
Reconstructing the Climate Variability
During the Last 5000 Years From the
Banni Plains, Kachchh, Western India
Nisarg Makwana1, S. P. Prizomwala1, Archana Das1*, Binita Phartiyal 2, Aashima Sodhi1,3

and Chintan Vedpathak1,3

1Institute of Seismological Research, Gandhinagar, India, 2Birbal Sahni Institute of Paleosciences, Lucknow, India, 3Research
Scholar, Gujarat University, Ahmedabad, India

The climatic conditions during the beginning of the last 5,000 years have been discussed,
debated, and documented from various parts of the Indian subcontinent, due to the
human–climate interrelationship. In the present study, we report a multi-proxy dataset
encompassing the widely used ∼ geochemical and mineral magnetic proxies supported by
radiocarbon and optical chronologies from the Banni Plains of the Rann of Kachchh,
western India. Our results support the earlier observations of the prolonged wetter climatic
condition synchronous with the mature phase of Harappan era which witnessed a short
and intense arid condition at the terminal part of the mature Harappan phase. The climate
system dramatically fluctuated during the last five millennia from pulsating between
relatively arid (4,800–4,400 years BP, 3,300–3,000 years BP, and at 2,400 years BP)
and relatively humid phases (>4,800 years BP, 4,000–3,300 years BP, 1900–1,400 years
BP, and 900–550 years BP). Themulti-proxy dataset shows a gradual strengthening of the
monsoonal conditions from the Banni Plains during the late Harappan phase. Apart from
this, the high sedimentation rate (>1mm/yr) recorded from the Banni Plains suggests it can
be tapped as a robust archive to reconstruct multi-decadal to centennial climatic events
spanning the Holocene epoch.
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INTRODUCTION

Southwest Indian monsoon has a high socioeconomic impact as it plays a key role in delivering
annual rainfall (nearly 80%) in the Indian subcontinent (Anderson et al., 2010; Berkelhammer et al.,
2010). An understanding of the variability of Indian summer monsoon (ISM) rainfall for the
Holocene epoch is vitally required to assess the speculated link between the climate deterioration and
the decline in ancient civilization. The mid-Holocene, in particular, has witnessed several changes in
climate with abrupt short events recorded globally as well as in the Indian subcontinent (Lamb, 1985;
Bianchi and Mc Cave, 1999; Anderson et al., 2010; Sanwal et al., 2013; Quamar and Chauhan, 2014;
Ngangom et al., 2016). Prasad et al. (2007), Prasad et al. (2014 b) reported wetter climate during the
5.5 to 2.8 ka BP from the lacustrine environments of Mainland Gujarat. Similarly, Laskar et al. (2013)
reported subhumid climatic conditions from fluvial sediments of the Mainland Gujarat region. The
period between 2.8 and 1.3 ka has reportedly experienced arid conditions from the lacustrine and
fluvial records of Mainland Gujarat (Laskar et al., 2013a; Prasad V. et al., 2014; Sridhar et al., 2014a).
Raja et al. (2019) reported paleoflood activity during 4,773 cal yr BP from the Parsons Valley Lake,
Tamil Nadu. Consequently, the mid-to-late Holocene tend to have recorded various centennial
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scaled abrupt climatic variations. However, studies documenting
the climatic variations on the centennial to decadal scale are still
limited and need to be looked upon (Binanchi andMc Cave, 1999;
Gupta et al., 2003; Sinha et al., 2007; Chauhan et al., 2009;
Makwana et al., 2019).

The Great Rann of Kachchh (GRK) in western India is a semi-
enclosed basin and a dominantly depositional
microenvironment, and hence the paleo-mudflats of Rann
have proven to be useful to decipher past climatic oscillation
in different timescales (Pillai et al., 2017, 2018; Basu et al., 2019;
Makwana et al., 2019). The recent efforts have hinted that the
Rann sediments remain a treasure trove for reconstructing
Holocene paleoclimate (Ngangom et al., 2016; Pillai et al.,
2017, 2018; Basu et al., 2019; Makwana et al., 2019; Sengupta
et al., 2019; Sarkar et al., 2020). The Rann of Kachchh is believed
to be a Holocene sediment depocenter (Maurya et al., 2013) and
also has been a hotspot of mature and late Harappan occupation,
which believed to be a riverine and trade-oriented civilization
during 7000 BP to 3900 BP (Gaur et al., 2013; Sarkar et al., 2020).
Large urban centers of mature Harappan settlements flourished
along the Indus and Ghaggar-Hakra rivers (Possehl, 2002), and
were considered to have abruptly ended around 3,900 years BP
(Possehl, 2002). Also, the mid-Holocene climatic changes are
coincident with the appearance of highly organized and
urbanized civilizations from the Afro-Asiatic monsoonal
region such as Egypt, Mesopotamia, Indus-Saraswati, and in
northern China regions that form the bulk of the deserts
today (Brooks, 2006; Prasad V. et al., 2014). However, the
reasons for the decline of these civilizations, viz. abrupt
climate change, sea level fluctuation, or reduction of natural
resources, are still a question of debate for the researchers
(Galili 1988; Staubwasser et al., 2003; Wright et al., 2008;
Giosan et al., 2012; Dixit et al., 2014, 2018; Das et al., 2017;
Sengupta et al., 2019).

Some of the intriguing questions regarding the paleoclimatic
conditions, particularly, in the Kachchh region of western India
are as follows: 1) What were the paleoenvironmental conditions
that existed in the Banni Grassland during the middle-to-late
Holocene? 2) How did the climatic fluctuations change since the
mature Harappan times? In light of this, the objective of the
present study is to reconstruct the past climatic events from the
Banni Plains and explore their nature/boundary conditions
during the last 5,000 years using a multi-proxy dataset.

STUDY AREA

The GRK is a unique and intriguing vast salt encrusted flat land,
which is an E–W trending subbasin and occupies almost half of
the area of the seismically active Kachchh paleo-rift basin
(Burnes, 1834; Glennie and Evans, 1976; Biswas, 1987). The
Banni Plain is a part of the extensive low-level hyper arid
saline tract of the Great Rann that occupies the northern part
of the seismically active Kachchh paleo-rift basin. The Banni
grassland happens to be only the inhabited part of the Great Rann
due to the fact that it occurs at the highest elevation and is free of
present-day marine submergence (Roy and Merh, 1981). Large

parts of the Banni get submerged during monsoon under a thin
sheet of water by rainfall and rivers from the Kachchh mainland
in the south.

The present study site BKR (23°32′48.12″N and
69°40′30.36″E) is situated in the central to the northern part
of the Banni Plains (Figure 1). The Banni Plains and the GRK are
covered by the quaternary deposits mostly comprising silt and
clay sediments and considered as Holocene depocenters (Gupta,
1975; Maurya et al., 2013; Khonde et al., 2017a; Makwana et al.,
2019) of three distinct sources, viz. Indus source from north,
Aravalli in east, and Kachchh Mainland in south (Maurya et al.,
2013; Khonde et al., 2017a, b). It experiences a hyper-arid to arid
climate with annual rainfall less than 30 mm per year (Figure 1).
However, till now there are limited data pertaining to the
paleoclimate, provenance, and the nature of sediment
comprising the Banni Plain. With an aim to study the
evolution of these majestic landscape features, which probably
beholds vital insights on middle-to-late Holocene climatic
fluctuations, a shallow trench from the paleo-mudflat of the
Banni Grassland has been investigated. Trench is 5.5 m deep
(BKR site) and located on Bhuj-Khavda road (Figure 1) in the
Banni Plains. Geomorphologically, the study site is surrounded
by higher Banni surface with an elevation varying from 4 to 12 m
amsl. The elevation of the trench site was 4.4 m above the present
day mean sea level (msl) measured based on a D-GPS survey. The
studied site is away from any human settlement, which assures
negligible to nil anthropological effect.

ANALYTICAL METHODS

Sediment Geochemistry
Al2O3, Fe2O3, and TiO2 are the major components of the
aluminosilicate phase group and are useful to deduce the post
depositional weathering and paleoenvironmental condition that
prevailed in the region (Nesbitt and Young, 1982; Agnihotri et al.,
2003; Tyagi et al., 2012; Das et al., 2017). Similarly, the ratio of K2O/
Al2O3 and CIA (Chemical Index of Alteration) has been used to
measure the chemical weathering intensity in the region (Nesbitt
and Young, 1982; Buggle et al., 2011; Pillai et al., 2018). The natural
samples in the near-shore and marine-influenced environments
may contain CaO content, originating from marine organisms.
Hence, the samples collected from the field were treated with 1 N
HCl until the CaO fraction was removed. These decarbonated
samples were then used for estimating CIA, which represents the
detrital content, originating due to the chemical weathering in the
source region. A total of 55 samples were collected from the BKR
site and dried at 50°C, crushed, homogenized, and sieved to
<63 µm size. A part of this fraction was used for the analysis in
XEPOS HE XRF instrument at the Institute of Seismological
Research, India. The analytical precision of major oxide was
better than 5% and that of trace elements was better than 10%
(Das et al., 2017; Makwana et al., 2019).

Mineral Magnetic Measurements
Environmental magnetic properties of sediment samples were
measured using standard rock magnetic methods (Walden et al.,
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1999; Warrier and Shankar, 2009; Basavaiah, 2011). Selected
samples were oven-dried and packed, ensuring no movement
of magnetic minerals in nonmagnetic plastic bottles of 10 cm3 for
analysis. In the present study, we have measured magnetic
susceptibility (χ), anhysteretic remnant magnetization (ARM),
and isothermal remnant magnetization (IRM) at Birbal Sahni
Institute of Palaeosciences, Lucknow, India. Low magnetic
susceptibility (χLF) was measured using a Bartigton MS2B
dual-frequency susceptibility meter at 976 Hz frequency.
Samples were first demagnetized by using the AF
demagnetizer, and then anhysteretic remnant magnetization
(ARM) was calculated in a steady 0.05mT field superimposed
over decreasing alternating field (AF) up to 100mT using the
alternating field demagnetizer, D-2000 AF demagnetizer. The
remnant magnetization of all ARMs and IRMs was measured
using a AGICO JR-6 dual speed spinner magnetometer.
Isothermal remnant magnetization (IRM) was measured at
forward fields of 20 and 1000mT and backward fields of −20,
−40, −60, −100, and −300mT using ASC scientific impulse
magnetizer. IRM measured at 1T field was considered as
saturation isothermal remnant magnetization (SIRM). The
S-ratio is indicative of the ferrimagnetic vs. anti-ferrimagnetic
minerals, and the value close to one corresponds to the
dominance of the ferrimagnetic minerals. S-ratio is often used
as paleo-monsoonal proxy calculated using the formula IRM-0.3T/
SIRM (Basavaiah and Khadkikar, 2004).

AMS C-14 Dating
AMS is a modern and more efficient radiocarbon dating method
for younger time frames to measure long-lived radionuclide that
occurs naturally in environment. We have used two different
samples of handpicked foraminifera from unit 2 to estimate the

age of sediment deposition. Foraminifera tests were separated out
from the samples and sent to Poznan Radiocarbon Laboratory,
Poland, for AMS 14C dating. For both the uncalibrated ages, we
used a marine reservoir effect (ΔR) of −8 ± 37 from northern
Arabian Sea, as it was the closest possible value available from the
studied point and represented similar semi-enclosed
environment (Dutta et al., 2001). We used the latest available
online CALIB 8.2 program for Marine13 dataset (Stuiver et al.,
2018). Calibrated ages are expressed as calendar years over a 2σ-
error range (95.4%).

RESULTS

Stratigraphy and Chronology of the BKR
Trench
Based on the visual observations of sedimentological, textural,
structures and variation in color, the entire succession was
divided into three major litho-units (Table 1). At the BKR
trench site, the bottommost exposed unit is a 70-cm-thick
sticky dark bluish clay horizon (unit-1), followed by a 330-cm-
thick brown silty clay deposit (unit-2). The foraminifera tests
were collected from this unit, which yielded a calibrated AMS 14C
age of 3,157–3,520 cal yr BP (median value: 3,339 ± 181 cal yr BP)

FIGURE 1 | Digital elevation model of Kachchh showing the location of the study area and trench site in Kachchh.

TABLE 1 | Lithostratigraphic information for the BKR trench site, Kachchh.

Litho-units Thickness (in cm) Textural class

Unit-3 170 Clayey silt horizon with faint laminations
Unit-2 330 Silty clay horizon
Unit-1 70 Sticky dark bluish clay horizon
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and 3,833–5,032 cal yr BP (median value: 4,432 ± 600 cal yr BP)
(Table 2) at depth of 2.3 and 4.1 m, respectively, from the top of
the trench surface. Unit-2 is overlain by 170-cm-thick clayey silt
dominated horizon with faint laminations, that is, Unit-3
(Figure 2). Owing to the lack of datable material and
negligible amount of foraminifers, the bottom age of 4,432 ±
600 cal yr BP shows a wider error scatter, due to mixing of
foraminifer tests from two adjacent samples. Hence, due to the
lack of available chronology, we assumed a relatively uniform
sedimentary sequence in Unit-2 to extrapolate two ages, that is,
4,800 years BP and 3,035 years BP on the basis of the
sedimentation rate between the dated depths.

Major Oxide Concentration and Their
Elemental Ratio Variation
The concentration of major oxides and trace elements along with
their ratios were studied and based on significant deviations in
statistical parameters; a total of three relatively arid and four

humid phases of paleoclimatic conditions are deduced
(Supplementary Table 1).

Zone 1
Zone 1 encompassing the concentration variation of Al2O3,
Fe2O3, and TiO2 from 14.33 to 15.62%, 4.75 to 5.48%, and
0.73 to 0.80%, respectively. The oxide ratios of K2O/Al2O3,
Na2O/TiO2, CaO/TiO2, and Fe2O3/TiO2 varied from 0.17 to
0.19, 1.58 to 2.56, 11.34 to 12.52, and 6.50 to 6.91,
respectively. Similarly, the elemental concentration of Sr and
Ca varied from 202 to 211 ppm and 6.3 to 6.7%, respectively. The
ratios of Zr/Al varied from 15.1 to 21.0. The values of weathering
intensity CIA varied from 82 to 85 (Supplementary Table 1).

Zone 2
Zone 2 shows the concentration of Al2O3, Fe2O3, and TiO2 varied
from 13.9 to 15.2%, 4.2 to 5.4%, and 0.76 to 0.81%, respectively.
The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/TiO2, and
Fe2O3/TiO2 varied from 0.17 to 0.19, 1.6 to 2.1, 11.3 to 12.8,

TABLE 2 | AMS14C ages and calibrated ages of the foraminifera from the BKR trench site, Kachchh.

Sample ID Depth of sample (m) Conventional C14 radiocarbon
age (yr BP)

Calibrated age
(cal yr BP, ± 2σ)

Median age
(cal yr BP, ± 2σ)

POZ-101421 2.3 3,600 ± 35 3,157–3,520 3,339 ± 181
POZ-112296 4.1 4,460 ± 220 3,833–5,032 4,432 ± 600

FIGURE 2 | Stratigraphy and the age depth model for the BKR trench site.
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and 5.6 to 6.7, respectively. Similarly, the elemental concentration
of Sr and Ca varied from 207 to 223 ppm and 6.4 to 6.9%,
respectively. The ratios of Zr/Al varied from 19.0 to 26.5. The
values of weathering intensity CIA varied from 79 to 83
(Supplementary Table 1).

Zone 3
Zone 3 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied from 16.0 to 16.7%, 5.3 to 6.9%, and 0.78 to 0.86%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.18 to 0.21, 1.3 to 1.6, 9.3 to
11.4, and 6.6 to 8.0, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 179 to 205 ppm and
5.7 to 6.5%, respectively. The ratios of Zr/Al varied from 10.0 to
15.4. The values of weathering intensity CIA varied from 84 to 88
(Supplementary Table 1).

Zone 4
Zone 4 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied from 14.3 to 15.3%, 4.1 to 5.1%, and 0.71 to 0.76%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.16 to 0.18, 1.7 to 2.1, 12.0 to
13.4, and 5.8 to 6.7, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 204 to 218 ppm and
6.5 to 6.8%, respectively. The ratios of Zr/Al varied from 16.5 to
20.2. The values of weathering intensity CIA varied from 82 to 85
(Supplementary Table 1).

Zone 5
Zone 5 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied from 13.7 to 16.4%, 3.9 to 5.1%, and 0.65 to 0.77%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.16 to 0.17, 1.72 to 1.88, 11.8
to 15.8, and 5.7 to 6.7, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 199 to 220 ppm and
6.3 to 7.3%, respectively. The ratios of Zr/Al varied from 14.8 to
21.2. The values of weathering intensity CIA varied from 82 to 86
(Supplementary Table 1).

Zone 6
Zone 6 suggests the concentration variation of Al2O3, Fe2O3, and
TiO2 between 13.2–13.5%, 3.4–3.8%, and 0.61–0.73%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.16 to 0.17, 1.5 to 1.9, 14.6 to
17.8, and 5.3 to 6.0, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 224 to 229 ppm and
7.3 to 7.7%, respectively. The ratios of Zr/Al varied from 16.5 to
24.2. The values of weathering intensity CIA varied from 79 to 81
(Supplementary Table 1).

Zone 7
Zone 7 suggests the concentration of Al2O3, Fe2O3, and TiO2

varied between 14.5–16.8%, 4.5–7.0%, and 0.79–0.98%,
respectively. The oxide ratios of K2O/Al2O3, Na2O/TiO2, CaO/
TiO2, and Fe2O3/TiO2 varied from 0.18 to 0.20, 0.9 to 1.4, 5.6 to
12.2, and 5.6 to 7.9, respectively. Similarly, the elemental
concentration of Sr and Ca varied from 161 to 216 ppm and

3.7 to 6.9%, respectively. The ratios of Zr/Al varied from 11.5 to
24.8. The values of weathering intensity CIA varied from 83 to 89
(Supplementary Table 1).

Mineral Magnetic Variations
Zone 1
Zone 1 shows the magnetic susceptibility (χLF) values varied
between 1.18 × 10−8 m3/kg and 1.97 × 10−8 m3/kg, while the
values of SIRM and χarm varied between 1.23–1.84 and 1.45 ×
10–5–5.88 × 10–5, respectively. The increasing concentrations of
χLF. SIRM, and χarm are indicative of the ferrimagnetic mineral
signals. However, decreasing concentration of these parameters
implies dominance of the anti-ferrimagnetic minerals within the
section. Values of the S-ratio varied from 0.62 to 0.74, indicating
the presence of low coercivity minerals (Supplementary Table 2).

Zone 2
Zone 2 shows the magnetic susceptibility (χLF) values varied
between 1.55 × 10−8m3/kg and 1.56 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.51–1.67 and 2.61 × 10–5–3.60
× 10–5, respectively. Values of the S-ratio varied from 0.63 to 0.66
(Supplementary Table 2).

Zone 3
Zone 3 suggests the magnetic susceptibility (χLF) values varied
between 1.46 × 10−8m3/kg and 1.87 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.39–2.16 and 2.82 × 10–5–10 ×
10–5, respectively. Values of the S-ratio varied from 0.60 to 0.74
(Supplementary Table 2).

Zone 4
Zone 4 suggests the magnetic susceptibility (χLF) values varied
between 1.82 × 10−8m3/kg and 1.88 × 10−8m3/kg, while the values
of SIRM and χarm varied between 2.17–2.19 and 8.5 × 10–5–8.9 ×
10–5, respectively. Values of the S-ratio varied from 0.76 to 0.77
(Supplementary Table 2).

Zone 5
Zone 5 suggests the magnetic susceptibility (χLF) values varied
between 1.66 × 10−8m3/kg and 1.86 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.98–2.19 and 7.10 × 10–5–8.50
× 10–5, respectively. Values of the S-ratio varied from 0.73 to 0.74
(Supplementary Table 2).

Zone 6
Zone 6 suggests the magnetic susceptibility (χLF) values varied
between 1.56 × 10−8m3/kg and 1.58 × 10−8m3/kg, while
the values of SIRM and χarm varied between 1.76–1.79 and
5.71 × 10–5–6.12 × 10–5, respectively. Values of the S-ratio
varied from 0.75 to 0.77 (Supplementary Table 2).

Zone 7
Zone 7 suggests the magnetic susceptibility (χLF) values varied
between 1.68 × 10−8m3/kg and 2.37 × 10−8m3/kg, while the values
of SIRM and χarm varied between 1.91–2.76 and 6.82 × 10–5–12.8
× 10–5, respectively. Values of the S-ratio varied from 0.76 to 0.78
(Supplementary Table 2).
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DISCUSSION

Approach: Role of Geochemistry and
Magnetic Minerals in Paleoclimatic
Reconstructions
The concentration of various oxides and elements is often
derivative of weathering processes acting in the catchment of
the basins. Major elemental concentration in sediments, mineral
magnetics, and grain size often reflects the source of the origin,
which were being used as effective proxies to demonstrate the
intensity of chemical weathering, climate changes, and
precipitation variations in the region (Staubwasser and Sirocko
2002; Yancheva et al., 2007; Tyagi et al., 2012; Clift et al., 2014;
Das et al., 2017; Pillai et al., 2018; Ruifeng et al., 2020). The ratios
like Na2O/TiO2, CaO/TiO2, and Fe2O3/TiO2 can be used to infer
the changes in the paleoenvironmental condition (Pillai et al.,
2018; Makwana et al., 2019). Increased values of Fe2O3/TiO2 with
lower values of Na2O/TiO2 and CaO/TiO2 suggest increased
precipitation, owing to the depletion of mobile elements like
Ca and Na during erosion triggered by enhanced monsoon
(Muhs et al., 2001; Kotlia and Joshi, 2013; Minyuk et al., 2013;
Pillai et al., 2018). Hence, we assess the higher values of oxides like
Al2O3, Fe2O3, and TiO2 along with K2O/Al2O3 and CIA
(Chemical Index of Alteration) to mimic the enhanced
monsoonal strength (Buggle et al., 2011; Pillai et al., 2018;
Makwana et al., 2019). Similarly, concentration of magnetic
minerals and their mineralogy have widely been used as
surrogate to study the strength of the ISM (Basavaiah and
Khadkikar, 2004; Warriar and Shankar, 2009). Magnetic
susceptibility (χ) is controlled by the concentration and the
grain-size distribution of ferromagnetic minerals and is
strongly sensitive to variations of the local climate and
constitutes an accurate proxy record, along with other
parameters (Thompson and Oldfield, 1986; Phartiyal et al.,
2003). The cumulative response of major oxide, elemental,
CIA, and mineral magnetic properties is often touted to be a
robust indicator of weathering intensity and is considered as a
surrogate for reconstructing monsoonal strength (Warriar and
Shankar, 2009; Prasad et al., 2007; 2014; Makwana et al., 2019).

Climatic Variability in Banni Plains Since the
Mid-Holocene
Kachchh region in the western India experiences an arid climate
and has attracted tremendous attention for its tectonic attributes
(Chamyal et al., 2003). However, the landscape and its
modulation with climatic forcings during the Holocene have
been least explored (Pillai et al., 2017, 2018; Basu et al., 2019;
Makwana et al., 2019; Sengupta et al., 2019). Our results reveal
several alternate phases of wet and dry paleoclimatic conditions
during the last five millennia from the Banni Plains (Figure 3).

Prior to 4,800 cal yr BP (Phase I)
The zone is marked by higher CIA values and other major
elemental proxies, suggesting a higher chemical weathering
under the relatively humid climatic regime (Figure 4). This is

further indicated by the higher concentration of detrital
components such as Al2O3, TiO2, and Fe2O3 vs. reduction of
Na2O/TiO2, CaO/TiO2, Zr/Al, CaO, and Sr (Peterson et al., 2000;
Luckge et al., 2001; Kotlia and Joshi 2013; Pillai et al., 2018). Thus,
collectively, the geochemical proxies indicate a strengthened
monsoonal condition and intense chemical weathering at
period prior to 4,800 years BP in the Banni Plains region. The
mineral magnetic proxies which provide information about the
type and concentration of magnetic grains transported in the
catchment (Oldfield et al., 1994) also support the inferences
drawn from the geochemical data. The lower values of χlf in
phase one signify strengthenedmonsoonal condition, which leads
to higher erosion and weathering that lowered the concentration
of magnetic minerals. The values of the S-ratio also suggest a
combined anti-ferro to ferrimagnetic mineral assemblage with
dominance of ferrimagnetic minerals in phase I. The complied
results of multi-proxies recommend the deposition of sediments
that occurred under the relatively humid climatic condition in
phase I (i.e., period prior to 4,800 years BP).

Thakur et al. (2019) based on palynological study form
Harshad, western Saurashtra, reported a higher ISM
precipitation during the 5,400 to 5,100 years BP period.
Similar observations were also made by Kathayat et al. (2017)
from the composite Sahiya d18O record from the Himalayas.
Higher CIA and enhanced precipitation at 5.1 ka during the
mature Harappan phase have also been reported by Ngangom
et al (2016) from the nearby Eastern Great Rann of Kachchh. A
similar, wet phase of ISM was recorded by Parsons Valley Lake,
Tamilnadu, southern India (Raja et al., 2019).

4,400–4,800 cal yr BP Period (Phase II)
The zone is marked by abrupt changes to lower CIA values and
other major elemental proxies, suggesting a weaker chemical
weathering under arid climatic conditions (Figure 4). This
abrupt aridity around 4,400 years BP has been one of the most
discussed, although debated, causative factor for the
deurbanization and decentralization of Harappans as a
community that was primarily thriving on river-based
resources (Staubwasser et al., 2003; Madella and Fuller, 2006;
Dixit et al., 2014, 2018; Sengupta et al., 2019). Several studies have
shown that the brief phase of aridity experienced in western India
as well as the Himalayas led to the drying of water resources and
speculated that this might have led the Harappan migrations to
explore alternate water resources and settlement to smaller
centers (Madella and Fuller, 2006). Based on our proxy data,
which shows excessive deficient moisture conditions during this
period (4,400–4,800 years BP), we support the earlier view that
the prevalence of drought-like conditions affected the
deurbanization of the Harappan settlement from the Western
India.

Period Between 4,400 cal yr BP and
3,300 cal yr BP (Phase III)
Phase III is marked by fluctuating but an overall increasing value
of mineral magnetic parameters, higher concentration of major,
and lower ratios of geochemical proxies. An increase in CIA
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(>83%) hints an enhancement of chemical weathering signifying
higher precipitation, which is also reflected in increasing
concentration of major oxides such as Al2O3, Fe2O3, and TiO2

(Anderson et al., 2004). A significant increasing trend is also
noticeable in the ratios of K2O/Al2O3 and Fe2O3/TiO2 with lower
concentration of Na2O/TiO2 and CaO/TiO2 (Figure 4). Mineral
magnetic parameters, that is, χlf and S-ratio, showed progressive
decrease and thereafter increase in phase III, which indicates
fluctuating but overall gradual increased precipitation/monsoon
(Figure 4). Similar results of enhanced monsoonal strength have

also been reported by Pillai et al. (2017, 2018) from the Banni
Plains during 4,600 and 2,500 years BP. This period was the
initiation of deurbanization of the mighty Harappan civilization,
which was marked by the migration of Harrapans from the well-
established centers to other sites, owing to water source scarcity
(Ponton et al., 2012; Dixit et al., 2014, 2018; Pokharia et al., 2017).
On the contrary to this, recently, some studies have demonstrated
change in farming pattern and other means for survival of the
ancient settlers despite the aridity (Sarkar et al., 2020; Pokharia
et al., 2017; Singh et al., 2018).

FIGURE 3 |Climatic fluctuations since themature Harappan times (∼5,000 years) from the Banni Plains; complied observation fromMakwana et al. (2019) and BKR
trench ∼ present study.

FIGURE 4 | Temporal variation of major elements, their ratios, and mineral magnetic properties from the BKR sediments of Banni Plains, GRK.
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Period Between 3,300 cal yr BP and
3,000 cal yr BP (Phase IV)
The period from 3,300 years BP to 3,000 years BP experienced
a relatively drier climate with reduced CIA values and abruptly
decreasing concentration of major oxides such as Al2O3,
Fe2O3, and TiO2. The relative content of CaO, Sr, and
Na2O/TiO2 increases as these mobile elements remain at
the site due to the lack of hydrolysis. Prasad et al. (2014a)
from the Wadhwana Lake in alluvial plains of Gujarat reported
a short phase of low precipitation during 3,238–2,709 cal yr
BP. Similar arid conditions are also reported from Rann
sediments in northwest of the present site by Ngangom
et al. (2016).

Contrastingly, Pillai et al. (2017, 2018) reported the period
from 4,600 to 2,500 years BP as the period of enhanced
monsoonal strength, owing to the coexistence of C4 and C3
vegetation along with geochemical composition of sediments due
to chemical weathering. Recent studies from the Bednikund Lake,
Himalayas, based on mineral magnetics, organic geochemistry,
and grain size assemblages, also suggested an enhanced
monsoonal strength during 3,380 and 2,830 cal yr BP. (Rawat
et al., 2021).

Period During the Last 3,000 years (Phases
V, VI, and VII in BKR Trench and BB Trench)
Makwana et al., 2019

The depiction of last three millennia has been done based on
phases V, VI, and VII of BKR trench and previously reported BB
trench from the northwest of the Banni Plains (Makwana et al.,
2019). As we do not have age control on the top section of BKR,
we only report that the phases V and VII show signs of
strengthened monsoonal condition with enhanced values of
CIA and associated geochemical proxies, whereas on the
contrary, phase VI shows a relatively dip in CIA values and
other oxides, hinting at a weaker chemical weathering, that is, arid
climatic conditions.

On the contrary, the period from 2,900 years to 1900 years
from BB trench site also supports an overall fluctuating to arid
climatic condition with peak of that aridity around 2,400 years BP
(Makwana et al., 2019). Pillai et al. (2018) from Luna core
reported arid climatic condition during 3,000 to 2,500 years
BP. Similarly, Quamar et al. (2021) studied a lacustrine
sequence from central India and based on the pollen study
reported a decline in strength of ISM during 3,000 to
2,600 years BP period. Similarly studies from the mudflats of
Diu, Gujarat, are suggestive of the arid conditions during
2,640–1930 cal yr BP (Banerjee et al., 2017). This is in
agreement with a long drought in the Thar Desert, India,
between 3,600 and 2000 years BP (Bryson and Bryson, 1996;
Enzel et al., 1999).

The period from 1900 years BP to 200 years BP shows three
phases of prominent arid/humid climatic conditions (Makwana
et al., 2019). These periods of arid/humid conditions coincide
their timing with globally known events like the medieval climatic
anomaly (MCA). These events have also been reported from

regional archives in the past (Gupta et al., 2003; Sinha et al., 2007;
Ngangom et al., 2012; Rajamanickam et al., 2017; Rawat et al.,
2021). All the fluctuations from arid to humid climatic conditions
during the last three millennia are abrupt in nature with sharp
changes in proxy data (Figure 3). Previously, Makwana et al.
(2019) reported a sedimentation rate of 1–2.2 mm/yr from the BB
trench in the northwestern Banni Plains. The present BKR trench
based on two AMS 14C ages yields a sedimentation rate of
1.6 mm/yr during 4,432 to 3,339 cal yr BP period. The high
sedimentation rate from BB and BKR trenches (>1 mm/yr)
also aides this endeavor. Despite the poor chronological
control, the presence of abrupt arid and humid periods during
last two millennia is suggestive of Banni Plains being capable of
being used as potential archive for studying climatic
reconstructions.

CONCLUSION

Based on the multi-proxy dataset from the Banni Plains of the
Kachchh region spanning last 5,000 years, the salient findings are
as follows:

1. The periods from 4,800 to 4,400 cal yr BP are marked by
abrupt drier climatic conditions in a multi-proxy dataset,
which has also been reported by several other studies from
the regional archives owing to the initiation of synchronous
deurbanization of Harappan settlements. This is followed by a
period from 3,300 to 3,000 cal yr BP and around 2,400 cal yr
BP with pronounced aridity in the Banni Plain region.

2. The relatively humid climatic conditions were observed
during >4,800 cal yr BP, 4,400 to 3,300 cal yr BP, 1900 to
1,400 years BP, and 900–550 years BP in the multi-proxy
record. The late Harappan phase envisaged in the present
study shows an intriguing gradual strengthening of the
monsoonal intensity.

3. Based on preliminary results, the Banni Plains as an archive
shows a high sedimentation rate, that is, > 1 mm/yr, which
suggests it can act as a robust archive which can be tapped to
be an excellent sedimentary record to reconstruct multi-
decadal to centennial climatic events spanning the
Holocene epoch.

Future studies from Banni Plains with relatively deeper
information could likely aide in reconstructing the dynamics
of the region spanning the entire Holocene epoch, as the present
study validates the archiving potential of Banni sediments for
reconstructing short and long spells of paleomonsoonal
conditions.
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