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Warning and evacuation are among the most effective ways for saving human lives and
properties from landslide dam hazards. A new warning decision model for landslide dam
break is developed using Influence Diagrams to minimize the total losses. An Influence
Diagram is a simple visual representation of a decision problem. It analyzes the qualitative
(causal) relationships between the variables via a logic diagram and determines the
quantitative relationships via conditional probability and Bayes’ theorem. The model is
applied for the warning decision-making of the 2008 Tangjiashan landslide dam. The new
model unifies the dam failure probability, evacuation, life loss, and flood damage in an
Influence Diagram. Besides, a warning criterion is proposed for efficient decision-making.
The model is more advanced than the decision tree since the inter-relationships of
influence factors are qualitatively analyzed with causality connections and quantitatively
analyzed with conditional probabilities. It is more efficient than a dynamic decision-making
model (DYDEM) as it can directly calculate the three types of flood loss (i.e., evacuation
cost, flood damage, and monetized life loss) and the expected total loss. Moreover, the
probabilities of the influence factors leading to known results can be obtained through
inversion analysis based on Bayesian theory. The new warning decision model offers an
efficient way to save lives from landslide dam breaking and avoid unnecessary expenses
from premature warning and evacuation.
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INTRODUCTION

A landslide dam is a naturally formed dam by rapid deposition of a landslide, avalanche, or debris
flow, which blocks a river to form a natural lake. Unlike man-made earth and rockfill dam with well-
designed drainage culverts and discharge spillway, a landslide dam often breaks soon after its
formation, leading to a possibly abrupt and catastrophic breaching flood for downstream areas, just
like the huge landslide dam triggered by the 1786 Ms 7.8 Luding-Kangding Earthquake. It breached
soon after its formation and killed more than 100,000 people downstream (Zhang et al., 2016). In
1934, the Deixi Ms 7.5 earthquake triggered three landslide dams along the Minjiang River. The
breaching flood of these three dams impacted the area as far as 800 km and drownedmore than 3,000
people downstream (Liu et al., 2010; Peng and Zhang, 2012a).
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Most landslide dams are short-lived. According to the statistical
analysis of Shen et al. (2020) with 352 recorded cases, 30 and 48% of
the landslide dams last only 1 day and 1 week, respectively. An
extreme case is the Xiaolin Village landslide dam which was formed
by the 2009 extreme Morakot Typhoon. It breached within 1 h after
its formation and killed 384 people in the adjacent downstream
Xiaolin Village (Li et al., 2011). To cope with these landslide dams, a
timely warning is indispensable.

Nevertheless, the decision of dam break warning and evacuation
should be very cautious and timely since it can be costly (Frieser,
2004; Peng and Zhang, 2013a, b; Shi et al., 2017). For instance, the
breaking of the Tangjiashan landslide dam, triggered by the 2008Ms
7.9 Wenchuan earthquake, forced as many as 300,000 people in
Mianyang City (85 km downstream) to leave their homes for two
weeks. The total evacuation expenses (including GDP interruption
and evacuated expense) were estimated to be as much as RMB
1.2 billion. However, Mianyang City was not flooded, as the peak
discharge of 7,800m3/ s was lower than that of the designed flood of
12,000m3/ s. Thus, a scientific decision on evacuation warning
towards landslide dam break is crucial to achieving theminimal risk.

The existing studies on warning decision-making on dam
breaking are divided into two categories: deterministic methods
and probabilistic methods (Peng and Zhang, 2013a; Grant and
Nover, 2019; Correa et al., 2020). Deterministic decision methods
take water level and peak inflow rate and some other parameters as
the indices for evacuationwarning (Nielsen et al., 1994; Frieser, 2004;
Zhai et al., 2018; Fan et al., 2019; Mandal et al., 2020). In some
guidelines for dam safety, some subjective suggestions are offered for
issuing dam break warning (Urbina and Wolshon, 2003; FEMA,
2004). Generally, the methods are quite intuitive and easy to apply.
However, they fail to state the number of people to be evacuated and
the best time to issue the warning. Furthermore, the uncertainties
involved in dam break flood and human response are not evaluated.

In probabilistic decision methods, risk acceptance criteria
based on fatality number and annual occurrence frequency
were suggested for decision-making (BC Hydro, 1993; USBR,
1997; ANCOLD, 1998). Based on these criteria, the dam
breaching risks higher than an acceptance level should be
mitigated with structural or non-structural measures, including
evacuation warnings. Su et al. (2011) have developed an early
warning system of dam health with system engineering (e.g.,
integration control module, intelligent inference engine, and
support base cluster) and artificial intelligent methods. Acosta-
Coll et al. (2018) have reviewed the real-time early warning
system design for pluvial flash floods and proposed a basic
structure for an effective early warning system for pluvial flash
floods. Fan et al. (2018) have studied the early warning of a dam
break in a mountain river based on risk assessment via fuzzy
analytic hierarchy process. Su et al. (2018) have developed an
early warning model of deformation safety for roller compacted
concrete arch dam by considering time-varying displacement
data. Liu et al. (2018) have summarized the main early warning
studies on flash flood with a systematic review on the early
warning studies in China. Li et al. (2019) have conducted real-
time warning and risk assessment of tailing dams based on
dynamic hierarchy-grey relation analysis. Wang et al. (2020)
have presented a method for early warning of crest cracking

for high earth-rockfill dams via Bayesian parameter updating.
The above existing studies on warning decision-making answered
how likely the dam breaks or flash floods would occur but did not
answer how much loss would be incurred. Thus, the optimal
decision strategy to minimize the total loss cannot be
quantitatively achieved, not to mention that the dynamic
decision-making involved time-related losses.

Decision trees are often used for quantitative decision analysis
because they are logical and intuitive (Frieser, 2004; Smith et al.,
2006; Woo, 2008). Frieser (2004) has presented a decision tree on
levee failure evacuation warning by considering three types of
consequences: evacuation costs, flood damage, and loss of life.
Time-dependent evacuation decisions can be analyzed using a
multi-phase decision tree (Frieser, 2004). The alternatives in
decision trees are assumed as independent, and the inter-
relationships of influence factors are neglected. Peng and
Zhang (2013a) and Peng and Zhang (2013b) have presented a
decision-making model (DYDEM) based on dynamic risk
assessment. The optimum time for evacuating the population
at risk (PAR) is obtained by minimizing the expected total loss,
which integrates the time-related probabilities and flood
consequences. Based on DYDEM, Shi et al. (2017) have
employed the pre-acquired terrain information to establish an
efficient warning decision-making method. The method was
applied to emergent evacuation warnings of the 2014
Hongshiyan landslide dam triggered by the Ms. 6.5 Ludian
earthquake. DYDEM calculated the dam failure probability,
human risk, economic loss, and evacuation cost with different
methods. The expected total losses need to be calculated as the
sum of the three types of expected losses (the product of the dam
failure probability and the loss). This method is suitable for
detailed case studies with sufficient investigated and simulated
parameters. However, it may not be sufficient for efficient
decision-making for short-lived landslide dam cases.

In this article, a new decision-making model is proposed based on
Influence Diagrams. Influence Diagram integrates dam failure
probability, the population at risk, fatality rate, and the three types
of flood losses within one method. The new method would be much
more precise than the decision tree and efficient than DYDEM.
Firstly, themethod of InfluenceDiagram is introduced and illustrated
with an example. Secondly, a warning decision model is built by
modifying the Bayesian network of a human risk assessment model
(HURAM). Third, the model is applied to warning decision-making
for the 2008 Tangjiashan landslide dam. Finally, the present model is
compared with DYDEM and the decision tree method to illustrate
the advantages. The new model provides an efficient and reliable
method for warning decision-making for short-lived landslide dams.
Both the time-related dam failure probability and three types of losses
are involved within the new model.

METHODOLOGY

Influence Diagram
Background of the Influence Diagram
Influence Diagram, first presented by Howard and Matheson
(2005), is a method to solve complex decision problems by
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considering the inter-relationships of influence factors and their
uncertainties. An Influence Diagram is a simple visual
representation of a decision problem. It offers an intuitive way
to identify and display the essential elements, including decisions,
uncertainties, objectives, and how they influence each other. It
adopts the form of a logic diagram to analyze the qualitative
(causal) relationship between the variables. It uses conditional
probability and Bayes’ theorem to analyze the quantitative
relationship between the variables.

The influence graph is an extension of the Bayesian network
method by employing decision nodes and utility function nodes.
The application procedure of the Influence Diagram is divided
into three steps: establishing the Influence Diagram structure by
causal analysis of variables; obtaining the prior probability values
based onmulti-source information such as statistic data, theoretic
analysis, and numerical simulation; obtaining the posterior
probabilities with evidence according to Bayes’ theorem.

Theoretical Introduction
Assume that an Influence Diagram has l decision nodes of D1,
D2,. . .Dl, m chance nodes of C1, C2,. . .,Cm, and n utility function
nodes U1, U2,. . .,Un. The value of each utility function node given
any combination of decision nodes and chance nodes is
calculated as follows

Uk|D,Xq
� Uk[π(Uk)]P[π(Uk)|D,Cq], (1)

whereUk is the kth utility function node, π(Uk) is the parent node
set of Uk,D is the decision node set (D1, D2,. . .Dl), Cq is the set of
chance nodes with evidences, and Uk [π(Uk)] is the utility
function of π(Uk).

P[π(Uk)
∣∣∣∣D,Cq] � P[π(Uk),D,Cq,Cr]

P(D,Cq)

� P[π(Uk),D,Cq,Cr]
∑

π(Uk),Cr

P[π(Uk),D,Cq,Cr], (2)

where Cr is the set of chance nodes without evidences (stochastic
valuables) and P [π(Uk), D, Cq, Cr] is the joint probability of all
parameters (nodes) in an Influence Diagram.

Express all types of nodes as a set X (X1, X2, . . ., XN), in which
N � l + m + n. The joint probability P (X1, X2, . . ., XN) can be
expressed as the products of the conditional probability of each
node given its parents (Jensen, 2001):

P(X1,X2, . . . ,XN) � ∏
n

i�1
P(Xi|π(Xi)), (3)

where π(Xi) is the set of all the parents of Xi. For discrete state
Bayesian network, the basic parameters of a Bayesian network are
expressed as follows (Zhang and Guo, 2006):

θijk � P(Xi � k
∣∣∣∣π(Xi) � j), (4)

where k and j are the state numbers of the node Xi and its parents,
respectively. According to the Bayesian theorem, the posterior
probability of the parameter vector is given by the following
(Zhang and Guo, 2006):

P(θ|D)∝ P(θ)∏
n

i�1
∏
qi

j�1
∏
ri

k�1
θ
mijk

ijk , (5)

in which θ is the vector of θijk, P(θ) is the prior probability of θ,
and mijk is the number of samples with Xi � k and π(Xi) � j.

FIGURE 1 | An example of Influence Diagram: eva. � evacuation and
flo. � flood.

TABLE 1 | The prior conditional probability table of evacuation using HURAM (Peng and Zhang, 2012b).

Dw (m) 0–1.5 (0.378)* 1.5–3 (0.406)*

Wt (h) 0 0–3 3–24 >24 0 0–3 3–24 >24

Evacuation Yes 0.134 0.513 0.979 1.000 0.091 0.473 0.979 1.000
No 0.866 0.487 0.021 0.000 0.909 0.527 0.021 0.000

Dw (m) 3–6 (0.187)* >6 (0.029)*

Wt (h) 0 0–3 3–24 >24 0 0–3 3–24 >24

Evacuation Yes 0.028 0.407 0.975 1.000 0.012 0.371 0.973 1.000
No 0.972 0.593 0.025 0.000 0.988 0.629 0.027 0.000

Note: the prior probability values in the brackets are obtained based on statistical data.
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An Illustrated Example of Influence Diagram
The Example
Figure 1 shows a simple example of using an Influence Diagram
to make warning decisions. Four influence factors are considered,
among whichWt is the decision node (with 4 states) and the water
depth (Dw) (with 4 states), evacuation (with 2 states), and flood
severity (with 4 states) are the chance nodes. The utility function
notes are three types of losses: evacuation cost, flood damage, and
monetized life loss. The optimal decision is achieved to minimize
the total expected loss, which is the sum of the three types of
losses. This target is realized with three steps: building the
Influence Diagram, quantifying the Influence Diagram with
prior probabilities, and calculating the total expected loss with
different warning times by Bayesian updating.

The Structure of Influence Diagram
The Influence Diagram structure is established by considering the
causal relationships of the variables (Figure 1). In the Influence
Diagram, Wt influences evacuation and evacuation cost. An
earlier warning would evacuate more people and incur more
evacuation costs. Sufficient evacuation reduces flood damage and
life loss but increases the evacuation cost at the same time. A
larger water depth incurs less efficiency of evacuation, larger flood
severity, and more life loss. Flood severity, determined by the
building inundation and damage (Peng and Zhang, 2013a; Peng
and Zhang, 2013b), directly influences the flood damage and
life loss.

The Prior Probability of the Influence Diagram
The prior (conditional) probabilities of the three chance nodes
(Dw, evacuation, and flood severity) are obtained according to
Peng and Zhang (2012b) and Peng and Zhang (2012c), as shown
inTables 1–2. The prior probabilities ofDw are obtained based on
statistical data (Table 1). The prior condition probabilities of
evacuation (Table 1) are regarded as the probabilities when the
available time is larger than the demand time, which will be
introduced later. The prior condition probabilities of the flood
severity (Table 2) are obtained based on a matrix of building

inundation and building damage, according to Peng and Zhang
(2012b).

The evacuation cost consists of GDP interruption loss and
people resettlement costs. The flood damage is counted by the
damage of movable properties in this study since the unmovable
properties cannot be saved by warning and evacuation. Human
life is monetized for evacuation decision-making. The value of
human life is counted as the GDP per person (GDPP) and the
average longevity (Lav) (Frieser, 2004; Jonkman, 2007). For
example, the GDPP and Lav in Mianyang City, China, are
RMB 13,745 and 75 years in 2008 (Mianyang Bureau of
Statistics, 2008). Thus, the value of one person is estimated as
RMB 1.03 million. Suppose that the population at risk (Par) is
1,000 in this case. The prior utility functions of evacuation cost,
flood damage, and life loss are calculated based on Peng and
Zhang (2013a), as shown in Tables 3–4, respectively.

The Total Expected Loss as a Function of Warning
Time
Finally, the total expected loss (LT) is calculated as follows:

LT � C + Pf (DM +ML), (6)

where C denotes the evacuation cost, DM is the movable flood
damage,ML is the monetized life loss, and Pf is the probability of
landslide dam failure. The three types of flood losses are posterior
values calculated by updating the prior values based on Bayes’
theorem. In this case, we can obtain each of the flood losses,
according to Eqs. 1–4. Take the flood damage DM as an example.
According to Figure 1, DM is calculated as follows:

DM

∣∣∣∣(Wt ,Dw) � ∑
Wt ,Eva

DM(Eva, FS)P(Eva, FS|Wt ,Dw), (7)

where Eva is the evacuation, Fs is the flood severity, and DM (Eva,
Fs) is the flood damage as a function of Eva and Fs, which can be
found in Table 3. The conditional probability P (Eva, Fs |Wt, Dw)
is calculated as follows:

P(Eva, FS|Wt ,Dw) � P(Eva, FS,Wt ,Dw)
P(Wt ,Dw) � P(Eva, FS,Wt ,Dw)

∑
Wt ,Dw

P(Eva, FS,Wt ,Dw).

(8)

According to Equation (3), the joint probability P (Eva, Fs,Wt,Dw)
is as follows:

P(Eva, FS,Wt ,Dw) � P(Wt)P(Dw)P(Eva|Wt ,Dw)P(FS|Dw), (9)

where P(Wt) � 1 for decision node; P (Dw) can be found in
Table 1, and P (Eva|Wt, Dw) and P(Fs|Dw) in Table 2.

TABLE 2 | The prior conditional probability table of flood severity using HURAM
(Peng and Zhang, 2012b).

Dw (m) 0–1.5 1.5–3 3–6 >6

Flood severity Safe 0.608 0.353 0.168 0.081
Low 0.284 0.171 0.099 0.081
Medium 0.108 0.476 0.529 0.481
High 0.000 0.000 0.204 0.357

TABLE 3 | Prior probability of evacuation cost and flood damage with Par of 1,000 based on Peng and Zhang (2013a).

Evacuation Yes No

Warning (h) None 0–3 3–24 >24 None 0–3 3–24 >24
Evacuation (million RMB) 0 0.343 0.428 0.526 0 0.155 0.188 0.226
Flood severity Safe Low Med High Safe Low Med High
Flood damage (million RMB) 0.0 0.0 0.0 0.0 0.0 1.345 3.137 4.482

Note: the evacuation cost consists of GDP interruption loss and people arrangement fee for people who have evacuated only.
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Figure 2 shows the total expected loss (LT) with different
values of Wt, Dw, and Pf. Generally, LT increases with Dw and Pf.
The influence of Wt on Lt is more complicated. When Pf and Dw

are large, LT decreases withWt, as LT is dominated byML andDM.
When Pf andDw are small, LT decreases withWt. When Pf andDw

are relatively large, LT decreases and then increases with Wt.
For instance, minimal LT is achieved as 0.53 million RMB when
Wt > 24 h, in the case of Pf � 1 andDw � 3–6 m;minimal LT can be
ignored with no warning when Pf reduces to 0.01 and Dw is
0–1.5 m.

THE NEW DECISION-MAKING MODEL

The target of the decision-making model is to find the optimal
time for issuing a warning to minimize the risk (R) or the
expected total loss (LT):

R � LT(t) � ∫∞

tf �0
{C(Wt) + Pf (tf )[DM(Wt) +ML(Wt)]}dtf

(10)

Wt � t − tf , (11)

where t is the moment for issuing warning. tf is the moment of
dam failure. Wt denotes the warning time. Pf (tf) denotes the
failure probability of the landslide dam before tf as a time series.
C(Wt), DM(Wt), and ML (Wt) are evacuation cost, movable flood
damage, and monetized life loss as functions of Wt, respectively.
Note that the unmovable damage is not involved since it cannot

be mitigated by warning and evacuation. Normally, C(Wt)
increases but DM(Wt) and ML (Wt) decrease with Wt.

Decision Criterion
The decision criterion is to find the optimal time for issue
warning to minimize LT (t) or LT (tf + Wt). When Pf (tf) is very
small (e.g., at the dam formation moment with shallow water
level), LT (t) is dominated by C(Wt) and the minimal LT (t) is
achieved at Wt � 0, which means no warning is necessary. With
the increase of Pf (tf ), LT(t) increases. When LT (t) achieves the
minimal value with Wt > 0 for the first time, which means early
warning is necessary, we need to warn the people before this
moment, tcr. A warning is not needed before tcr and needed
after tcr:

LT(tcr)< LT(tcr +Wt) and LT(t)> LT(t +Wt), for anyWt > 0 and t > tcr .
(12)

Since Pf(t) monotonously increases with t before dam failure,
we can first find the critical failure probability Pfcr in the Influence
Diagram (to be introduced later) and then obtain tcr as the inverse
function of Pf(t).

tcr � P−1
f (Pfcr). (13)

The Human Risk Analysis Model
In Eq. 10, C(Wt), DM(Wt), andML (Wt) can be calculated using a
new warning decision model via Influence Diagram, which is
built by improving the Bayesian network of a human risk

TABLE 4 | Prior probability of life loss with Par of 1,000 based on Peng and Zhang (2013a).

Evacuation No

Flood severity Low Medium

Dw (m) 0–1.5 1.5–3 3–6 >6 0–1.5 1.5–3 3–6 >6
Fatality rate 0.19 1.59 5.74 12.52 0.19 7.42 38.88 73.20
Monetized life loss 196 1,638 5907 12896 196 7643 40046 75396

Note: the fatality rate of the evacuated people and the people in the safe flood severity is zero.
The fatality rate in the high flood severity zone is a constant value of 90.78% (Peng and Zhang, 2013a).

FIGURE 2 | Variation of total loss with Wt and Dw: (A) Pf � 1; (B) Pf � 0.1; (C) Pf � 0.01.
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assessment model, HURAM (Peng and Zhang, 2012b; Peng and
Zhang, 2012c). The logic structure of HURAM is shown in
Figure 3. People in the flooded area are called population at
risk (Par). A part of Par evacuates from the flooded areas to be safe
if the available time is larger than the demand time. The other
people, who stay in the flooded area, are defined as exposed
people. The exposed people may take shelter inside buildings. If
so, their safety depends on the building inundation and damage.
There are four flood severity zones: safe, low, medium, and high.
The fatality ratio of the four zones is quantified based on
statistical data, as shown in Figure 3 (Peng and Zhang,

2012b). HURAM model is able to estimate the human risk
(i.e., probability of life loss) by considering fourteen
parameters and their interrelationship. The model is validated
in several cases (Peng and Zhang, 2012b; Peng and Zhang, 2013b;
Shi et al., 2017).

New Decision-Making Model With
Improvements on HURAM
A new decision-making model (DEMID) (Figure 4) is developed
based on Influence Diagram. It improves the Bayesian network of
HURAM mainly in five aspects: changing the states of the
“warning time” node; removing the “time of a day” node;
changing the functions of the “evacuation” node; adding two
chance nodes “dam failure probability” and “population at risk”;
adding three utility function nodes “evacuation cost,” “flood
damage,” and “monetized life loss.”

Changing the States of the “Warning Time” Node
“Warning time,” an originally chance node, is changed to a
decision node. Originally in HURAM, “warning time” has five
states: 0–0.25 h, 0.25–1 h, 1–3 h, 3–6 h, and >6 h. It is an
intermediate node with two parent nodes of “time of a day”
and “distance to dam site,” which meant that the available Wt is
influenced by “time of a day” and the “distance to dam site” (Peng
and Zhang, 2012a). In DEMID,Wt is set as a decision node in the
Influence Diagram with seven states: 0–0.25 h, 0.25–1 h, 1–3 h,
3–6 h, 6–12 h, 12–24 h, and >24 h. Two more states with longer
warning times are added as more time needs to be offered for
people to save their properties.

Removing the “Time of a Day” Node
“Time of a day,” an originally chance node, is removed. In
HURAM, the node “time of a day” had three states: 8:00–17:
00, 17:00–22:00, and 22:00–8:00. It was a parent node of three
intermediate nodes: “warning time,” “evacuation,” and
“sheltering inside buildings”. In DEMID, the lead time for

FIGURE 3 | The framework of the human risk assessment model for a
landslide dam (modified from Peng and Zhang, 2012b; Peng and Zhang,
2013a).

FIGURE 4 | The decision-making model based on Influence Diagram.
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decision-making was often on the order of days, making the
simulation of warning and evacuation rather complex. Besides,
we can choose daytime for issuing a warning. Thus, the chance
node of “time of a day” in the Influence Diagram was removed
(Peng and Zhang, 2013a).

Changing the Function of “Evacuation” Node
The warning transmitting time distribution and response time
distribution are changed. In HURAM, a successful evacuation is
defined as the available time (Wt + Rt) larger than demand time
(Tt + St + Et) (Peng and Zhang, 2013a):

Wt + Rt >Tt + St + Et , (14)

where Wt is the warning time; Rt is the flood rise time (the time
for the flood water level rising to a critical level causing threat to
human life, 1.5 m is assumed); Tt is the warning transmitting time
(the duration from issuing the warning to the receipt by the
people at risk); St is the response time (the time for people to
confirm the warning, prepare for evacuation and wait for family
members); Et is the evacuation time (the time for the people to
mover to safe places).

In HURAM, the warning transmitting distribution was W
(3.5, 0.6), W (2.0, 0.5), and W (1.3, 0.7) for times of a day of 08:
00–17:00, 17:00–22:00, and 22:00–08:00, respectively. Here W (a,
b) denotes a Weibull distribution with coefficients a and b:

P(t) � 1 − exp (− atb). (15)

In DEMID, we use W (1.3, 0.7) only for safety and to avoid
complex calculations (Peng and Zhang, 2013b). W (1.3, 0.7) is
suggested for moderately rapid warning by Lindell et al. (2007).

In HURAM, the response time distribution is assumed as W
(4, 1) for emergent dam break situation, with a mean value and
standard deviation of 0.25 and 0.25 h, respectively. In emergent
cases, people have no more time to rescue properties. However, in
DEMID, the government should consider offering more time for
people to save properties and prepare daily belongings. A
distribution of W (0.085, 2.55) is chosen according to the
practices of hurricane evacuation (Lindell et al., 2007). In this
case, the mean value and a standard deviation of 2.33 and 0.98 h
are considered, respectively.

Adding Two Chance Nodes of “Population at Risk”
and “Dam Failure Probability”
Two chance nodes, namely, the “population at risk” and “dam
failure probability,” are added to the Influence Diagram. In
HURAM, the flooded areas are divided into subareas with
different populations at risk (Par) and flood parameters. The
human risk (RH) is calculated as the sum of the expected life loss
(Li) in each subarea:

RH � ∑
n

i�1
Li � ∑

n

i�1
Pf Pl|f Par , (16)

where Pl|f is the conditional probability of life loss when the dam
fails. Three steps are needed: firstly, dividing the flooded area into
subareas with different Pars; secondly, obtaining Pl|f via the

Bayesian network in HURAM; finally, calculating RH with Pf
according to Eq. 16.

In DEMID, RH is directly calculated as shown in Figure 4 by
adding two chance nodes: “population at risk” with five states (1,
1E2, 1E4, 1E6, and 1E8) and “dam failure probability” with seven
states (0, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, and 1). The flood area need
not to be divided into subareas as in HURAM. The distribution of
Par and the flood parameters (Dw, flow velocity, and rise time) are
taken as probabilities in the Influence Diagram. Despite discrete
states in the two added nodes, all continuous values can be
achieved by the weighted average of the two closest states by
solving the following equation:

P � PiSi + Pi+1Si+1 (17)

Pi + Pi+1 � 1, (18)

where Pi and Pj are two probability weights of the two closest
states and Si and Sj are the two state values. For instance, Par with
30,000 could be expressed as 0.9798*1E4 + 0.0202*1E6. Besides,
the human risk could be assessed via DEMID; also, the expected
flood damage and evacuation cost could be evaluated at the same
time by employing three utility function nodes as follows.

Adding Three Utility Function Nodes
Three utility function nodes, namely, “evacuation cost,”
“expected flood damage,” and “expected life loss,” are added in
the new model. The evacuation cost is the sum of the initial costs
(Ci) and GDP interruption (CGDP) (Peng and Zhang 2013a):

C � Ci + CGDP. (19)

Ci is the evacuation expenses, such as temporary resettlement
fee (e.g., accommodation, food, and compensation) and public
maintenance fee (e.g., security and medical care), and can be
calculated as follows:

Ci � cPeva(Wt + 3), (20)

where c is the expense per person per day (e.g., RMB 60 or US$ 9.5
per person per day for the evacuation caused by the 2008
Tangjiashan landslide dam); Peva is the number of evacuated
people, which is estimated using the HURAM;Wt is the warning
time in days. The 3-day period is taken as the minimum period of
time between the predicted moment of flooding and the return of
the residents (Frieser, 2004). The GDP interruption (CGDP) is
calculated as follows:

CGDP � GDPP

365
(PAR)(Wt + 4), (21)

where GDPP is the GDP per capita and the interrupted time.
The moveable flood damageDM is assumed to be proportional

to the number of the people who neither evacuated nor sheltered
in safe zones (in the building story beyond the inundation height)
(Peng and Zhang, 2013a):

D � (1 − Peva)(1 − Psafe)(PAR)αIp, (22)

where Psafe is the ratio of the people taking shelter in the safe
zones; α is the proportion of properties that can be transferred
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(0.1 is assumed); Ip is the property of each person, which is
calculated approximately as the cumulative net income
(i.e., income minus spending) per person (Peng and Zhang,
2013a):

Ip � (I − S)n, (23)

where I and S are the average income and spending per person; n
is the average working period per person (e.g., 20 years).
For instance, in 2008, Mianyang City, Sichuan Province,
China, Ip � 4,482 * 20 � RMB 8,9640.

Despite ethical considerations, a person’s life is measured for
rational decision-making. The monetized life loss (ML) is
calculated as the product of the probability of life loss and the
value of human life (VL), while VL is calculated as the product of
GDPp and the average longevity (L) (Jonkman, 2007). For
instance, GDPp and L in Mianyang City in 2008 are RMB
13,745 and 75 years (Mianyang Bureau of Statistics, 2009).
Thus, VL was RMB 1.03 million.

WARNING DECISION-MAKING FOR THE
2008 TANGJIASHAN LANDSLIDE DAM

Background of the Tangjiashan
Landslide Dam
The Tangjiashan landslide lies on the right bank of the Tongkou
River in Sichuan Province, China, 4.5 km upstream of Beichuan
County (104° 25′56.93″ E, 31°50′40.60″ N) (Xu et al., 2013). The
Tongkou River is a tributary of the Fujiang River with a length of
173 km and a basin area of 4,520 km2. The strata of the
Tangjiashan landslide area comprises the upper Qingping
Formation of the lower Cambrian dipping outward (N60°E/
NW∠60°), a residual-diluvial layer of Quaternary sediments,
and an alluvial layer of Quaternary sediments with a depth of
5–20 m in thickness (Xu et al., 2013). The landslide was triggered
by the 2008 Ms 7.9 Wenchuan earthquake. The top elevation of
the Tangjiashan landslide was 1,580 m, with a slope height of
about 900 m. The lower terrain was steep (40°–60°) with the
bedrock exposed, whereas the upper terrain gently slopes at an
angle of about 30°, with diluvial gravel soil (about 5–15 m in
thickness) covering the surface. Details of the landslide refer to
(Hu et al., 2009; Xu et al., 2013).

The Tangjiashan landslide slid into the Tongkou River and
formed a landslide dam with a height of 82 m, width of 802 m,
length of 611 m, dam volume of 20.4 million m3, and lake
capacity of 316 million m3 (Hu et al., 2009; Cui et al., 2009),
as shown in Table 5. The landslide dam was located at 4.5 km
upstream of Beichuan Town with 30,000 residents and around
85 km upstream of Mianyang City with 1,127,000 residents
(Figure 5A). The dam mainly consists of three layers (Figures
5B,C): the upper layer of gravely soils with a thickness of 5–15 m,
the middle layer of strongly weathered cataclasite with a thickness
of 10–15 m, and the bottom layer of weakly weathered cataclasite
with a thickness of 50–80 m (Peng and Zhang, 2012c; Peng and
Zhang, 2013b). The cross-sections of A-A and B-B in Figure 5
refer to Figure 6.

The risk of dam breaching was high, so the local government
decided to excavate a division channel. The division channel was
completed by June 1, 2008, with a length of 475 m, a width of
25 m and a depth of 12 m (Peng and Zhang, 2012c; Peng and
Zhang, 2013b). It lowered the crest elevation from 752.2 to
740.4 m and reduced the lake capacity from 316 million m3 to
247 million m3 (Peng and Zhang 2013b).

The dam breached on June, 10, 2008 and lasted for 14 h. Its
peak outflow rate reached 6,500 m3/ s. The final breach size had a
depth of 42 m, a top width of 145–235 m, and a bottom width of
80–100 m (Peng and Zhang, 2012b; Peng and Zhang, 2012c). All
the people (30,000) in Beichuan County and 300,000 people in
Mianyang City were evacuated by June, 1, 2008, 10 days before
the dam breaching. The evacuation costs were estimated as much
as RMB 1.2 billion.

Simulation of Dam Breaching and Flood
Routing
In order to find out the effect of the channel, two scenarios are
simulated, with the division channel (real case of Scenario 1) and
without it (a virtual case of Scenario 2). The dam heights of the
two scenarios are 70 and 82 m, and the corresponding lake
volumes are 224 and 316 million m3.

A breaching model for landslide dams, DABA (Chang and
Zhang, 2010; Peng et al., 2014; Shi et al., 2015), was applied to
simulate the dam breaching process and achieve the breaching
outflow rate. DABA simulates the soil erosion during dam
breaching based on shallow water flow theory. The outflow
rate is calculated using the broad-crested weir equations.
DABA also takes into consideration the variation of soil
properties along with landslide dam depth. The model was
proved to be an effective tool for breaching simulation of
landslide dams (Chang and Zhang, 2010; Peng et al., 2014; Shi
et al., 2015).

HEC-RAS 4.1, a hydraulic simulation software (HEC, 2008), is
used to simulate the flood routing after obtaining the breaching
outflow rate via DABA. Two residential areas downstream are
considered in this study: Beichuan County with 30 thousand
residents located 4.5 km downstream and Mianyang City with
more than 1.1 million residents located 85 km downstream. The
main parameters include the dam breaching parameters (the final
breach size, breaching time, and breaching progression curve
obtained from DABA model), the geometric parameters of the
channel, Manning’s n values, and contraction and expansion

TABLE 5 | Breaching parameters of the two simulation scenarios using DABA and
the records.

Breaching parameters Simulation scenarios Records

Scenario 1 Scenario 2

Breach depth (m) 43.4 42.2 42
Breach top width (m) 204.4 242.5 145–235
Breach bottom width (m) 131.6 171.6 80–100
Breaching time (hour) 14.6 9.6 14
Peak outflow rate (m3/s) 6,603 14,658 6,500

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 6798628

Zhu et al. Decision-Making for Landslide Dams

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


coefficients. Manning’s n values are 0.040 and 0.050 for the
channel and the floodplain upstream of Mianyang City,
respectively, and 0.035 and 0.045 for the channel and the
floodplain in the Mianyang City, respectively, according to
Chow (1959).

Figure 7 shows the simulated outflow rates of the two
scenarios and the recorded values. With the division channel,
the outflow rate curve of the simulated case with the division
channel is close to the real case. The peak outflow rate is 6,603 m3/s
and the breach depth is 43.4 m, which are quite close to the
records of 6,500 m3/ s and 42 m, respectively (as shown in
Table 5). Without the division channel, the dam would breach

9 days later due to the larger lake capacity for water filling. The
peak outflow rate reaches 14,658 m3/ s, which is much larger than
that in Scenario 1. Besides, the final breach size would be slightly
shallower but much wider.

The hydraulic parameters in Beichuan County and Mianyang
City were obtained via HEC-RAS software. In Scenario 1, the
flood with the peak flow rate of 6,538 m3/ s inundated Beichuan
County with a maximum water depth of 6.13m (Figure 8A) and
flow velocity of 1.11 m/ s. In Mianyang City, however, the peak
flow rate (7,820 m3/ s) was lower than the design flood (12,000 m3/
s) of the levee system. In Scenario 2, the peak flow rates increased to
14,440 and 14,584 m3/ s in Beichuan County and Mianyang City,
respectively. ThemaximumDw in Beichuanwas as large as 19.68 m
(Figure 8A), and the flow velocity was 1.56 m/ s. InMianyang City,
the floodwould inundate the city with a maximumdepth of 0.51m
(Figure 8B) and flow velocity of 0.25m/ s.

FIGURE 5 | The location and cross-section of the Tangjiashan landslide dam: (A) the location of the dam and the Beichuan Town; (B) the cross-section across the
river; and (C) the cross-section along the river (Modified fromPeng and Zhang, 2012b and Shi et al., 2015). Note that the cross-sections of A-A and B-B refer to Figure 6.

FIGURE 6 | The aerial photograph of the Tangjiashan landslide dam
(Modified from Shi et al., 2015).

FIGURE 7 | The breaching outflow rates of the real case and two
simulated cases.
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Probability Analysis of Tangjiashan
Landslide Dam Failure
As 92% of past landslide dam failures were due to overtopping
(Peng and Zhang, 2012c), only overtopping failure is considered
in this study. A dam is defined as an overtopping failure at time t
when the reservoir volume (Vt) is larger than its capacity (Vcr). Pf
as a time series is expressed as follows (Peng and Zhang, 2013a):

Pf (t) � P[V(t)>Vcr]. (24)

According to the conservation of mass, V(t) is given by

V(t) � V(t − Δt) + [Q(t) − Qo(t) − Qe(t)]Δt, (25)

where Δt is the time interval; Q(t) is the inflow rate at time t;Qe(t)
is the evaporation rate, which could be ignored for a short time
during the emergency management; Qo(t) is the outflow rate at
time t, which was less than 1 m3/ s and ignored in this study (Peng

and Zhang, 2013b). Thus, Q(t) is the only key item to calculate
Pf(t), according to Eqs. 19, 20.

Based on the 33 recorded data provided by Zhang (2009), a
time series model of AR (2) is suitable to estimate Q(t):

Q(t) � 0.463Q(t − 1) − 0.181Q(t − 2) + a(t), (26)

where a(t) is the error with the mean value of 0. The variation of
a(t) is calculated as follows:

σ2
a �

1
n − 1

∑
n

1

a2t . (27)

With the estimated Q(t) according to Eqs. 21, 22, Pf of the
Tangjiashan landslide dam in Scenarios 1 and 2 were obtained as
shown in Figure 9. For For more details on the time series
analysis method for calculating Pf , refer to Peng and Zhang,
2013a; Peng and Zhang, 2013b.

In Scenario 1, Pf increased from 0 to 1E-5 at 21:00 on June 6,
2008, to 1E-3 at 9:00 on June 6, 2008, to 1E-1 at 6:00 on June 8,
2008, and to 0.964 at 6:00 on June 10, 2008. Note that the dam
started to breach at 6:00 on June 10, 2008.

In Scenario 2, the corresponding times for Pf arriving 1E-5, 1E-
3, 1E-1, and 0.964 were at 10:00 on June15, at 17:00 on June 16, at
15:00 on June 17, and at 2:00 on June 23, 2008.

Warning Decision-Making for Beichuan
County
In Scenario 1, the dam breaching flood with the peak discharge of
6,538 m3/ s inundated 33.0% of the area of Beichuan County, with
the population at risk being 9,905. The Dw and flow velocity were
6.13 and 1.11 m/ s, respectively. The expected total loss (LT) and

FIGURE 8 | The inundation maps of Beichuan Town and Mianyang City: (A) Scenarios 1 (the maximal water level � 6.13 m) and 2 (the maximal water level �
19.68 m) in Beichuan; (B) Scenario 2 (the maximal water level � 0.51 m) in Mianyang (Mianyang is not flooded in Scenario 1).

FIGURE 9 | PDF and CDF of Pf in the two Scenarios.
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the three types of flood losses can be obtained by updating the
Influence Diagram with the inputs of the basic nodes (without the
parent node). Figure 10 shows an example with the “warning
time” of 3–6 h and “dam failure probability” of 1.0. According to
the investigation, the six states are deterministic: “flow velocity”
(1–2 m/ s), “distance to dam site” (0–4.8 km), “building story
number” (3 stories), “dam breaching during” (>9 h), “building
type” (masonry, concrete and brick), and “population at risk”
(9,905). The states of “water depth” and “evacuation distance” are
obtained based on the proportion of the flooded areas (Peng and
Zhang, 2013b). In this case, the evacuation rate and the fatality
rate are 95.25 and 0.07%, respectively. Since Par was 9,905, the
evacuated population number was 9,435, the exposed population
number was 470, and the expected fatality number was 6.9. The
evacuation cost, expected flood damage, and expected monetized
life loss were 4.82, 2.10, and 7.35 million RMB, respectively,
making the expected total loss of 14.3 million RMB, as shown
in Figure 10.

Table 6 shows the flood losses with Pf � 1.0 in Scenario 1 in
Beichuan County with different Wt. When Wt was 0–0.25 h, the
evacuation rate was low (35.68%), leading to a relatively high
fatality rate (3.71%). The expected monetized life loss of
379 million RMB dominated the total loss, followed by the
expected flood damage. With the increase of Wt, both the
monetized life loss and the flood damage decreased rapidly
and the evacuation cost increased. The expected total loss
decreased first and then increased. The minimal expected total
loss of 719 million RMB was achieved when the Wt is 6–12 h.
After that, the evacuation cost increased steadily and dominated

the total loss. The increase in the evacuation cost was due to the
larger Wt and more evacuated people.

Figure 11 shows the three types of losses and the total loss in
Scenario 1 in Beichuan County with different Wt and Pf. The
evacuation cost did not change with Pf. The expected flood
damage and monetized life loss linearly decreased with Pf. It is
found that the optimal decision strategy withminimal LT changed
with Pf. When Pf � 1, the optimalWt was 6–12 h with LT of RMB
7.19 million. With the decrease of Wt, less Wt is needed for
optimal decision with less LT. When Pf � 0.001, no warning is
needed since LT monotonically increases with Wt.

When considering Pf as a time series, as shown in Figure 9, the
optimal decision is to issue the evacuation warning at 15:00, June
7, 2008, according to Eq. 11. It is close to the optimal time of 00:
00, June 7, 2008. The minimal LT was 3.79 million RMB and
Pfcr � 0.64%.

In Scenario 2, with the peak discharge of 14,440 m3/ s, the
breaching flood inundated 55.6% of the area of Beichuan County
with the population at risk being 16,682. Dw and the flow velocity
were 19.68 and 1.56 m/ s, respectively. Figure 12 shows the three
types of losses and the total loss in Scenario 2 in Beichuan County
with differentWt and Pf. Similar to Scenario 1, the optimal decision
strategy changed with Pf in the trend, which meant lessWt is needed
for smaller Pf. However, more Wt and larger LT are needed in
Scenario 2 due to larger floods. When Pf � 1, the optimal Wt

was 12–24 h with LT of RMB 17.90 million. When Pf � 0.001, no
warning is needed since LT monotonically increases with Wt.

When considering Pf as a time series, as shown in Figure 9, the
optimal decision was to issue the evacuation warning at 6:00, June

FIGURE 10 | Decision-making based on Influence Diagram with Hugin lite 7.2 (Hugin Expert A/S, 2009).
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17, 2008, according to Eq. 12. It is close to the optimal time of 08:
00, June 16, 2008. The minimal LT was 8.95 million RMB and
Pfcr � 0.49%.

Warning Decision-Making for Mianyang
City
In Mianyang City, the breaching flood in Scenario 1 did not
inundate the city since the peak discharge (7,820 m3/ s) was lower
than the design value of the levee system (12,000 m3/ s). The

breaching flood in Scenario 2, with the peak discharge of
14,584 m3/ s, inundated the city with the maximal Dw of
0.51 m and made 23,521 people at risk.

Figure 13 shows the flood loss with different Wt and Pf in
Scenario two in Mianyang City. When Pf � 1, early warning was
necessary despite relatively low flood severity. If Wt is the least,
namely 0–0.25 h, LT would be RMB 13.8 million, which consisted
of evacuation cost (C), expected flood damage (DM) and
monetized life loss (ML) of RMB 5.69, 5.62, and 2.45 million,
respectively. With the increase of Wt, DM and ML decraese

TABLE 6 | Flood losses in Scenario 1 in Beichuan County with different Wt.

Warning time Evacuation rate (%) Fatality rate Flood loss (million RMB)

Evacuation cost Expected flood damage Expected
monetized life loss

Expected total loss

0–0.25 h 35.68 3.71% 1.19E+00 1.20E+01 3.79E+02 3.92E+02
0.25–1 h 46.54 3.07% 1.64E+00 8.83E+00 3.13E+02 3.23E+02
1–3 h 74.10 1.16% 3.02E+00 2.67E+00 1.18E+02 1.24E+02
3–6 h 95.26 0.07% 4.82E+00 2.02E-01 7.35E+00 1.24E+01
6–12 h 99.54 2.63E-5 6.82E+00 1.03E-01 2.68E-01 7.19E+00
12–24 h 99.98 8.45E-7 1.04E+01 3.48E-04 8.62E-03 1.04E+01
>24 h 100.00 0 1.76E+02 0 0 1.76E+02

FIGURE 11 | Three types of losses and the total loss in Scenario 1 in Beichuan County with different dam failure probabilities: (A) Pf � 1; (B) Pf � 0.1; (C) Pf � 0.01;
(D) Pf � 0.001.
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dramatically, but C increases rapidly, making LT decreases first
and then increases at Wt � 1–3 h. The minimal LT at that time is
RMB 9.82 million. When Pf became smaller, no warning is
needed. The minimal LT is achieved with Wt � 0–0.25 h as
RMB 6.50, 5.77 and 5.70 million in the cases of Pf � 0.1, 0.01
and 0.001, respectively.

When considering the Pf as a time series as shown in Figure 9,
the optimal decision is to issue the evacuation warning at 22:00,
June 19, 2008 according to Eq. 12. It is close to optimal time of 10:
00, June 19, 2008. The minimal LT was 8.17 million RMB and
Pfcr � 0.307.

DISCUSSION

The Influences of Warning Time, Water
Depth, and Dam Failure Probability
The Influence Diagram model (Figures 4, 10) shows that Wt,
Dw, and Pf are three key parameters affecting all three types of
flood consequences. Sensitivity analysis of Wt, Dw, and Pf on
the expected total loss is made in Scenario 1 in Beichuan
County.

When Pf � 1, as shown in Figure 14A, the expected total loss
increased significantly with Dw when Wt was insufficient (e.g.,

0–3 h). The reason is that high Dw incurs higher flood severity,
building inundation, and damage, which then result in more life
loss and flood damage.WhenWt becomes longer (e.g., >12 h), the
expected total loss, which was dominated by the evacuation costs,
would not be obviously influenced by Dw, since most people
manage to evacuate from the flooded area.

When Pf decreased, the expected total loss decreased
significantly when Wt was insufficient, espectially with higher
Dw. The optimal decision strategy changed with Pf. Less Wt was
needed with smaller Pf. When Pf � 0.001, the expected total loss
curve was close to the evacuation cost curve. The reason was that
two types of flood losses (expected flood damage and life loss)
were proportional to Pf , while evacuation cost did not change
with Pf.

In summary, the influences of the three factors (Dw, Wt, and
Pf) on the flood losses were different. The increase of Dw resulted
in a high increase in the expected flood damage and life loss and a
slight decrease in evacuation cost (due to a lower evacuation rate).
The increase of Pf resulted in a proportional increase of expected
flood damage and life loss but did not change evacuation costs.
The increase ofWt resulted in a steady increase in evacuation cost
but incurred an unsteady decrease of expected flood damage and
life loss. The latter decreased rapidly whenWt was not sufficient.
In contrast, they change a little when Wt was sufficient.

FIGURE 12 | The three types of losses and the total loss in Scenario 2 in Beichuan County with differentWt: (A) Pf � 1; (B) Pf � 0.1; (C) Pf � 0.01; (D) Pf � 0.001.
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Comparison DEMID With Decision Tree
Frieser (2004) has published decision-making methods for dam/
levee failure flood via multi-phase decision tree, as shown in
Figure 15. At the initiation decision time ti, we might issue an
evacuation warning or not. If we choose not, we might delay the
decision to tτ. Since there are several phases that we can choose to
make the warning decision, it is called amulti-phase decision tree,
as shown in Figure 15. It involves Pf and three types of flood
losses. A warning decision was made by comparing all the
alternatives to achieve the minimum expected total loss.

Compared to the multi-phase decision tree method, DEMID
has several features:

1) The inter-relationships of influence factors are qualitatively
analyzed using Influence Diagram. The inter-relationships of
influence factors are qualitatively analyzed by building an
Influence Diagram with causality connections and
quantitatively analyzed with conditional probabilities.
Moreover, all alternatives in decision trees are assumed as
independent and the inter-relationships of influence factors
are neglected.

2) Multi-source information is absorbed to improve DEMID.
Prior (conditional) probabilities are gained by employing
multi-source information, such as physical test data,
empirical equations, theoretical analysis, and statistical
data. The information of the studied case can be applied to
calculate the posterior probabilities. Moreover, the model can
be further updated through Bayesian network parameter
learning in the future.

3) The probabilities of the influence factors, including the basic
nodes and intermediate nodes, can be obtained through
inversion analysis based on Bayesian theory. Suppose that a
failed landslide causes a large number of fatalities and some
parameters (e.g.,Wt and the building information) are gained,
we can find the distribution of Dw and evacuation based on
Bayesian updating by simply inputting the fatality rate and
other known parameters.

4) From the perspective of the building process, DEMID is built
according to the logical relationship between the influence
factors (nodes), which cannot be reflected in the decision tree.
The latter simply divides the alternatives as binary variables,
namely, warning or non-warning. In the application prospect,

FIGURE 13 | The three types of losses and the total loss in Scenario 2 in Mianyang City with different Wt: (A) Pf � 1; (B) Pf � 0.1; (C) Pf � 0.01; (D) Pf � 0.001.
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the decision tree needs to assume a fixed failure time, while it
is not necessary for DEMID.

Comparing DEMID With a Dynamic
Decision-Making Model, DYDEM
Peng and Zhang (2013a) and Peng and Zhang (2013b) have
provided a dynamic decision-making model (DYDEM) for dam

failure warnings. The warning decision strategy was to find the
time of evacuation warning to minimize expected total loss:

Min[E(LT(tw))]5dE[LT(tw)]
dtw

� 0, (28)

where tw is the time issuing warning and LT (tw) is the expected
total loss as a function of tw, which can be expressed as follows:

E[Lt(tw)] � ∫ Lt(tw)f (tf )dtf
� ∫+∞

t0

C(Wt)f (tf )dtf + ∫+∞

t0
[DM(Wt)

+ML(Wt)]f (tf )dtf , (29)

where tf is the continuous time of failure since a dam could fail at
any time with a certain probability; f(tf) is a continuous stochastic
process of Pf; f(tf)dtf is Pf in a short period dt. In Eq. 24, Wt is
expressed as follows:

Wt � 0, when tf < tw; (30)

Wt � tf − tw, when tf ≥ tw. (31)

In DEDYM, the expected LT is calculated with Pf as a time
series and the three types of flood losses as a function ofWt. This

FIGURE 14 | The expected total loss in Scenario 1 in Beichuan County with different Dw and Wt: (A) Pf � 1; (B) Pf � 0.1; (C) Pf � 0.01; (D) Pf � 0.001.

FIGURE 15 |Multi-phase decision trees for warning decision-making of
dam/levee failure. Note D1 > d1 > d2, L1> l1 > l2, C2 >C1 for differentWt and the
uncertainty of P1 is smaller than that of P2 since more information can be
gained.
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model is suitable for detailed case studies with sufficient
investigated and simulated parameters. It is time-consuming
since Pf and three types of flood losses are calculated via
different methods. Moreover, the Bayesian network in
HURAM with several discrete states cannot be directly applied
for calculating the three types of flood losses. A program is coded
in VBA in Microsoft Excel for this purpose.

Compared to DYDEM, DEMID has several distinct features:

1) It unifies all the component methods in DYDEM via Influence
Diagram. In DYDEM, Pf is calculated via a time series
method, the evacuation rate and fatality rate are calculated
via HURAM; the evacuation cost, flood damage, and
monetized life loss are calculated via different methods.
DYDEM is suitable for detailed case studies with sufficient
investigated and simulated parameters. However, it may not
be sufficient for some short-lived landslide dam cases. In
DEMID, all the components are unified using only one
method, Influence Diagram. The three types of flood loss
and the expected total loss can be directly gained.

2) DEMID is more efficient. Besides the unified form discussed
above, the integration calculation as shown in Eq. 24 in
DYDEM is not needed in DEMID and the decision criteria
are much simpler. We only need to check the critical failure
probability Pfcr, as shown in Eq. 12, to find the optimal time
for issuing a warning. An important premise for the
correctness of the criterion is that Pf should monotonically
increase with time. This is not difficult to achieve in landslide
dam cases since no discharge control measures are available
for a naturally formed dam.

3) DEMID can conduct inversion analysis based on Bayesian
theory, as discussed in the last section. Since Influence
Diagram is an updated Bayesian network, DEMID retains
the original advantages of the Bayesian network in HURAM.
We can find out the causes (e.g., water depth and breaching
time) of one or some results (e.g., high fatality rate and
evacuation rate). This cannot be realized in DYDEM.

4) From the perspective of the building process, the structures of
DEMID and all the nodes are fixed. The model can be applied to
any landslide dam case by simply updating the values of the basic
nodes (the nodes without parents). In DYDEM, we need to
calculate all the risk components (dam failure probability and the
three types of losses) in all sub-areas by different methods. Then
sum all the losses in all sub-areas to gain the expected total loss.

CONCLUSIONS

Anewwarning decision-makingmodel (DEMID) is presented based
on Influence Diagram in this article. It is used for the emergent
warning decision-making in the case of the 2008 Tangjiashan
landslide dam. The following conclusions can be drawn:

1) The present decision model is of great efficiency as it unifies
the dam failure probability, evacuation, and three types of
flood losses in one Influence Diagram. The expected total loss
can be directly gained. Besides, a warning criterion is

suggested for efficient decision-making by considering the
monotonical increase of landslide dam failure probability:
issuing the warning at the time with critical probability
when no warning is no more the best choice (with
minimal expected total loss).

2) In DEMID, the inter-relationships of influence factors are
qualitatively analyzed with causality connections and
quantitatively analyzed with conditional probabilities.
Continuous values of the population at risk and failure
probability can be considered by weighted averages of the
closest discrete states. The probabilities of the influence
factors, including the basic nodes and intermediate nodes, can
be obtained through inversion analysis based on Bayesian theory.

3) The increase of water depth results in a high increase in the
expected flood damage and life loss and a slight decrease in
evacuation cost (due to a lower evacuation rate). The increase
of Pf results in a proportional increase in expected flood
damage and life loss but no changes to evacuation cost.
The increase of Wt results in a steady increase in
evacuation cost and an unsteady decrease in expected flood
damage and life loss. The latter decreases rapidly when Wt is
not sufficient but changes slightly when Wt is sufficient.

4) For the high-risk areas with relatively fewer people (e.g., the
Beichuan County), the expected total loss is dominated by
monetized life loss. It is better to issue an evacuation
warning a little earlier since it would not incur large
evacuation expenses but save many human lives. For the
low-risk areas with relatively more people (e.g., the
Mianyang City), the evacuation cost should be cautiously
issued since the longer the warning lasts, the larger the
expenses are.
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