of up to ∼4°C, Zhang
et al., 2019) and TEX86 temperatures over the LIA (e.g., increase
at the first half and decrease at the second half), but for the MCA,
variations of these two independent records are clearly featured
by different structures. Collectively, the LIA interval characterizes
increase in ACE values and wind-borne hopane compounds
(Zhang et al., 2019), and decrease in BIT ratios, SST, and
vertical temperature gradient (UK′

37 − TEX86values), relative to
those during the MCA (Figure 3 and Figure 4).

DISCUSSION

Recent studies have shown that the possible source of brGDGTs,
for example, terrigenous originated (e.g., soil) or in situ
synthesized (mainly at subsurface waters), is critical to
determine the BIT index and thus its proper explanation
(Weijers et al., 2014; Xiao et al., 2016; Wang et al., 2021). For
example, more subsurface production of brGDGTs in the
Qiongzhou Strait is suggested to be responsible for higher BIT
values (∼0.4–0.6), which, as a result, reflect enhanced
stratification of the onsite water column and thus change in
summer AMC strength (Wang et al., 2021). At our study site YJ,
BIT values, primarily subjected to crenarchaeol (one major
component of isoGDGTs) rather than brGDGT variations
(Supplementary Figure 1), also imply water column
stratification. A set of field surveys, based on collection of
both the sediment trap and core-top samples, show that, at
the transition zones between the Pearl River estuary and the
SCS northern coast, the bloom of autotrophic ammonia-
oxidizing Thaumarchaeota, main producers of isoGDGTs with
limited brGDGTs, tends to preferably occur under the
hydrological conditions in the coldest months, like low light
levels (e.g., Zhang et al., 2013; Wang et al., 2015; Jia et al.,
2017) and less stratified water. Meanwhile, at normal marine
settings, including those on the continental shelf, light and redox
conditions can also yield redistribution of Euryarchaeota/
Archaea community, leading to stratification of archaeal
membrane lipids (with relatively high archaeol in subsurface
waters, Turich et al., 2007; Weijers et al., 2014; Xiao et al.,
2016; Zhu et al., 2016). In this sense, the coeval variations of
isoGDGTs and archaeol abundance in our particular case may
cause opposite temporal patterns of BIT and ACE indices
(Supplementary Figures 1, 2). This fact, in contrary to a
recent study presented by Wang et al. (2021) who have
applied the concomitant increase in these two proxies to
represent enhanced stratification of the northern SCS coastal
water, thereby calls for other interpretation(s) to reconcile
competing patterns of our BIT and ACE proxies (Figures
3A,B). Considering the small variations of BIT values and
brGDGTs (Supplementary Figure 1), we thus interpret
relatively low BIT ratios during the LIA as increased

production of the ubiquitous Thaumarchaeota, relative to
other Euryarchaeota/Archaea. Besides, it is also worth stressing
that despite similar features of changes in crenarchaeol and
caldarchaeol (GDGT-0) (Supplementary Figures 1, 2), two
most abundant components of isoGDGTs, the observed ACE
values here may still primarily respond to Euryarchaeota/Archaea
community changes, therefore no longer being an indicator of
water column stratification (e.g., Wang et al., 2021).

Based on the results of previous studies (Turich and
Freeman, 2011; He et al., 2020), the ACE index might
represent salinity if it mainly responds to Euryarchaeota/
Archaea community changes. This prerequisite indeed exists
in our case, because one could apparently see a major control
of Euryarchaeota/Archaea on the ACE record (Supplementary
Figure 2). Due to the different characteristics of BIT and ACE
records that strongly exclude the latter as a tracer of
stratification (Wang et al., 2021), we instead assume ACE to
manifest salinity. As such, multi-centennial–scale variations in
our ACE record, as depicted in Figure 4G, suggest increased
(decreased) salinity of the onsite water column across the LIA
(MCA) (Turich and Freeman, 2011). Together with the
inference of the available UK′

37 -SST record and wind-borne
hopane contents, as earlier reported (Figures 4A,E),
relatively saline conditions at our site, although only
qualitatively estimated (if also taking into account the small
range of vertical salinity gradient, Figure 2), took place along
with an intensification of winter AMC strength during the LIA,
and vice versa for the MCA. Indeed, observational datasets
confirm that, on seasonal timescales, there is a homogeneous
structure of in situ salinity and temperature changes in winter
(i.e., ∼33.4 psu and ∼20°C down the entire water column,
respectively, Supplementary Figure 3), relative to those in
summer (i.e., ∼32.4 psu/28.3°C at surface and ∼33.4 psu/27.1°C
at ∼10–15 m water depth; Zweng et al., 2013). In analogy with
this scenario, it is possible that a stronger winter AMC during
the LIA would have promoted vertical mixing of the onsite
water column which; as a result, it would have brought more
cold waters and production of (halophilic) Euryarchaeota/
Archaea community (archaeol, the major driver of ACE
values) at the subsurface layers toward upward, thereby
decreasing SSTs while increasing its salinity. Notably,
during the LIA cold interval, a less input of riverine
discharge like the Pearl River drainage, due to the
concomitant reduction of summer AMC intensity, as
effectively corroborated by a growing body of compelling
and independent evidence (e.g., Dykoski et al., 2005; Wang
et al., 2005; Zhang et al., 2008; Wang et al., 2012; Lee et al.,
2019), may have also somewhat contributed to the inferred
salinity increase here. Because these two processes are
naturally coupled together from a climatological
perspective, it is still difficult to assuredly claim which
should play a major role in driving the higher salinity
during the LIA. Still, an in-depth examination of winter
(via mixing of subsurface waters) and/or summer (via
decrease of riverine discharge) AMC impact on in situ
salinity will need additional work in the future, for example,
model simulations in particular. Regardless, variations in
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winter AMC strength, as inferred from both magnetic
susceptibility at Huguangyan Maar Lake (Yancheva et al.,
2007) (Figure 4H), the UK′

37 SST record and wind-borne
hopane contents at site YJ, are strongly suggested to
modulate the water column structure at the SCS northern
coasts, for example, by superimposing additional cooling effect
on the top of the LIA cold climate background (Zhang et al.,
2019).

The physical mechanism for our inference is further
substantiated by the BIT index and TEX86-derived
temperature records (Figures 3B,C). Based on the
observations of i) more isoGDGT abundance at the northern
SCS shelf in winter (e.g., roughly three times higher than in
summer, Jia et al., 2017) and ii) its primary role (without
contribution of terrigenous lipid input as represented by
hopane contents, Figure 4E, and brGDGTs, Supplementary
Figure 1) in regulating variations in the BIT index in our
case, lower (higher) BIT values during the LIA (MCA) hence
probably result from increased (decreased) production of the
Thaumarchaeota, which is in good support of more (less)
prevalence of wintertime conditions (Zhang et al., 2013; Wang
et al., 2015; Jia et al., 2017). Combined with small BIT values
downcore (roughly <0.3), terrigenous materials thus exert little (if
any) impact on the TEX86 proxy (and its calibrated temperature).
For the TEX86 thermometer, recent studies by Jia et al. (2017) and
Wei et al. (2020) have also suggested that at the northern SCS
coast, its estimates are commonly comparable to or slightly lower
than winter SSTs, hence indicative of temperature signals in cold
season (Figure 2). This interpretation, if true in our case, could
explain the overall resemblance between our TEX86 values and
the UK′

37 SST record over the LIA (Figure 3), as it strongly
indicates the homogeneity of thermal signals, in line with
enhanced vertical mixing of onsite water due to a stronger
AMC then. However, we still note that prior to the LIA
interval, there existed slightly cooler (∼0.5°C) values of TEX86

proxy during theMCA (Figure 3). Such observation, based on the
winter temperature signals as earlier asserted (Jia et al., 2017; Wei
et al., 2020), should necessitate a strengthening of winter AMC
strength during the MCA (relative to the LIA), evidently
contradicting not only our UK′

37 SST and hopane records
(Zhang et al., 2019) but also other terrestrial paleorecords
(e.g., Yancheva et al., 2007; Kang et al., 2020). Therefore,
additional parameter(s) must also be included here for
completely understanding our TEX86 record.

In our case, downcore TEX86 values, calculated to be ∼18.8
± 1.2°C (Figure 3C, and roughly ∼2°C higher if using regional
equation developed by Jia et al., 2017), are obviously lower than
the in situ instrumental SST in winter (Figure 2) considering that
∼20% of Thaumarchaeota is actually produced in other seasons
(Wang et al., 2015; Jia et al., 2017; Wei et al., 2020). Further, in
light of i) its different features with the UK′

37 SST record, ii) lower
BIT values (<∼0.3), and iii) use of the TEX86 proxy tomanifest the
temperature of subsurface rather than surface waters, for
example, over the western Pacific marginal sea (Xing et al.,
2015), we here apply TEX86 values as temperature indicators
of an integrated water column but also biased toward winter
season and subsurface waters (Figure 2). Although it is quite

difficult to differentiate the inhabit depths of Haptophyceae algae
(alkenone-producing species) and Thaumarchaeota at site YJ
with ∼21 m water depth, the use of UK′

37 - and TEX86-derived
temperatures to reflect the surface and subsurface thermal signals
has been confirmed at the shallow water column in the northern
SCS coast (e.g., ∼50 m in Wang et al., 2021). Following such
interpretation, within the LIA, an overall similarity in the
temporal patterns of these two paired records (Figure 3C and
Figure 4A) indicates the homogeneity of thermal signature down
the entire water column here, thus calling for an intensification of
vertical mixing due to a stronger winter AMC influence (Zhang
et al., 2019). In contrast, during the MCA, a weaker winter AMC
would have reduced vertical mixing which, together with a
stronger summer AMC simultaneously (Dykoski et al., 2005;
Zhang et al., 2008), intensified stratification of the water column
and then eliminated the similar imprint of thermal conditions at
different water depths, as extracted by UK′

37 -SST and TEX86

temperature records, respectively (Figure 3C and Figure 4A).
Since UK′

37 mainly documents annual mean SST toward
summer biases (Zhang et al., 2019) while the TEX86 index is
largely controlled by winter temperature and the subsurface
signal (Figure 2), the difference between our paired UK′

37- and
TEX86-values, roughly ∼6–7°C, can be used as a rough measure to
represent thermal contrast at both seasonal and vertical scales
(Figure 4C). As such, it shows that thermal gradient at the LIA
was relatively small, for example, particularly down to ∼4°C at a
few short-lived epochs such as ∼250 years BP, and ∼500 years BP
when the UK′

37 -SST record underwent abnormal cooling (of up
∼4°C, Figure 4A), in comparison to that at theMCA (e.g., roughly
∼8°C, Figure 4C). Together with similar variations of UK′

37 and
TEX86 records during the LIA, these multiple lines of
independent evidence call for more influence of stronger AMC
on the vertical mixing of subsurface water and thereby reduced
stratification of the water column. Notably, considering the
evolutionary role of winter AMC in regulating vertical mixing
of subsurface waters at multi-centennial timescales, as discussed
above, it is reasonable that, at our site YJ, the UK′

37 − TEX86

gradient during the MCA is also likely amplified by an
intensified stratification of the water column (and thus
characterized by relatively larger errors) simultaneously.
Reduction of vertical mixing, due to a weaker winter AMC
(than during the LIA), would yield less influence of the
subsurface cooling signal on surface temperature (generated by
the UK′

37 proxy, for example, Zhang et al., 2019). Water column
stratification could also reshape Euryarchaeota/Archaea
community and thus potentially drive TEX86 to lower values.
This could have also contributed to the TEX86 values during the
MCA, not particularly high as compared to the UK′

37 -SST values
(Figure 3C). On the other hand, the TEX86 proxy well captures
the temporal pattern of temperature changes within the LIA.
Despite the potential contribution from Euryarchaeota/Archaea
community changes, our calculation of vertical thermal gradient
apparently resembles the temporal patterns of SST difference
between the coast and open ocean (e.g., using UK′

37 -SST records at
two sites YJ and NS02G, Figure 4D), whereas the SST difference
is used to track winter AMC variability (Kong et al., 2017; Zhang
et al., 2019). Assuming that the open sea SST represents “original”
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temperature signal that is not strongly impacted by the winter
AMC, the temperature difference between the two locations could
indicate the winter AMC impact. The difference of our UK′

37
and TEX86 values captures most of the features in the two
UK′

37 -SST difference (Figures 4C,D), suggesting that the TEX86

proxy largely manifests the integrated water column/subsurface
temperature at this site, despite its complicated nature. Hence,
vertical thermal difference at the site YJ, associated with the
strengthening (weakening) of onsite vertical mixing, facilitates
our explanation of enhanced (reduced) winter AMC strength
during the LIA (MCA). Altogether, secular changes in winter
AMC intensity, for example, its intensification during the LIA, are
capable of i) transporting terrigenous biomass, as substantiated by
exponential increase of wind-borne hopane compounds (Figure 4E);
ii) exerting additional cooling signals upon typical cold climate
background (through both atmospheric and oceanic processes,
Zhang et al., 2019), as seen by abnormal SST decrease
(Figure 4A); and iii) enhancing vertical mixing (thereby reducing
stratification) of the onsite water column, as reinforced by the
similarity in UK′

37 and TEX86 temperatures and decrease in their
difference (Figure 4C), as well as lower BIT values.

CONCLUSION

We used a sediment core YJ, collected from the northern SCS coast,
to analyze GDGT lipid biomarkers during the past millennium.
These proxies, together with published alkenone (UK′

37 )-SST and
hopane records from the same core, help constrain the dynamical
interplay between northern SCS coastal conditions and winter AMC
intensity at multi-centennial timescales. In general, variations in
ACE and BIT indices, although characterized by opposite features,
indicate a more prevalent regime of the winter season at the LIA
(than the MCA). Further comparison of paired UK′

37 and TEX86

temperature records, with the caution that the latter might be
additionally affected by non-thermal factor, shows decrease
(increase) in the vertical thermal gradient during the LIA (MCA),
thereby calling for a well (less)-mixing of the onsite water column.
Therefore, winter AMC changes would have greatly regulated both
thermal and saline properties of the shallow waters at northern SCS

coasts. Our results necessitate a careful examination of the AMC
coupling processes for better understanding coastal environment in
the past, for example, during the LIA andMCA, and also in the near
future.
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