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Green water resources, which are fundamental for plant growth and terrestrial ecosystem
services, reflect precipitation that infiltrates into the unsaturated soil layer and returns to the
atmosphere by plant transpiration and soil evaporation through the hydrological cycle.
However, green water is usually ignored in water resource assessments, especially when
considering future climate impacts, and green water modeling generally ignores the
calibration of evapotranspiration (ET), which might have a considerable impact on
green water resources. This study analyzes the spatiotemporal variations in blue and
green water resources under historical and future climate change scenarios by applying a
distributed hydrological model in the Xiangjiang River Basin (XRB) of the Yangtze River. An
improved model calibration method based on remotely sensed MODIS ET data and
observed discharge data is used, and the results show that the parallel parameter
calibration method can increase the simulation accuracy of blue and green water while
decreasing the output uncertainties. The coefficients (p-factor, r-factor, KGE,NSE,R2, and
PBIAS) indicate that the blue and green water projections in the calibration and validation
periods exhibit good performance. Blue and green water account for 51.9 and 48.1%,
respectively, of all water resources in the historical climate scenario, while future blue and
green water projections fluctuate to varying degrees under different future climate
scenarios because of uncertainties. Blue water resources and green water storage in
the XRB will decrease (5.3–21.8% and 8.8–19.7%, respectively), while green water flow
will increase (5.9–14.7%). Even taking the 95% parameter prediction uncertainty (95 PPU)
range into consideration, the future increasing trend of the predicted green water flow is
deemed satisfactory. Therefore, incorporating green water into future water resource
management is indispensable for the XRB. In general, this study provides a basis for future
blue and green water assessments, and the general modeling framework can be applied to
other regions with similar challenges.
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HIGHLIGHTS

1) The combination of future climate downscaling modeling
with basin blue–green water modeling.

2) Revealing spatiotemporal variation of blue and green water
components in the studied basin under historical and future
climate change scenarios.

3) Using an improved parallel parameter calibration method to
increase the accuracy of blue and green water simulations and
decrease uncertainties.

4) Providing a basis for future blue and green water assessments
at the basin scale and the general modeling framework can be
applied to other regions with similar challenges.

1 INTRODUCTION

Many researchers have demonstrated in recent decades that
climate change undoubtedly affects water resources worldwide
(Haddeland et al., 2014; Reshmidevi et al., 2018). Consequently,
assessing the impacts of climate change on water circulation and
water resources at the basin scale is an important scientific issue
(Sivapalan et al., 2011). In this context, it is more reasonable to
link climate change and water resources according to water
resource components, such as blue water and green water
(Falkenmark and Rockström, 2010). Although the former has
attracted widespread attention in many studies globally, the
latter part needs further research in basin studies (Du et al., 2018).

Blue water and green water are both indispensable
components of the hydrological cycle at the basin scale (Hoff
et al., 2010; Keys and Falkenmark, 2018). The concept of blue and
green water resources was initially proposed by Falkenmark
(1995) at the Food and Agriculture Organization (FAO)
Conference. Falkenmark and Rockstrom (2006) defined blue
water resources, which are calculated based on the surface water
yield (WYLD) and groundwater storage (GS), as liquid water in
rivers, lakes, wetlands, and underground aquifers, whereas green
water resources (Falkenmark and Rockstrom, 2010; Feng et al.,
2020), which are estimated as the sum of evapotranspiration (ET)
and soil water (SW), are divided into two components: green water
flow (GWF) and green water storage (GWS). GWF, which refers to
water vapor returned to the atmosphere through ET, is the
potential water resource that benefits the ecosystem of the
whole river basin and equals the actual ET, which comprises
non-productive soil evaporation and productive plant
transpiration (Cheng and Zhao, 2006). In contrast, GWS refers
to the SW content (Rockström et al., 2009) contained within the
upper unsaturated soil layers and is derived from the infiltration of
precipitation, which is a potential source of GWF (Glavan et al.,
2013).

On the continental scale, green water resources dominate the
hydrological cycle, accounting for approximately 65% of the
total amount of terrestrial blue and green water resources
(Falkenmark and Rockström, 2010; Liu and Yang, 2010).
Therefore, more precipitation returns to the atmosphere
through soil evaporation and plant transpiration. Furthermore,
green water is an important basis for agricultural production

(Falkenmark, 2013), so it is indirectly consumed by humankind.
Crops and trees predominantly rely on green water and sustain their
growth by absorbing SW through transpiration, although irrigation
(i.e., blue water) does play an important role. Hence, the green water
cycle can improve and stabilize basin ecosystems (White et al., 2015)
and provide terrestrial and aquatic ecological services (Kauffman
et al., 2014) for nature and society.

Climate change may negatively impact freshwater circulation
at the basin scale and further increase the uncertainties in the
modeling of blue and green water resources (Vaghefi et al., 2014;
Chen et al., 2014; Lee and Bae, 2015; Veettil and Mishra, 2018).
Several blue and green water modeling studies have been
performed in a few regions across China (Table 1). However,
most of these studies have investigated the role of climate change
in the variations in blue and green water resources under
historical climate scenarios (e.g., Li et al., 2009; Liu et al.,
2009; Xu., 2013; Zang and Liu, 2013; Zuo et al., 2015; Zhao
et al., 2016; Xia et al., 2017; Lyu et al., 2019), whereas few
publications have focused on the assessment of blue and green
water variations and uncertainties at the basin scale under long-
term future climate scenarios. In general, traditional basin water
resource assessments pay inadequate attention to invisible green
water resources (Hoff et al., 2010) and the impacts of future climate
change, thereby underestimating the availability of water resources.

Furthermore, previous studies in China have focused mostly
on river basins located in northern China (characterized by arid
or semiarid climates), such as the Yellow River (see Table 1),
while only a few studies have been conducted on the Yangtze
River Basin in southern China (characterized by a humid
monsoon climate). In fact, the proportion of green water
differs greatly between the Yangtze River (approximately
48.1% calculated within our studied basin, namely, the
Xiangjiang River Basin) and the Yellow River (more than 80%
as reported by previous papers) because the climate (e.g.,
precipitation) varies considerably between northern and
southern China (Ye et al., 2013; Wang et al., 2021). Therefore,
it is of practical significance to distinguish the blue and green
water components (Mafuta, 2018) in a river basin characterized
by a humid monsoon climate and to understand the implications
of future climate change impacts on blue and green water
resources (Abbaspour et al., 2009). These practices should
improve water resource assessments in the studied basin and
help establish a new approach for coping with water issues (such
as water fluctuation, water scarcity, and water stress) (Rockström
et al., 2015; Zhuo and Hoekstra, 2017) in other similar basins.

In addition, the surface runoff and ET processes of the basin
water cycle are more complicated under the influence of climate
change, and their effects vary in both space and time (Faramarzi
et al., 2013; Rajib et al., 2018). Therefore, researchers have
employed physical-based hydrological models (Zang and Liu,
2013) to replace the Budyko-based water balance methods
(Budyko, 1974; Jiang et al., 2015), plant physiology methods
(Postel et al., 1996; Rockström and Gordon, 2001), and traditional
statistical methods based on the Penman–Monteith,
Priestley–Taylor, and Hargreaves formulas (Xu, 2013; Vaghefi
et al., 2014) to explore the transformation mechanism of
blue–green water within the water cycle. Considering the
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differences in spatial scales, there are both global-scale models,
such as the Lund–Potsdam–Jena managed Land (LPJmL)
model, GIS-based Environmental Policy Integrated Climate
(GEPIC) model, Global Water Resources H08 Model (H08),
Global Crop Water Model (GCWM), and International Model
for Policy Analysis of Agricultural Commodities and Trade
(IMPACT) (Rockström et al., 2009; Hanasaki et al., 2010; Liu
and Yang, 2010; Siebert and Doll, 2010; Robinson et al., 2015),
and basin-scale models, such as the Soil and Water Assessment
Tool (SWAT), Max Planck Institute Hydrology Model (MPI-
HM), and Hydro-Informatic Modeling System Vegetation
Impacts on Hydrology (HIM-VIH) (Chen et al., 2014;
Abbaspour et al., 2015; Zuo et al., 2015; Liu et al., 2016).

However, the traditional blue and green water models not
only ignore the selection and calibration of ET data but also
use the default ET parameters of the model (Arnold et al.,
2012; Badou et al., 2018). Hence, two questions arise: Can blue
and green water components be accurately divided? Additionally,
how can the spatiotemporal variations in blue and green water
resources be predicted in the context of future climate change?
These constitute two important scientific issues in the assessment
of water resources in the Xiangjiang River Basin (XRB).
Nevertheless, in practice, applying the concept of blue and
green water to basin water resource assessments under future
climate change remains difficult. These challenges include the
combined modeling of future climate downscaling and basin-
scale blue–green water resources (Reshmidevi et al., 2018;
Farsani et al., 2019) and accurately identifying and quantifying
blue and green water (Abbaspour et al., 2015; Zuo et al., 2015).

Therefore, in this study, an improved parallel parameter
calibration method was adopted to simulate the generation

and transformation of blue and green water components that
consider both observed discharge data and remotely sensed ET
data to increase the accuracy of blue and green water simulations
and reduce uncertainties (Rajib et al., 2018; Kunnath-Poovakka
et al., 2021). In general, this work presents an analytical study of the
impacts of climate change on the past and the future division of
blue and green water resources within the Xiangjiang River Basin.
In combination with the SWAT hydrological model and the
downscaling of general circulation models (GCMs), we analyze
the temporal variations and spatial distributions of blue and green
water resources in the context of climate scenarios based on four
representative concentration pathways (RCPs), namely, RCP2.6,
RCP4.5, RCP6, and RCP8.5, within four GCMs (HadCM3, IPSL-
CM5A, HadGEM2-AO, and CCSM4). The results are expected to
enrich the study of basin water resource assessments under future
climate change and to provide references for the strategic
formulation of integrated blue and green water resource
assessments in the XRB and in other similar basins.
Accordingly, the main goals of this study are to assess the
proportions of the blue and green water components separately
and to analyze the blue and green water variations under historical
and future climate scenarios in the studied basin by employing an
improved model calibration method.

2 MATERIALS AND METHODS

2.1 Study Area Description
The XRB (94,660 km2), located in the Hunan Province of China
between 24°38′N to 28°41′N latitude and 110°34′E to 114°15′E
longitude, is a first-order tributary of the Yangtze River. The

TABLE 1 | Comparison of relevant studies in China evaluating the impacts of climate change on blue and green water resources at the basin scale.a

References Studied area Climate change Combination of
future

climate modeling
and

blue–green water
modeling

Using a parallel
calibration method

based
on discharge

and ET

Average green
water

proportion

Change trend of
green
water

Liu et al. (2009) Laohahe River Basin in
northern China

42 years (1964–2005) × × 93.0 Increase

Li et al. (2009) Agricultural catchment of
Yellow River

20 years (1981–2000) × × 93.9 Decreaseb

Xu. (2013) The Middle Yellow River 58 years (1950–2007) × × 90.0 Increase
Zang and Liu
(2013)

Heihe River Basin in northern
China

51 years (1960–2010) × × 88.0 Increase

Zuo et al. (2015) Weihe River Basin of Yellow
River

45 years (1964–2008) × × 85.0 Increase

Zhao et al. (2016) Weihe River Basin of Yellow
River

30 years (1980–2009) × × 92.2 Decreaseb

Xia et al. (2017) Nanxiaohegou Basin of
Yellow River

58 years (1954–2012) × × 81.0 Decreaseb

Lyu et al. (2019) Xihe River Basin in northern
China

21 years (1995–2015) × × 63.5 Increase

Feng et al. (2021) Xiangjiang River Basin of
Yangtze River

80 years (1996–2015;
2020–2079)

✓ ✓ 48.1 Increase

aThe average green water proportion is indirectly calculated according to the data in the references of Table 1.
bindicates a non-significant trend.
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elevation of the basin ranges from −110 to 2,062 m, with an
average of 302 m. The Xiangjiang River originates from
Jinfengling Mountain in the Xingan County of Guangxi
Province and has an overall length of 856 km. It flows from
south to north through the cities of Yongzhou, Hengyang,
Zhuzhou, Xiangtan, and Changsha into Dongting Lake and
includes seventeen tributaries (the Liuyang River, Laodao
River, Lianshui River, etc.). Moreover, the XRB is
characterized by an East Asian subtropical humid monsoon
climate; thus, its hydrological cycle also presents a monsoon
climate regime. The average annual temperature in the XRB is
between 18.0°C and 19.0°C, and its average annual precipitation
ranges between 1,400 and 1,600 mm yr−1, most of which falls
from April to July. Accordingly, the flood season of the
Xiangjiang River extends from April to July and accounts for
approximately 52.4% of the annual runoff.

The XRB is of strategic importance for the water supply of
Changsha (the capital of Hunan Province) and the
Changsha–Zhuzhou–Xiangtan urban agglomeration (a national
urban agglomeration in the middle reaches of the Yangtze River in
China). The Xiangjiang River is also indispensable for agricultural
irrigation; indeed, the XRB is one of the most important
agricultural areas in the nation and thus has been called the
“breadbasket of China.” Hence, research on assessing the water
resources in the XRB is representative of Hunan Province, the
Yangtze River, and even southern China. However, previous water
resource assessments in the XRB focused exclusively on blue water.
For example, the first comprehensive legislation on river basin
protection in China, namely, the “Regulations on the Protection of
the Xiangjiang River System” issued by the government of Hunan
Province of China in 2013, is a kind of river water assessment
rather than basin water assessment (Xiao et al., 2016). Because this
legislation paid inadequate attention to the water cycle at the basin
scale and neglected invisible green water, this practice (in addition
to neglecting the impacts of future climate change) led to the water
resources within the basin being underestimated. As a case study of
the blue and green water resources in the XRB is representative of
the Yangtze River (and even southern China), the XRB is selected
as a representative basin to assess the impacts of climate change on
the past and the future division of blue and green water resources.

The Xiangtan hydrometric station (a national control station
of China) is the most important hydrological gauging station on
the Xiangjiang River and includes a control river length of 738 km
and a control catchment area of 81,638 km2. In this paper, the
catchment above the Xiangtan station was selected as the study
area (81,638 km2), accounting for 86.24% of the total area of the
XRB, as shown in Figure 1. This general map of the study area
presents the modeling details and geographic distributions of the
elevation, streams, watershed boundaries, climate stations, and
discharge stations used in the hydrological model.

2.2 Description of the Soil and Water
Assessment Tool Model
SWAT is an integrated physical- and process-based distributed
hydrological model (Arnold et al., 2013; Rathjens et al., 2015)
specialized in analyses at the basin scale. Previous publications

have demonstrated that the SWATmodel can be computationally
efficient when applied to characterizing the main processes of the
water cycle, water quantity (surface runoff, baseflow, and stream
flow), water quality (sediment load and nutrient flow), ET, and
management practices (Keys and Falkenmark, 2018; Luan et al.,
2018) in different landscapes (from small catchments to large
river basins) at various spatial and temporal scales (Bieger et al.,
2017).

The SWAT model has been extensively adopted for many
international applications, e.g., the Savannah River Basin and
Ohio River Basin in the United States (Veettil and Mishra, 2016;
Du et al., 2018), Karkheh River Basin in Iran (Vaghefi et al., 2014),
Cachoeira River Basin in Brazil (Rodrigues et al., 2014), Black Sea
Basin (Rouholahnejad et al., 2014), Amazon River Basin
(Lathuillière et al., 2016), Asian monsoon region (Lee and Bae,
2015), Europe (Abbaspour et al., 2015), Africa (Faramarzi et al.,
2013; Mafuta, 2018), and the Heihe River Basin (Zang and Liu.,
2013), Weihe River Basin (Zuo et al., 2015; Zhao et al., 2016), and
Lianshui River Basin (Feng et al., 2017a) in China. Hence, SWAT
is a valuable tool for investigating the different impacts of climate
change on hydrological processes (Veettil and Mishra, 2016;
Badou et al., 2018), as it provides spatial coverage of the entire
hydrological cycle (Veettil and Mishra, 2018), including the
atmosphere, plants, unsaturated zone, groundwater, and
surface water. A more detailed description of the model is
given in Section 3.

2.3 The Blue and Green Water Balance of
the Soil and Water Assessment Tool Model
The water balance is the driving force that controls all the
processes in the SWAT hydrologic model. The basic
hydrological water balance equation used in the SWAT model
can be expressed by Eqs 1, 2 (Arnold et al., 2013; Rodrigues et al.,
2014; Farsani et al., 2019). In Eq. 1, PREC is the amount of
precipitation (mm t−1) during the time period t, ET denotes the
actual evapotranspiration (mm t−1) during the time period t
(namely, GWF), and WYLD refers to the water yield (mm t−1)
during the time period t:

PREC � ET +WYLD + ΔSW + ΔGS + LOSSES, (1)

WYLD � SURQ + LATQ + GWQ. (2)

In Eq. 2,WYLD is the sum of surface runoff (SURQ, mm t−1),
lateral flow (LATQ, mm t−1), and the groundwater contribution
to streams (GWQ, mm t−1), ΔSW represents the relative change
in the soil water content (mm t−1) (therefore, SW is equal to the
amount of GWS, mm), ΔGS is the relative change in groundwater
storage (mm t−1) and is represented by the difference between
GW_RCHG (the total amount of water recharge to aquifers) and
GWQ within the SWAT output database, and LOSSES (mm t−1)
corresponds to the total losses of water interception and water
transmission in the basin water cycle and the consumptive water
use by human activities (domestic, industrial, or agricultural
water use).

Therefore, the methodology and output parameters used in
the SWAT model to calculate the blue and green water
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components are as follows: blue water (BW) � WYLD +
GW_RCHG and green water (GW) � GWF + GWS � ET +
SW (Arnold et al., 2013; Rodrigues et al., 2014; Veettil and
Mishra, 2016). More details regarding the computation of
WYLD, ET, and SW in SWAT can be found in the study by
Feng et al. (2017b). The distributed structure of the SWATmodel
can efficiently characterize hydrological processes in catchments
and distinguish the blue and green water components at the
subbasin scale (Zhao et al., 2016; Veettil and Mishra, 2018). This
model was therefore assumed to be suitable for the scenario
analysis and simulation of blue and green water components
across the XRB.

2.4 Climate Change Model and Scenario
Design
The SWAT model, GCMs, and scenario analysis method
(Faramarzi et al., 2013; Vaghefi et al., 2014; Lee and Bae.,
2015; Badou et al., 2018) were used to project the impacts of
climate change on blue and green water resources in the XRB.
Analyses using GCMs and RCP scenarios from Coupled Model
Intercomparison Project Phase 5 (CMIP5) might help further
understand the impacts of climate change projections over the
XRB. The SWAT model was forced by the historical climate
scenario, scenario A (1996–2015), based on the observed
meteorological conditions and by two future climate scenarios,
scenarios B and C (2020–2049 and 2050–2079, respectively).
These two future climate scenarios were generated from
downscaled GCMs (HadCM3, IPSL-CM5A, HadGEM2-AO,
and CCSM4) and four RCPs (RCP2.6, RCP4.5, RCP6, and
RCP8.5). Accordingly, scenarios A, B, and C designed for this
study are described as follows:

1) Scenario A (1996–2015). The baseline climate scenario was
generated from meteorological data observed by weather
stations from 1996 to 2015 in the XRB.

2) Scenario B (2020–2049). This scenario is subdivided into
scenarios B2, B4, B6, and B8 according to RCP2.6, RCP4.5,
RCP6, and RCP8.5, respectively, within the HadCM3, IPSL-
CM5A, HadGEM2-AO, and CCSM4 models, which present
the impacts of climate change in the near future for the period
of 2020–2049.

3) Scenario C (2050–2079). Similar to scenario B, this scenario is
subdivided into scenarios C2, C4, C6, and C8, which present
the impacts of climate change in the far future for the period of
2050–2079.

2.5 Data Collection
The data required for this study were compiled from different
sources as follows: 1) The ASTER Global Digital Elevation
Model (GDEM) V2 at a 30 m spatial resolution was extracted
from the Geospatial Data Cloud Site, Computer Network
Information Center, Chinese Academy of Sciences, to
delineate the topographic features of the XRB. 2) A land
cover map with a spatial resolution of 300 m for 2015 was
derived from the Data Center for Resources and Environmental
Sciences (RESDC), Chinese Academy of Sciences. 3) Soil data
were obtained from the Harmonized World Soil Database
(HWSD) archived by the FAO of the United Nations and
maps of China at a 1:1 million scale based on data
distributed by the Institute of Soil Science in Nanjing,
Chinese Academy of Sciences. 4) Historical weather input
data of the total precipitation, average maximum/minimum
air temperatures, wind speed, relative humidity, solar
radiation, and meteorological statistics at 37 weather stations
within the XRB from 1996 to 2015 were collected from the
Climatic Data Center, National Meteorological Information
Center, China Meteorological Administration. 5) Future
weather input data for the period of 2020–2079 originated
from four RCPs (RCP2.6, RCP4.5, RCP6, and RCP8.5) in
four GCMs (HadCM3, IPSL-CM5A, HadGEM2-AO, and
CCSM4) provided by the Fifth Assessment Report (AR5) of

FIGURE 1 | Location of the Xiangjiang River Basin, China.
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the Intergovernmental Panel on Climate Change (IPCC). 6) ET
data were obtained from the MODIS16A2_ET product with a
0.05° spatial resolution for the period of 2000–2015; this product
was available from the global terrestrial ETModerate Resolution
Imaging Spectroradiometer (MODIS) database of NASA. 7)
Daily runoff data from 1996 to 2015 at the Xiangtan gauging
station as well as a digital river network map, reservoir outflow
data, water use data, and agricultural irrigation information of
the study area were provided by the Hydrology and Water
Resources Survey Bureau in the Hunan Province of China.

3 MODEL INPUTS AND MODEL SETUP

3.1 Input Data Processing
3.1.1 Spatial and Attribute Data Processing
The 2015 land cover dataset was regridded to be consistent with
the spatial resolution of the meteorological forcing data and then
reclassified into eight classes according to the standard USGS land
use and land cover categories used in the SWATmodel, including
37.4% agricultural land (AGRL), 32.3% evergreen forest (FRSE),
10.1% deciduous forest (FRSD), 13.0%mixed forest (FRST), 1.7%
shrubland (RNGB), 3.1% grassland (RNGE), 1.1% high-density
residential urban land (URHD), and 1.3% water area (WATR), as
shown in Figure 2.

As soil parameters have a significant influence on the
simulation of green water, the soil database of the XRB was
established based on the HWSD, the Soil-Plant-Air-Water
(SPAW) model, and the soil statistical yearbook of Hunan
Province (2010). The HWSD dataset contains most of the soil
water information necessary for the SWAT model, such as two
soil profiles (0–30 cm and 30–100 cm depths), the available water
capacity, and the bulk density. The soil database was reclassified
into eight classes of soil types used in the SWATmodel, including
4.1% Leptosols, 7.4% Ferric Lixisols, 25.7% Cumulic Anthrosols,
26.2% Haplic Acrisols (I), 11.7% Haplic Acrisols (II), 10.2%

Humic Acrisols, 7.5% Haplic Alisols, and 7.2% Dystric
Cambisols, as shown in Figure 2.

Meteorological input data from 1996 to 2015 recorded at 37
weather stations in the XRB (including 57687-Changsha station,
57679-Changsha station, 57773-Xiangtan station, 57780-
Zhuzhou station, 57872-Hengyang station, 57763-Loudi
station, 57866-Yongzhou station, and 57972-Chenzhou station,
among others), as shown in Figure 1, were selected to run the
SWAT model; these data were also leveraged to help build the
weather generator (WXGEN) (Aouissi et al., 2016)
simultaneously. Then, historical climate change was simulated
with SWAT by manipulating the climate inputs (WXGEN
parameters, potential ET, precipitation, temperature, solar
radiation, relative humidity, and wind speed) which were
input into the model.

3.1.2 Future Climate Data and Their Downscaling
Four commonly used RCPs, namely, RCP2.6, RCP4.5, RCP6, and
RCP8.5, were established by CMIP5 models from the IPCC AR5
corresponding to scenarios with a total radiative forcing of 2.6,
4.5, 6.0, and 8.5 W/m2, respectively (approximately equal to mean
CO2 emission concentrations of 490, 650, 850, and 1,370 ppm), in
2100 (Diffenbaugh and Giorgi, 2012). To quantify the available
blue and green water resources under future climate change
(2020–2079), future climate projections from four GCMs
(HadCM3, IPSL-CM5A, HadGEM2-AO, and CCSM4) under
the RCP2.6, RCP4.5, RCP6, and RCP8.5 scenarios were fed
into the SWAT model and were used as the future
meteorological conditions.

Furthermore, a key issue in the combination of hydrologic
models with GCMs is the spatial and temporal downscaling of the
results from the latter. GCM outputs (Reshmidevi et al., 2018;
Pandey et al., 2019) cannot be directly applied to the spatial
resolution (Lee and Bae., 2015; Badou et al., 2018) of blue and
green water modeling at the basin scale, so they must be
downscaled to an acceptable spatiotemporal resolution.

FIGURE 2 | Land cover map and soil type map of the Xiangjiang River Basin.
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Accordingly, the climate change data for two future periods
(2020–2049 and 2050–2079) were downscaled (Knutti and
Sedlácek, 2012) and bias-corrected (Hassan et al., 2014) using
the statistical downscaling model (SDSM) based on the observed
meteorological records from the 37 nearest weather stations in
the XRB for the baseline period (1996–2015). As a consequence,
the downscaled climate series from HadCM3 agreed relatively
well with the measured historical data. All 37 stations had R2

values in the range of 0.81–0.89; hence, the downscaled HadCM3
model was identified as a better model for the XRB than the other
three selected GCMs (IPSL-CM5A, HadGEM2-AO, and
CCSM4).

3.1.3 MOD16 Data Processing
Given the high spatial variability in ET, satellite-derived
MODIS16A2_ET data were used as the monthly average ET
input for the model. This practice could achieve a better accuracy
for the green water simulation if we calculate the spatial
distribution of the actual ground surface ET (AET). The
Penman–Monteith equation is used by the MOD16 ET
algorithm (Mu et al., 2011) for remote sensing inversion, and
this equation considers soil moisture evaporation, plant
transpiration, water surface evaporation, etc. The quality
control parameters of MOD16 have been verified by
evaporation flux tower data at the global scale (Autovino
et al., 2016), and application studies in China (Zhang and
Chen, 2017) have shown that the MOD16 dataset is suitable
for studying ET at the basin scale throughout most of China.

Additionally, ArcGIS software was used to calculate 0.05°

monthly average ET raster data of the MOD16 ET product at
a subbasin level for the purpose of calibrating the SWAT
parameters for green water, and the satellite estimates were
strongly correlated with the simulated results, as depicted and
explained in Section 4.1.2.

3.2 Simulation Protocol
3.2.1 River Network Calibration and Division of
Subbasins and Hydrological Response Units
The control river network of the XRB extracted from the DEM
was calibrated with a 1:250,000 digital drainage map of the XRB
according to the streamflow direction matrix (Feng et al., 2017a).
Then, this control river network was used to calibrate the input
river network generated by the SWATmodel, which can improve
the stream network’s accuracy of the D8 algorithm (Arnold et al.,
2013) within the TOPOAZ module of SWAT. The threshold of
the subbasin area in the SWAT model was set at 167,500 hm2

based on a comparative analysis (Koch et al., 2013) between the
observed and simulated errors of the starting points of streams
(Feng et al., 2017a) from the digital drainage map of the XRB.
Therefore, the Xiangjiang watershed was divided into 25
subbasins, as delineated in Figure 3, and the dominant land
use and soil types of each subbasin were assigned.

It is recommended to reduce the computational burden by
filtering unique combinations (Her et al., 2015). To spatially
discretize each subbasin, SWAT utilizes hydrological response
units (HRUs) which are delineated as the basis of the water
balance calculation; this approach allows a subbasin to be split

into unique combinations of soil, land use, and slope units. In this
study, a 10% threshold of land use, soil, and slope that covered a
fraction less than 10% of each subbasin was set up, which resulted
in 382 HRUs distributed over 25 subbasins.

3.2.2 Model Calculation Method Setup
In this study, the surface runoff volume was simulated at the HRU
level using a modified Soil Conservation Service (SCS) curve
number (CN) procedure based on soil hydrologic groups, land
use/land cover characteristics, antecedent soil moisture, etc. The
variable storage method was used for routing the runoff
aggregated from HRUs to each delineated subbasin and then
routed to the associated reach and basin outlet through the river
network. The FAO Penman–Monteith equation was selected to
calculate the reference ET (Arnold et al., 2012; Aouissi et al.,
2016). The leaf area index (LAI) and root development were
estimated using the crop-growth component of SWAT, which is a
simplification of the EPIC crop model.

3.2.3 Setup of Water Resource Use Scenario
Water use scenarios were set up within the SWAT model
according to the average water use rate and domestic,
industrial, and agricultural water use data in the XRB collected
from the “Water Resources Bulletin of Hunan Province, China,”
from 2006 to 2015. In addition, the outflow data of eight large-
scale reservoirs in the study area, namely, the Centianhe Reservoir
(2.50 billion m3 of flood control storage), Dongjiang Reservoir
(1.58 billion m3), Taoshui Reservoir (1.00 billion m3), Shuifumiao
Reservoir (0.70 billion m3), Ouyanghai Reservoir (0.62 billion
m3), Shuangpai Reservoir (0.58 billion m3), Qingshanlong
Reservoir (0.29 billion m3), and Jiubujiang Reservoir
(0.11 billion m3), which may affect river discharge, were
included in this model starting from 1996 to 2015. However,
to study blue and green water variations under historical and
future climate change scenarios in the long term (1996–2015 and
2020–2079), small reservoirs in the XRB were considered to

FIGURE 3 | Spatial division of modeled units (subbasins) in the
Xiangjiang River Basin.
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mainly affect the daily runoff simulation in the flood season
(Abbaspour et al., 2009; Ngo et al., 2016; Feng et al., 2017b) but
have little effect on the monthly average river discharge
calibration and validation.

Moreover, approximately 37% of the basin area is irrigated;
therefore, the reservoirs listed above were built for agricultural
irrigation districts downstream of the XRB. According to the
operation scheme of gate dams in each reservoir and their annual
average irrigated water volume, we set a corresponding irrigation
management scenario in the model. Then, scenarios of water
resource use and agricultural irrigation information were spatially
parameterized (Dechmi et al., 2012; Rouholahnejad et al., 2014)
for the model simulations within SWAT.

3.2.4 The Methodology of Blue and Green Water
Modeling
Most previous studies on blue and green water simulations
generally used the blue water calibration (discharge
calibration) method in specific SWAT applications (Li et al.,
2009; Arnold et al., 2012; Badou et al., 2018). Based on the
observed discharge data and remotely sensed MODIS ET data
(Feng et al., 2018; Rajib et al., 2018; Kunnath-Poovakka et al.,
2021), this study used the particle swarm optimization (PSO)
algorithm (Kennedy and Eberhart, 1995) in the SWAT-
Calibration and Uncertainty Programs (SWAT-CUP)
(Abbaspour et al., 2015) to simulate the blue and green water
components (discharge and ET) simultaneously and characterize
the overall uncertainty in the model output. The PSO algorithm
and the Kling–Gupta efficiency (KGE) objective function in the
SWAT-CUP were further applied to the sensitivity analysis,
parameter estimation, and uncertainty quantification in this
study. Based on the SWAT-CUP used in this study, the
specific SWAT application was simultaneously combined and
calibrated with the river discharge data (observed river discharge
at the Xiangtan station) and basin ET data (MOD16 ET data at
the subbasin scale) in the KGE objective function during model
simulation, thereby providing a more reliable estimate of the
coupling mechanism between blue and green water resources in a
river basin. Ideally, the best simulation was calibrated with the
largest objective function value.

3.3 Sensitivity Setup and Analysis
Compared with predicting the runoff in a river basin, calibrating
the blue and green water resources is more complicated and must
consider extra parameters (Abbaspour et al., 2015; Aouissi et al.,
2016; Kundu et al., 2017) related to green water resources.
Therefore, the sensitive parameters that control the calibration
of runoff and ET calibration (and hence the calibration of blue
and green water resources) in the basin should be identified.

In this study, the t-stat and p-value of Latin hypercube
sampling one-factor-at-a-time (LH–OAT) (Kucherenko et al.,
2011) and global sensitivity analysis within the SWAT-CUP
(Abbaspour, 2014) were used to estimate the statistical
significance of the parameters. The greater the absolute value
of the t-stat is, the more sensitive the parameter is. Generally, the
parameter is not sensitive at t < 0.05, weakly sensitive at 0.05 < t <
0.2, generally sensitive at 0.2 < t < 0.5, very sensitive at 0.5 < t <

1.0, and extremely sensitive at t > 1.0 (Mengistu and Sorteberg,
2012; Abbaspour, 2014; Zhao et al., 2016).

The selection of model parameters to calibrate was based on
the sensitivity analysis and previous studies (Feng et al., 2017b
and 2018). Based on an evaluation criterion, that is, t > 0.2, the 18
most sensitive hydrologic parameters within SWAT related to
discharge and ET (blue and green water) within the XRB were
identified, as shown in Table 2. In this study, these blue and green
water parameters were employed to assess the blue and green
water variations and to reflect the changes among the scenarios.

3.4 Model Uncertainty Setup and
Description
Blue and green water simulations contain uncertainties associated
with the input data, model parameters, etc. This study used the
parallel PSO algorithm (Kennedy and Eberhart, 1995) in the SWAT-
CUP to characterize the overall uncertainty in the model output. In
this method, all uncertainties are mapped onto the parameter ranges
as the procedure attempts to capture most of the measured data
within the 95% parameter prediction uncertainty (95 PPU) range
(Abbaspour, 2014; Abbaspour et al., 2015).

Accordingly, the goodness of the model calibration strength and
prediction uncertainties was judged by two indices, the p-factor and
r-factor, of the 95 PPU. The p-factor indicates that the percentage of
measured data falls in the 95 PPUband and varies from 0 to 1, where
1 is the maximum value of the p-factor, that is, 100% bracketing of
the observed data by the 95 PPU (Rouholahnejad et al., 2014). In
contrast, the r-factor represents the average width of the 95 PPU
band divided by the standard deviation of the observed data and
ranges from 0 to infinity, where a lower value of the r-factor indicates
better model performance.

Ideally, we would like to bracket most of the measured data
(plus their uncertainties) within the 95 PPU band (p-factor value
tending to 1) and to have a narrow 95 PPU band (r-factor value
close to 0) because these conditions signify a more reliable model.
Generally, when the p-factor value is greater than 0.5 and the
r-factor value is less than 1.5, the simulation uncertainty is
believed to be covered within the confidence region.
Furthermore, the simulation uncertainty is accepted to be
within the desirable range when the p-factor value is greater
than 0.7 and the r-factor value is less than 1 (Abbaspour, 2014;
Abbaspour et al., 2015; Feng et al., 2018).

In addition, the KGE, an improved parameter calibration
method proposed by Gupta et al. (2009), was used as the
objective function for the SWAT model calibration. To
compare the measured and simulated discharge and ET, the
simulation performance of the SWAT model was evaluated by
using the following goodness-of-fit criteria: the coefficient of
determination (R2) between the measured and simulated data,
Nash–Sutcliffe efficiency (NSE, which indicates the variance ratio
of the simulated value to the measured data), and bias percentage
(PBIAS, representing the overall trend in which the simulation
value deviates from the measured data).

R2 and NSE values close to 1 indicate good correspondence
between the two series, and values between 0.7 and 1 are
considered optimal for validating models on observations. In
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contrast, as the PBIAS tends toward 0, the simulation results
become more representative. Relevant studies (Arnold et al.,
2013; Koch et al., 2013; Abbaspour, 2014; Abbaspour et al., 2015;
Daggupati et al., 2015; Zuo et al., 2015; Zhao et al., 2016; Veettil
and Mishra, 2018) have shown that blue and green water
simulations are credible when R2 > 0.6, NSE > 0.6, PBIAS <
15%, and KGE > 0.7, and the simulation results are relatively
good when R2 > 0.8, NSE > 0.8, PBIAS < 5%, and KGE > 0.9. The
preprocessing of the SWATmodel input data was accomplished
mainly in ArcGIS 10.3 and ENVI 5.3. More details on the model
inputs and model setup, sensitivity setup and analysis, and
uncertainty setup and description can be found in the studies
of Abbaspour (2014), Feng et al. (2017b), and Feng et al. (2018).

4 RESULTS AND DISCUSSION

4.1 Model Calibration, Validation, and
Uncertainty Analysis
4.1.1 Design of the Calibration–Validation Period
The overall calibration and validation period selected in this study
was 1996–2015. Different from the traditional
calibration–validation method (Abbaspour et al., 2009;

Rodrigues et al., 2014), we adopted the validation–calibration
method (i.e., in reverse order) (Vaghefi et al., 2014; Feng et al.,
2017b) to divide the validation period (1996–2005) and
calibration period (2006–2015). Because this method might be
conducive to the prediction of future blue and green water
resources, it was proposed based on the following considerations.

1) The input scenarios within the SWAT model were
performed by using the land cover scenario in 2015 and water
use scenarios in 2006–2015. Therefore, we selected the calibration
period 2006–2015 to match the time series of the input scenarios
to interpret the model parameters and simulation process more
properly. Accordingly, the future blue and green water resources
within the XRB were simulated under future climate change
scenarios, but the constant land cover scenario did not consider
future land use conditions. This practice controls the current
input land cover scenarios within the SWAT model, which could
allow the modeled future blue–green water resources to be more
properly interpreted under future climate projections. In this way,
the uncertainties of future blue–green water projections under
future climate scenarios can be measured more precisely. Thus,
the cumulative error of uncertainties from both future climate
change scenarios and future land use change scenarios can be
avoided. 2) Compared to the validation period (1996–2005), the

TABLE 2 | Results of the sensitivity analysis and SWAT calibration procedure (the initial range, range adjustment in calibration, and final range) for the blue and green water
parameters in the Xiangjiang River Basin.

Parameter label* Parameter description Initial
range

Range
adjustment

Final range Sensitivity
rank

r_CN2.mgt SCS runoff curve number 35–98 ±25% 64–89 1
v_ESCO.hru Soil evaporation compensation factor 0–1 0.1–1 0.71–0.87 2
v_ALPHA_BF.gw Baseflow alpha factor (days) 0–1 0.1–1 0.58–0.94 3
r_SOL_AWC.sol Available water capacity of the soil layer (mm H2O/mm soil) 0–1 ±25% 0.09–0.17 4
v_GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to

occur (mm H2O)
0–5,000 ±1,000 625–1914 5

r_SOL_Z.sol Depth from the soil surface to the bottom of the layer (mm) 0–3,500 ±25% 107–984 6
v_CANMX.hru Maximum canopy storage 0–100 0.1–50 14.7–49.6 7
r_SOL_BD.sol Soil bulk density (g cm−1) 0.1–10 ±25% 1.22–1.53 8
r_SOL_K.sol Saturated hydraulic conductivity (mm h−1) 0–2,000 ±25% 0.62–13.44 9
v_CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm h−1) 0.01–500 0.1–150 49.1–95.9 10
v_OV_N.hru Manning’s N value for overland flow 0–0.8 0.1–0.8 0.12–0.27 11
v_EPCO.hru Plant uptake compensation factor 0–1 0.1–1 0.21–0.43 12
v_REVAPMN.gw Threshold depth of water in the shallow aquifer for re-evaporation to occur

(mm H2O)
0–500 ±100 313.4–447.1 13

v_GW_REVAP.gw Groundwater re-evaporation coefficient 0.02–0.2 ±0.036 0.083–0.13 14
v_BLAI.hru Maximum leaf area index 0.5–10 0.5–3 2.35–2.81 15
v_CH_N2.rte Manning’s N value for the main channel 0.01–0.3 0.01–0.3 0.023–0.045 16
v_GW_DELAY.gw Groundwater delay time (days) 0–500 ±10 25.3–93.7 17
v_RCHRG_DP.gw Deep aquifer percolation fraction 0–1 0.1–1 0.42–0.59 18
r_SOL_ALB.sol Moist soil albedo 0–0.25 — — —

v_SURLAG.bsn Surface runoff lag time (days) 0.05–24 — — —

v_SLSUBBSN.hru Average slope length (m) 10–150 — — —

r_BIOMIX.mgt Biological mixing efficiency 0–1 — — —

v_SFTMP.bsn Snowfall temperature (°C) −5–5 — — —

v_SMFMN.bsn Minimum melt rate for snow during the year (mm °C−1 day−1) 0–10 — — —

v_SMFMX.bsn Maximum melt rate for snow during the year (mm °C−1 day−1) 0–10 — — —

v_SMTMP.bsn Snow melt base temperature (°C) −5–5 — — —

v_TIMP.bsn Snow pack temperature lag factor 0–1 — — —

v_TLAPS.sub Temperature lapse rate (°C km−1) 0–50 — — —

Note: The v_ parameter values are replaced by the given value or absolute change; the r_ parameter values are relative changes in the parameter values. The final range of the aggregate
parameter is based mainly on the SWAT-CUP results.
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calibration period (2006–2015) was closer to the simulation
period (2020–2079) of future climate change. Therefore, the
parameter calibration results were more suitable for predicting
blue and green water resources in the long-term future. 3) The
real-time sequence did not determine the selection of the
calibration–validation period because the SWAT model
considers mainly the input scenario (Koch et al., 2013;
Rathjens et al., 2015; Bieger et al., 2017) in the
calibration–validation period, not the time sequence.

In blue and green water modeling, the initial values of some
green water parameters, such as the SW content, default to 0,
which is inconsistent with the actual conditions of the basin water
balance. To alleviate the influences of unknown initial parameters
on the green water simulation, we set up three-year periods before
the calibration and validation periods (1992–1995 and
2002–2005, respectively) as warm-up periods. Such warm-up
periods can precisely initialize parameters (e.g., soil moisture)
and properly simulate green water resources (Kundu et al., 2017).
Then, the warm-up periods were excluded from the simulation.
The calibration and validation periods from 1996 to 2015 are
described as follows: 1) During model calibration, 2006–2015 was
set as the calibration period and 2003–2005 was set as the model
warm-up period. 2) During model validation, 1996–2005 was set
as the validation period and 1992–1995 was set as the model
warm-up period.

4.1.2 Uncertainty Analysis of the Improved Blue and
Green Water Simulations
Most previous studies on the simulation of blue and green water
resources generally used the blue water calibration method (Li
et al., 2009; Arnold et al., 2012; Badou et al., 2018). Therefore, they
focused mainly on calibrating discharge and then simply
calculated the total green water according to the water balance
equation. However, this approach may neglect to calibrate green
water in the context of basin hydrologic processes, increasing the
uncertainty of green water projections and making it difficult to
distinguish GWF from GWS.

In fact, blue and green water simulations are different from
traditional blue water simulations (Rouholahnejad et al., 2012;
Aouissi et al., 2016). We recommend considering discharge and
ET simultaneously to increase the prediction accuracy of green
water and to diminish uncertainties (Feng et al., 2018; Rajib et al.,
2018; Kunnath-Poovakka et al., 2021). Therefore, this study used
an improved parallel parameter calibration method to
simultaneously calibrate the discharge and ET (Rajib et al.,
2018; Kunnath-Poovakka et al., 2021) and hence the blue and
green water resources. This parallel calibration method combined
river discharge with ET in the objective function during the
model simulations, thereby providing a more reliable estimate of
the coupling mechanism between blue and green water resources
in the river basin. This approach could be an effective practice to
improve the model simulation performance of green water to
some extent.

In this study, the specific SWAT application was calibrated
and validated simultaneously using monthly observed discharge
(1996–2015) at the Xiangtan station located at the downstream
end of the XRB (Figure 1) and MOD16 ET data (2000–2015) at

the subbasin scale in the study area. At the same time, the PSO
algorithm and KGE objective function in the SWAT-CUP were
applied to the sensitivity analysis, parameter estimation, and
uncertainty quantification. Ideally, the best simulation was
calibrated with the largest objective function value.
Furthermore, to assess the reliability of our model projection,
Figure 4 is constructed to visualize the model calibration and
validation performance of discharge and ET. The shaded range
within Figure 4 indicates the 95 PPU range, which is used to
express the combined confidence (Daggupati et al., 2015) of the
blue and green water projections, including the uncertainties of
the input data, climate variation, and hydrological model.

Based on the time-series plots between the simulated and
observed values in Figure 4, the simulation performance
coefficient and uncertainty analysis results within the calibration
and validation periods are summarized in Table 3. As shown in
Table 3, for all calibration and validation stages, theKGE statistic is
greater than 0.85, R2 is greater than 0.80, NSE is greater than 0.75,
and PBIAS is less than 2.5%. The goodness of these KGE, NSE, R2,
and PBIAS coefficients (as discussed in Section 3.4) indicates
reasonable agreement between the measured and simulated
data. Therefore, compared to those of previous studies, the
SWAT application results for the parallel simulation of
discharge and ET during the calibration (2006–2015) and
validation (1996–2005) periods were credible (Koch et al., 2013;
Abbaspour et al., 2015; Zhao et al., 2016; Veettil andMishra, 2018).

Referring to Table 3 for the calibration and validation periods
of modeling, the p-factor values of the discharge and ET within
the 95 PPU range are all greater than 0.70, indicating that, for the
discharge and ET, more than 70% of the data are bracketed by the
95 PPU range. Likewise, all the r-factor values are below 0.95,
indicating low prediction uncertainties for both the calibration
and validation periods. According to the criteria of the
uncertainty evaluation (p-factor greater than 0.7 and r-factor
less than 1.5) recommended by Abbaspour et al. (2015), the
uncertainties in the blue and green water simulations for the XRB
conducted by the SWAT hydrological model were in the
confidence area. As a consequence, the simulation
performance of this hydrologic modeling by the improved
parallel parameter calibration method in the XRB can be
judged as satisfactory and hence can be applied to the
spatiotemporal analysis of blue and green water in the basin.

4.2 Temporal Analysis of Blue and Green
Water Under Climate Change Scenarios
The annual average values of blue water (BW) resources, green
water flow (GWF), and green water storage (GWS) based on
baseline scenario A (1996–2015), the four near-future climate
scenarios B2, B4, B6, and B8 (2020–2049), and the four far-future
climate scenarios C2, C4, C6, and C8 (2050–2079) are shown in
Figures 5–7, respectively. We compared the relative differences
among the eight future climate scenarios (B2, B4, B6, and B8 of
2020–2049 and C2, C4, C6, and C8 of 2050–2079) against
baseline climate scenario A (1996–2015) and hence assessed
the effects of different climate scenarios (Sections 4.2.1–4.2.4).
Briefly, we analyzed the blue and green water projections under
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the best downscaled HadCM3 scenario in the XRB, as discussed
in Section 3.1.2, while the IPSL-CM5A, HadGEM2-AO, and
CCSM4 scenarios were used only to validate the confidence in the
blue and green water predictions, as depicted in Figures 5–7,
which show that almost all uncertainties in the blue and green
water predictions plot within the 95 PPU ranges.

4.2.1 Annual Variation in Blue Water Resources Under
Different Climate Scenarios
Figure 5 shows the annual average BW over 20 years in the past
(1996–2015) and 60 years in the future (2020–2049 and
2050–2079). The future changes in BW were calculated

between the averages of scenarios B (2020–2049) and C
(2050–2079) and that of baseline scenario A (1996–2015).
Accordingly, 1) comparing scenario B (2020–2049) under
RCP2.6, RCP4.5, RCP6, and RCP8.5 with scenario A
(1996–2015; BW � 818.3 mm), BW shows different
magnitudes of decline, with decreases of 97.9, 156.9, 148.7,
and 87.2 mm, respectively. 2) Comparing scenario C
(2050–2079) with scenario B (2020–2049) under RCP2.6 and
RCP4.5, BW still shows dwindling trends, with decreases of 11.9
and 21.2 mm, respectively. However, the BWpredictions in RCP6
and RCP8.5 are exceptionally large during scenario C
(2050–2079), with increases of 68.1 and 43.6 mm, respectively.

FIGURE 4 | Simulation results and 95% parameter prediction uncertainty (95 PPU) ranges of the discharge and ET in the SWAT calibration (2006–2015) and
validation (1996–2005) periods.

TABLE 3 | Results of the simulated evaluation and uncertainty analysis of the discharge and ET in the SWAT calibration and validation periods in the Xiangjiang River Basin.

Data Modeling
period

Years KGE NSE R2 PBIAS p-Factor r-Factor

Discharge Calibration 2006–2015 0.92 0.85 0.85 0.3 0.83 0.93
Validation 1996–2005 0.89 0.79 0.80 −1.7 0.75 0.88

ET Calibration 2006–2015 0.94 0.89 0.89 0.2 0.71 0.64
Validation 2000–2005 0.93 0.88 0.87 2.1 0.70 0.62
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3) The above analysis demonstrates that BW presents a
decreasing trend when compared among all three climate
periods of A, B, and C. In contrast with those in baseline
scenario A (1996–2015), BW in the far-future scenario C
(2050–2079) is predicted to decrease by 109.8, 178.1, 80.6, and
43.7 mm under RCP2.6, RCP4.5, RCP6, and RCP8.5, respectively,
with reductions of approximately 5.3–21.8%.

Furthermore, a comparison between baseline scenario A and
the future RCP scenarios shows that the decreasing trend of BW
slows down successively from RCP2.6 to RCP4.5, RCP6, and
RCP8.5. In other words, the larger the RCP number is (i.e., the
greater the radiative forcing is), the smaller the reduction in BW
is. The main reason for such differences may be that the regional
atmospheric circulation and basin hydrological processes (e.g.,
precipitation, runoff) influenced by the different GCMs, different
RCP scenarios, different CO2 emission concentrations, and (more
directly) the rainfall pattern and atmospheric temperature vary.

Especially under RCP6 and RCP8.5, BW is unexpectedly
predicted to increase. This could be because the local
precipitation and hence BW may increase in the mid-latitude
areas, which are greatly affected by the intensification of global
warming and monsoon circulation (Knutti and Sedlácek, 2012;
Lee and Bae, 2015; Badou et al., 2018), e.g., the higher CO2

concentrations of 850 and 1,370 ppm in the RCP6 and RCP8.5
scenarios, respectively, in 2100. The XRB is located exactly in the
mid-latitude region and is characterized by a subtropical humid
monsoon climate with typical monsoon climate properties, as
discussed in Section 2.1. In general, climate change is predicted to
reduce the BW within the XRB over the next 60 years
(2020–2079), but these resources are expected to fluctuate
according to different RCP scenarios and their future total
radiation intensities and CO2 emission concentrations.

4.2.2 Annual Variation in Green Water Flow Under
Different Climate Scenarios
Figure 6 illustrates the annual average GWF based on the
historical data of scenario A (1996–2015) and the future
graphs of scenarios B (2020–2049) and C (2050–2079). 1)
From historical scenario A (1996–2015; GWF � 680.9 mm) to
future scenario B (2020–2049), GWF was predicted to show
different growth rates under RCP2.6, RCP4.5, RCP6, and
RCP8.5 with increases of 11.3, 33.7, 45.1, and 52.5 mm,
respectively. 2) Moreover, from scenario B (2020–2049) to
scenario C (2050–2079), GWF still shows an increasing trend,
with increases of 28.9, 25.8, 35.4, and 47.3 mm. 3) In the
comparison of baseline scenario A (1996–2015) with far-future
scenario C (2050–2079), GWF is simulated to increase by 40.2,
59.5, 80.5, and 99.8mm under the four different RCPs, which are
equal to future growth rates of 5.9–14.7%.

Ultimately, the comparison among scenarios A, B, and C in
Figure 6 indicates that the GWF under different RCPs exhibits a
growth trend under the future climate background, and the larger
the RCP emissions are, the greater the enhancement in GWF is.
Similarly, the green water coefficient (equal to green water
resources divided by blue–green water resources) was found to
rise with an increase in GWF. By calculating the ratio of green
water resources to blue–green water resources, the average green

FIGURE 5 | Annual average blue water resources in different climate
scenarios simulated by baseline scenario A (1996–2015) and fourGCMs (HadCM3,
IPSL-CM5A, HadGEM2-AO, and CCSM4) in the Xiangjiang River Basin. Note:
Future scenarios B (2020–2049) and C (2050–2079) are subdivided into
climate scenarios B2, B4, B6, B8 and scenarios C2, C4, C6, C8 according to the
four RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, within the above four GCMs, as
illustrated in Section 2.4; the terms in Figures 6, 7 are the same.

FIGURE 6 | Annual average green water flow in different climate
scenarios in the Xiangjiang River Basin.

FIGURE 7 | Annual average green water storage in different climate
scenarios in the Xiangjiang River Basin.
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water coefficient (Falkenmark, 2013; White et al., 2015) is
predicted to increase from 48.1% (average from 1996 to 2015)
to 53.4% (average from 2050 to 2079).

The main reason for this enhanced GWF may be that ET
increases with increases in the CO2 emission concentration and
temperature, whereas BW decreases slightly. As CO2 emissions
and temperatures increase, vegetation cover may become denser,
and actual transpiration may rise. Simultaneously, soil
evaporation, water surface evaporation, and groundwater re-
evaporation may increase. This is because the XRB, located in
an area with a subtropical humid monsoon climate (precipitation
between 1,400 and 1,600 mm yr−1), has diverse terrestrial and
aquatic ecosystems with an extensive river network system and
abundant surface water (e.g., lakes, reservoirs, ponds, paddy
fields), soil water, and groundwater resources.

In addition, the GWF exhibited a growth trend even
considering the 95 PPU range and the prediction results for
four GCMs (HadGEM2-AO, IPSL-CM5A, HadGEM2-AO, and
CCSM4), as presented in Figure 6. Although differences were
discovered among the four GCM scenarios because of
uncertainties and their underlying assumptions, the four
GCM scenarios fell almost entirely within the predicted 95
PPU bands of the historical period (1996–2015) and future
period (2020–2079). This implies that the increasing trend of
GWF is highly credible under future climate scenarios in
the XRB.

4.2.3 Annual Variation in Green Water Storage Under
Different Climate Scenarios
Analyzing the different climate periods of scenarios A, B, and C in
Figure 7 reveals a decreasing trend in GWS in each RCP. 1) A
comparison of future scenario B (2020–2049) with historical
scenario A (1996–2015; GWS � 78.7 mm) indicates that the
GWF will decrease by 5.0, 4.9, 6.8, and 9.8 mm under RCP2.6,
RCP4.5, RCP6, and RCP8.5, respectively. 2) Comparing scenario C
(2050–2079) with scenario B (2020–2049), this decreasing trend is
predicted to continue in scenario C, with decreases of 1.9, 4.1, 6.6,
and 5.7 mm. 3) As a consequence, from scenario A (1996–2015) to
scenario C (2050–2079), the GWS is simulated to decrease by 6.9,
9.0, 13.4, and 15.5 mm, diminishing on average by 8.8–19.7%.

Furthermore, even considering the 95 PPU range and the
referenced GCMs (IPSL-CM5A, HadGEM2-AO, and CCSM4), a
decreasing trend of GWS can be found. The increase in GWF
(e.g., soil evaporation and plant transpiration) caused by future
increases in the CO2 emission concentration and temperature
may explain the decline in GWS in the XRB. Accordingly, these
findings provide convincing evidence emphasizing the negative
relationship between GWF and GWS.

Moreover, the total annual GWS calculated simply by the
accumulation of the 12 monthly amounts of GWS is considerably
redundant. GWS represents soil moisture, which changes over
time and may be affected by the initial soil water content. The
output parameter “SW” (Veettil and Mishra, 2016; Kundu et al.,
2017) within the SWAT model described in Section 2.3 actually
represents the GWS at the end of a certain time period t.
Therefore, the GWS illustrated above (Figure 7) represents the
monthly average GWS summarized at the end of each month.

Above all, as depicted in Figures 5–7, the 95 PPU ranges of the
predicted BW (82.4–117.1 mm), GWF (64.6–98.3 mm), and GWS
(10.6–14.9 mm) differed under scenarios A, B, and C. The difference
among the 95 PPU ranges may be attributed to the different
simulated time scales of BW (annual), GWF (annual), and GWS
(monthly), as explained above. Therefore, the 95 PPU range of the

FIGURE 8 | Distributions of the monthly average (A) blue water
resources, (B) green water flow, and (C) green water storage simulated under
historical climate scenario A (1996–2015) in the Xiangjiang River Basin.
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GWS simulation (10.6–14.9 mm) is the smallest. The fact that the 95
PPU range of BW (82.4–117.1 mm) is larger than that of GWF
(64.6–98.3 mm) may be caused by the larger uncertainty in
precipitation because BW is more sensitive than GWF to
precipitation throughout the XRB.

4.2.4 The Division of Blue and Green Water Resources
and Their Monthly Variation
The analysis of baseline climate scenario A spanning 1996–2015
(Figures 5–7) showed that blue and green water accounted for
51.9 and 48.1%, respectively, of the water resources in the XRB.
Hence, the utilization potential of green water resources in the
XRB is very important, and the total amount of blue and green
water resources was estimated to be approximately twice the
assessed amount of BW. Therefore, the green water proportion
(48.1%) of the XRB (southern China) is far less than the green
water proportion (more than 80%) in northern China, as reported
in previous papers (Zang and Liu., 2013; Zuo et al., 2015; Zhao
et al., 2016). The main reason for the large difference in the green
water proportion between northern and southern China may be
the distinct difference in the climate (e.g., precipitation).

In addition, this study also analyzed themonthly variations in blue
and green water resources in the XRB during 1996–2015. As
illustrated in Figure 8A, the blue water flow is greater during the
flood season in the XRB, when rainfall is relatively abundant from
April to July, amounting to 446.4 mm and accounting for 54.6% of
the annual BW. This implies that BW has a good correlation with
precipitation throughout the year. In other words, an increase in
precipitation causes an increase in streamflow and hence BW.
However, there is a time lag between the maximum precipitation
during March–June and the maximum BW observed in April–July.
This may be due to the surface runoff lag time (reflected by
SURLAG.bsn) and groundwater delay time (reflected by
GW_DELAY.gw) in the basin hydrological process. Furthermore,
themaximum temperature and higher amount of ET reduce the peak
runoff in July, whichmay be responsible for the lower amount of BW
in July (accounting for only 17.8% of the total from April to July).

A comparison of Figure 8B with Figure 8C shows that GWF
gradually increases from January to June when GWS decreases and
GWF continues to decline from July to December when GWS
increases. Hence, GWF is negatively correlated with GWS
throughout the year, indicating that GWS is a significant source
of GWF. Specifically, GWS fell to the minimum value of 32.2 mm
in July, when GWF reached its maximum value of 116.6 mm. The
maximum value of GWF in July may be attributed to the higher
temperature and precipitation during this period. Therefore, when
the temperature increases, the actual ET (GWF) is also expected to
increase, as demonstrated by Zang and Liu (2013), Veettil and
Mishra (2016), Reshmidevi et al. (2018), and Farsani et al. (2019).

4.3 Impacts of Climate Change on the
Spatial Distribution of Blue and GreenWater
4.3.1 Spatial Distribution of Blue Water Resources
The spatial impacts of historical and future climate change
scenarios (different RCPs within future HadCM3 scenarios
under climate scenarios A, B, and C; see Section 2.4) were

assessed on the subbasin scale, and blue and green water maps
(Figures 9–12) were generated based on the subbasins and their
representative values. The spatial distributions of BW under
scenarios A (1996–2015), B (2020–2049), and C (2050–2079)
are depicted in Figure 9 (historical period 1996–2015) and
Figure 10 (future period 2020–2079). As shown in Figures 9,
10, at the subbasin scale, the amount of BW is different in the
context of scenarios A, B, and C. However, at the basin scale for
the whole XRB, the projected changes in BW exhibit similar
spatial patterns under different climate scenarios and RCPs.

Some previous studies have reported that the spatial
distribution of BW is influenced mainly by the spatial pattern
of precipitation (Veettil and Mishra, 2016; Farsani et al., 2019).
Undoubtedly, taking climate change into account, an increase in
precipitation will cause an increase in streamflow and hence BW
(Reshmidevi et al., 2018). Therefore, at the subbasin scale,
precipitation plays an important role in controlling the
amount of BW under changing climate conditions (e.g.,
different amounts of BW among subbasins are shown in
Figures 9, 10). However, at the basin scale, on the basis of
Figure 3 (the spatial division of subbasins in the XRB),
Figure 9, and Figure 10, the BW values downstream
(subbasins 13–25 to the north) in the XRB are slightly higher
than those upstream (subbasins 1–12 to the south) under
different climate scenarios. In fact, the annual precipitation
increases from downstream to upstream, as the precipitation
depends mainly on the basin elevation and local climate
characteristics of the XRB. Therefore, the spatial distribution
of BW does not overlap with the spatial distribution of
precipitation at the basin scale of the XRB.

The spatial differences between BW and precipitation at the
basin scale of the whole XRB imply that BW is not only
dependent on climate (e.g., precipitation) but also related to
human activities (e.g., land use and land cover). In other
words, BW is also influenced by the land use and land cover
within the XRB. As depicted in Figures 9, 10, the subbasins with
lower BW amounts (subbasins 1–6, 8–9, and 12–15 in the
upstream and eastern areas of the XRB, as depicted in
Figure 3) are spatially correlated with the forest area depicted
on the land cover map (forest accounting for 55.4% of the XRB, as
depicted in Figure 2). This indicates that relatively little BW
exists within the forest cover of the XRB, while the amount of BW
is much larger in agricultural and urban areas. Because forests can
affect both land cover and soil permeability, precipitation may be
more likely to permeate into the soil layer, thereby increasing the
soil water content, soil evaporation, and plant transpiration.
These factors all hinder the horizontal movement of water
flow and surface runoff; therefore, BW may decrease
correspondingly (Hoff et al., 2010; Hunink et al., 2012; Yang
et al., 2016; Mafuta, 2018). According to the runoff dynamics of
these areas, at the basin scale, this may explain why the spatial
pattern of BW is relatively sensitive to the spatial distribution of
land cover.

4.3.2 Spatial Distribution of Green Water Flow
The spatial distribution of GWF under different RCPs in
scenarios A (1996–2015), B (2020–2049), and C (2050–2079)
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FIGURE 9 | Spatial distributions of blue and green water resources under historical scenario A (1996–2015) in the Xiangjiang River Basin.
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is plotted in Figures 9, 11. These two figures demonstrate that the
three climate scenarios produce highly similar spatial patterns at
the basin scale of the whole XRB, although the temporal results at

the subbasin scale differ by varying degrees. At the basin scale,
historical scenario A (1996–2015) and future scenarios B
(2020–2049) and C (2050–2079) all show the same temporal

FIGURE 10 | Spatial distributions of the annual average blue water resources (mm yr−1) under different RCPs in future HadCM3 climate scenarios (2020–2079) in
the Xiangjiang River Basin.
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increasing trend of GWF in the XRB, but there are spatial
differences between the upstream (southern) and downstream
(northern) parts. For example, Figures 3, 9, 11 show that the

GWF value downstream (subbasins 13–25) is lower than that
upstream (subbasins 1–12). In other words, more GWF is located
in the upper part of the basin. This may be because the amount of

FIGURE 11 | Spatial distributions of the annual average green water flow (mm yr−1) under different RCPs in future HadCM3 climate scenarios (2020–2079) in the
Xiangjiang River Basin.
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GWF differs spatially depending on land use and land cover. The
subbasins with relatively high GWF are spatially correlated with
forest cover, such as subbasins 1–6, 8–9, and 12–15 in the

upstream and eastern areas of the XRB, as shown in Figures
3, 9, 11, because more precipitation may permeate into the soil
beneath forest cover and more soil moisture can be consumed by

FIGURE 12 | Spatial distributions of the annual average green water storage (mm yr−1) under different RCPs in future HadCM3 climate scenarios (2020–2079) in
the Xiangjiang River Basin.
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plants (e.g., plant transpiration), making precipitation more likely
to be converted into GWF (Hunink et al., 2012).

However, in subbasins 7, 10–11, and 16–25, mostly located in the
downstream part of the XRB, the GWF is relatively low and is found
mainly on agricultural land, urban land, and their surrounding
areas. This is in contrast to the spatial pattern of BW because the
highly urbanized areas (e.g., the Changsha–Zhuzhou–Xiangtan
urban agglomeration) and agricultural irrigated areas (e.g.,
the largest irrigation district of Shaoshan, approximately
67,000 ha) are located primarily in the downstream part of
the XRB. Similarly, most farm crop production is cultivated
predominantly in the downstream XRB, e.g., early-, middle-,
and late-season rice, rapeseeds, beans, sweet potatoes, and
vegetables. Compared to plants in forested areas, these crops
may decrease the amount of GWF because of the lower crop
transpiration and soil evaporation compensation factor (ESCO);
similar findings were discussed by Liu and Yang (2010), Dechmi
et al. (2012), and White et al. (2015).

Moreover, the amount of GWF in the forests (accounting for
55.4% of the XRB) is higher than that in the other land cover
types; therefore, forest protection is the most effective measure for
maintaining green water in the basin. However, agricultural land
(accounting for 37.4% of the XRB) is also predominant; therefore,
the soil evaporation and crop transpiration of farmland have
important influences on controlling the GWF throughout the
basin. In general, our findings suggest that, in addition to forest
protection projects, improving the green water production
efficiency (converting non-productive soil evaporation “E” into
productive crop transpiration “T,” thereby raising the T/ET ratio)
and developing the green water potential on farmland (Keys and
Falkenmark, 2018) is also a feasible way to increase green water
resources in the XRB. This practice needs to be given more
attention in farmland management because this approach can
balance blue and green water resources, which would have
ecological service benefits for the whole basin.

4.3.3 Spatial Distribution of Green Water Storage
Figures 9, 12 indicate that the GWS in scenarios A (1996–2015),
B (2020–2049), and C (2050–2079) in the downstream part of the
basin (subbasins 13–25) is lower than that in the upstream part
(subbasins 1–12). In other words, at the basin scale of the whole
XRB, the GWS decreases from upstream (southern) to downstream
(northern). Consequently, the spatial distribution of GWS is similar
to that of GWF and different from that of BW. Similarly, this may
be explained by the spatial correlation between greenwater and land
cover (e.g., forest, agricultural, and urban lands), as discussed in
Section 4.3.2. On the basis of Figures 3, 9, 12, we discover that the
GWS in agricultural and urban areas (subbasins 7, 10–11, and
16–25,mostly in the downstreampart of the XRB) is lower than that
in forested areas (subbasins 1–6, 8–9, and 12–15 in the upstream
and eastern areas of the XRB) under different climate scenarios and
RCPs. Furthermore, the highly urbanized areas downstream (e.g.,
the Changsha–Zhuzhou–Xiangtan urban agglomeration) have the
lowest GWS due to their lower soil depths, limited soil water supply,
and predominantly impervious surface.

These results imply that the upstream and eastern areas of the
XRB with greater GWS (or sufficient soil water) have a higher

potential for the development of rainfed agriculture. Similar
results have been reported for study areas in Iran (Faramarzi
et al., 2009) and Europe (Abbaspour et al., 2015). Rainfed
agriculture could be a good complement to the irrigation
agriculture that already predominates in the XRB. In
particular, compared with rainfed agriculture, irrigation
farming may decrease blue water availability, intensify soil
erosion, and deteriorate the ecological environment.

Furthermore, GWS is not only the main source of GWF but
also related to green water production efficiency, reflected by the
T/ET ratio, that is, green water productivity. In irrigation farmland,
increasing the green water production efficiency (Kauffman et al.,
2014; Zhuo and Hoekstra, 2017) can enhance productive crop
transpiration while decreasing unproductive soil evaporation. In
the XRB, agricultural land accounts for 37.4% of the area and is
predominantly irrigation farmland. Therefore, in addition to
developing rainfed farmland, measures of green water
management (e.g., soil conservation, surface cover) for irrigation
farmland are also favorable for improving the green water
production efficiency throughout the XRB. From the perspective
of game theory, implementing green water management is a
positive-sum game that better utilizes green water availability
and does not reduce BW (Feng et al., 2018).

5 SUMMARY AND CONCLUSION

This study carried out a modeling approach aimed at assessing
the influences of historical and future climate change on blue and
green water resources in the XRB, located along the Yangtze River
of China. After parallel calibration and validation based on
discharge and ET data, the SWAT model, four GCMs, and
four RCP scenarios were applied to analyze the results. One
historical climate scenario (1996–2015) and two future climate
scenarios (2020–2049 and 2050–2079) were considered in this
study. The hydrological modeling framework incorporating both
discharge and ET data was found to be useful for quantifying the
status of blue and green water resources within the XRB. Our
results revealed the spatiotemporal distributions of blue and
green water components and their uncertainties by simulating
blue water (BW) resources, green water flow (GWF), and green
water storage (GWS) in the context of climate change scenarios
across the XRB:

1) An improved parallel parameter calibration method based on
observed discharge data and remotely sensed ET data was
used in this study. This method considers the selection and
calibration of observed discharge data and remotely sensed ET
data simultaneously to improve blue–green water modeling.
The goodness of the coefficients (p-factor, r-factor, KGE, NSE,
R2, and PBIAS) in this study indicates a satisfactory
performance of the blue–green water simulation in both
the calibration and validation periods. Hence, this method
could be effective for increasing the accuracy of blue and green
water projections and for decreasing uncertainties in the
studied basin, thereby providing more reliable estimates of
the blue and green water components.
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2) Regarding their temporal variations, the future blue–green water
projections differed among the different future GCM scenarios
and RCPs. The future BW and GWS in the XRB exhibit
decreasing trends to varying degrees, whereas the GWF shows
an increasing trend under the future climate background. From
the perspective of uncertainty analysis, even if considering the 95
PPU range, the future trends of the predicted blue and green
water components in this study are highly reliable. Although 95
PPU uncertainties were present in the simulated results, all
climate scenarios predicted the future increasing trend in the
green water proportion (an increase from 48.1 to 53.4% on
average) for most regions of the XRB. Briefly, this study reveals
relatively more pronounced effects of future climate change on
green water (e.g., ET) than on blue water, which should be noted
for the future water resource planning of the studied basin and
other similar basins characterized by a humid monsoon climate.
Therefore, integrating green water resources into the future water
resourcemanagement of the XRB and comprehensively planning
blue and green water resources are of practical significance.

3) Spatially, the blue–green water resources and land cover (e.g.,
forestland, agricultural land, and urban areas) show a good
spatial correlation under all historical and future climate
scenarios. We observed more green water (or less blue water)
in the subbasins located in the upper parts of the basin, which
could be related to the dense forest cover therein, whereas more
blue water (or less green water) was noted in the subbasins in the
lower parts of the basin, likely in association with the high degree
of urbanization and widespread agricultural land. Hence, blue
water and green water exhibit distinctive spatial patterns because
of the land cover pattern in the whole XRB. According to the
spatiotemporal analysis, we conclude that climate change mainly
controls the temporal variations in blue and green water
components in the XRB; therefore, future planning of blue
and green water resources in the basin should take into
account the influences of local climate change. However,
climate change appears to have no significant impact on the
spatial distribution of blue and green water at the basin scale of
the whole XRB. Instead, land use and land cover are more likely
to play an important role in the spatial distributions of blue and
green water in the studied basin.

Overall, this study provides a basis for assessing blue and green
water resources, and the general modeling framework utilized
herein can be applied to other basins with similar challenges and
may help decision-makers on a global scale. However, this study
also has limitations. Uncertainties persist in the hydrological
analyses, although we used a parallel parameter calibration
method to decrease the uncertainties in the green water
simulation. The modeling framework used to investigate the
impacts of climate change on the blue–green water balance
within the XRB may be affected by uncertainties in the input
data (e.g., the deviation of the GCM projections and the MOD16
evapotranspiration data), model setup (e.g., the division of
subbasins and HRUs), model parameters (e.g., not considering
all blue and green parameters), calibration and validation, other
modeling assumptions, and the uncertainty in the combination of
the climate downscaling model with a basin hydrologic model.

Therefore, if the methods and results of this analysis of blue
and green water in the XRB are directly applied to other
watersheds of different sizes (i.e., smaller or larger basins),
the uncertainties and scale effects of the blue and green
water simulations should be carefully considered and
addressed. In particular, the basin scale, climate conditions,
land cover, and human activities of other watersheds might be
different from those of the XRB. To conclude, there are four key
issues to be addressed in our subsequent research: the evaluation
of the simulated uncertainties and scale effect of blue and green
water at different basin scales; the assessment of the potential
impacts of blue and green water changes on water use by the
agricultural, industry, and domestic sectors; the improvement of
the combined effect of utilizing measured and remotely sensed
data for calibrating the green water simulation; and the
determination of the impacts of future human activities (e.g.,
future land cover change scenarios) on blue and green water.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CF prepared, created, and presented the published work; applied
statistical, mathematical, computational, or other formal
techniques to analyze or synthesize study data; and
implemented the software and hydrological model. LY and CF
conceptualized and formulated overarching research goals and
aims; developed and designed the methodology; and was involved
in project administration, and funding acquisition. LFH and CF
curated, visualized, and presented the data. All authors were
involved in critical review, commentary, and revision.

FUNDING

This study was financially supported by the National Natural
Science Foundation of China (grant Nos. 42001024, 41901026,
and 41807163), the National Key Research and Development
Program of China (grant No. 2018YFC1508201), and the Natural
Science Foundation of Hunan Province, China (grant No.
2021JJ40011).

ACKNOWLEDGMENTS

Thanks are due to Professor Trevor Hoey from Brunel University
London and Lecturer Georgios Maniatis from the University of
Brighton for their assistance in this paper. The authors would also
like to thank the handling editor, Professor Venkatesh Merwade,
and two reviewers, Professors Adnan Rajib and Sayan Dey, for
their reviews and valuable comments that significantly improved
the quality of this paper.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 67719120

Feng et al. Blue and Green Water Resources

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


REFERENCES

Abbaspour, K. C. (2014). SWAT Calibration and Uncertainty Programs—A User
Manual. Swiss. Dübendorf: Swiss Federal Institute of Aquatic Science and
Technology.

Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., and Yang, H. (2009). Assessing the
Impact of Climate Change on Water Resources in Iran. Water Resour. Res. 45
(10), 434–449. doi:10.1029/2008wr007615

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and
Kløve, B. (2015). A continental-scale Hydrology and Water Quality Model for
Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT
Model. J. Hydrol. 524, 733–752. doi:10.1016/j.jhydrol.2015.03.027

Aouissi, J., Benabdallah, S., Lili Chabaâne, Z., and Cudennec, C. (2016). Evaluation
of Potential Evapotranspiration Assessment Methods for Hydrological
Modelling with SWAT-Application in Data-Scarce Rural Tunisia. Agric.
Water Manage. 174, 39–51. doi:10.1016/j.agwat.2016.03.004

Arnold, J. G., Kiniry, J. R., Srinivasan, R., andWilliams, J. R. (2013). Soil andWater
Assessment Tool Input/output File Documentation. Texas: Texas Water
Resources Institute.

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J.,
Srinivasan, R., et al. (2012). SWAT: Model Use, Calibration, and Validation.
Trans. Asabe. 55 (4), 1491–1508. doi:10.13031/2013.42256

Ashraf Vaghefi, S., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R., and Yang, H.
(2014). Analyses of the Impact of Climate Change on Water Resources
Components, Drought and Wheat Yield in Semiarid Regions: Karkheh
River Basin in Iran. Hydrol. Process. 28 (4), 2018–2032. doi:10.1002/hyp.9747

Autovino, D., Minacapilli, M., and Provenzano, G. (2016). Modelling Bulk Surface
Resistance by MODIS Data and Assessment of MOD16A2 Evapotranspiration
Product in an Irrigation District of Southern Italy. Agric. Water Manage. 167,
86–94. doi:10.1016/j.agwat.2016.01.006

Badou, D. F., Diekkrüger, B., Kapangaziwiri, E., Mbaye, M. L., Yira, Y., Lawin, E. A.,
et al. (2018). Modelling Blue and green Water Availability under Climate
Change in the Beninese Basin of the Niger River Basin, West Africa.
Hydrological Process. 32 (16), 2526–2542. doi:10.1002/hyp.13153

Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., et al.
(2017). Introduction to SWAT+, A Completely Restructured Version of the Soil
and Water Assessment Tool. J. Am. Water Resour. Assoc. 53 (1), 115–130.
doi:10.1111/1752-1688.12482

Budyko, M. I. (1974). Climate and Life. Academic Press, 508.
Chen, C., Hagemann, S., and Liu, J. (2014). Assessment of Impact of Climate

Change on the Blue and green Water Resources in Large River Basins in China.
Environ. Earth Sci. 74 (8), 6381–6394. doi:10.1007/s12665-014-3782-8

Cheng, G. D., and Zhao, W. Z. (2006). Green Water and its Research Progresses.
Adv. Earth Sci. 21 (3), 221–227. (in Chinese). doi:10.3321/j.issn:1001-
8166.2006.03.001

Daggupati, P., Yen, H., White, M. J., Srinivasan, R., Arnold, J. G., Keitzer, C. S., et al.
(2015). Impact of Model Development, Calibration and Validation Decisions
on Hydrological Simulations in West Lake Erie Basin. Hydrol. Process. 29 (26),
5307–5320. doi:10.1002/hyp.10536

Dechmi, F., Burguete, J., and Skhiri, A. (2012). Swat Application in Intensive
Irrigation Systems: Model Modification, Calibration and Validation. J. Hydrol.
470-471, 227–238. doi:10.1016/j.jhydrol.2012.08.055

Diffenbaugh, N. S., and Giorgi, F. (2012). Climate Change Hotspots in the CMIP5
Global Climate Model Ensemble. Climatic Change 114, 813–822. doi:10.1007/
s10584-012-0570-x

Du, L. Y., Rajib, A., and Merwade, V. (2018). Large Scale Spatially Explicit
Modeling of Blue and Green Water Dynamics in a Temperate Mid-Latitude
Basin. J. Hydrol. 562, 84–102. doi:10.1016/j.jhydrol.2018.02.071

Fader, M., Gerten, D., ThammerHeinke, M. J., Heinke, J., Lotze-Campen, H.,
Lucht, W., et al. (2011). Internal and External green-blue Agricultural Water
Footprints of Nations, and Related Water and Land Savings through Trade.
Hydrol. Earth Syst. Sci. 8 (1), 483–527. doi:10.5194/hessd-8-483-2011

Falkenmark, M. (1995). Coping with Water Scarcity under Rapid Population
Growth. Pretoria, South Africa: Conference of SADC Minister.

Falkenmark, M. (2013). Growing Water Scarcity in Agriculture: Future challenge
to Global Water Security. Phil. Trans. R. Soc. A. 371, 20120410. doi:10.1098/
rsta.2012.0410

Falkenmark, M., and Rockström, J. (2010). Building Water Resilience in the Face
of Global Change: From a Blue-Only to a green-blue Water Approach to
Land-Water Management. J. Water Resour. Plann. Manage. 136, 606–610.
doi:10.1061/(asce)wr.1943-5452.0000118

Falkenmark, M., and Rockström, J. (2006). The New Blue and green Water
Paradigm: Breaking New Ground for Water Resources Planning and
Management. J. Water Resour. Plann. Manage. 132 (3), 129–132.
doi:10.1061/(asce)0733-9496(2006)132:3(129)

Faramarzi, M., Abbaspour, K. C., Schulin, R., and Yang, H. (2009). Modelling Blue
and Green Water Resources Availability in Iran. Hrydrol. Process 23, 486–501.
doi:10.1002/hyp.7160

Faramarzi, M., Abbaspour, K. C., Ashraf Vaghefi, S., Farzaneh, M. R., Zehnder, A.
J. B., Srinivasan, R., et al. (2013). Modeling Impacts of Climate Change on
Freshwater Availability in Africa. J. Hydrol. 480, 85–101. doi:10.1016/
j.jhydrol.2012.12.016

Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H., and Faramarzi,
M. (2019). Assessment of the Impact of Climate Change on Spatiotemporal
Variability of Blue and green Water Resources under CMIP3 and CMIP5
Models in a Highly Mountainous Watershed. Theor. Appl. Climatol 136,
169–184. doi:10.1007/s00704-018-2474-9

Feng, C., Mao, D. H., Zhou, H., Cao, Y. M., and Hu, G.W. (2018). Game Modeling
and Application Analysis of green Water Management in the River
basin. Resour. Environ. Yangtze Basin 27 (11), 2505–2517. doi:10.11870/
cjlyzyyhj201811012

Feng, C., Mao, D. H., Zhou, H., Cao, Y. M., and Hu, G. W. (2017a). Impacts of
Climate and Land Use Changes on Runoff in the Lianshui basin. J. Glaciology
Geocryology 39 (2), 395–406. doi:10.7522/j.issn.1000-0240.2017.0045

Feng, C., Mao, D. H., Yang, L., Zhou, H., and Hu, G.W. (2020). Research Progress
and Commentary of Green Water Resources. Journal of Agricultural
Resources and Regional Planning. 40 (1), 173–184. doi:10.7621/cjarrp.1005-
9121.20200122

Feng, C., Yang, L., and Han, L. F. (2021). Impacts of Climate Change on Blue and
Green Water Resources in the Xiangjiang River Basin of the Yangtze River,
China. Front. Earth Sci. 9 (677191). doi:10.3389/feart.2021.677191

Glavan, M., Pintar, M., and Volk, M. (2013). Land Use Change in a 200-year Period
and its Effect on Blue and green Water Flow in Two Slovenian Mediterranean
Catchments-Lessons for the Future. Hydrol. Process. 27 (26), 3964–3980.
doi:10.1002/hyp.9540

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F. (2009). Decomposition
of the Mean Squared Error and Nse Performance Criteria: Implications for
Improving Hydrological Modelling. J. Hydrol. 377, 80–91. doi:10.1016/
j.jhydrol.2009.08.003

Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., et al.
(2014). Global Water Resources Affected by Human Interventions and Climate
Change. Proc. Natl. Acad. Sci. USA 111, 3251–3256. doi:10.1073/
pnas.1222475110

Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T. (2010). An Estimation of Global
Virtual Water Flow and Sources of Water Withdrawal for Major Crops and
Livestock Products Using a Global Hydrological Model. J. Hydrol. 384 (3),
232–244. doi:10.1016/j.jhydrol.2009.09.028

Hassan, Z., Shamsudin, S., and Harun, S. (2014). Application of SDSM and LARS-
WG for Simulating and Downscaling of Rainfall and Temperature. Theor. Appl.
Climatol 116, 243–257. doi:10.1007/s00704-013-0951-8

Her, Y., Frankenberger, J., Chaubey, I., and Srinivasan, R. (2015). Threshold Effects
in HRUDefinition Ofthe Soil andWater Assessment Tool. Trans. Asabe. 58 (2),
367–378. doi:10.13031/trans.58.10805

Hoff, H., Falkenmark, M., Gerten, D., Gordon, L., Karlberg, L., and Rockström, J.
(2010). Greening the Global Water System. J. Hydrol. 384, 177–186.
doi:10.1016/j.jhydrol.2009.06.026

Hunink, J. E., Droogers, P., Kauffman, S., Mwaniki, B. M., and Bouma, J. (2012).
Quantitative Simulation Tools to Analyze up- and Downstream Interactions of
Soil and Water Conservation Measures: Supporting Policy Making in the green
Water Credits Program of Kenya. J. Environ. Manage. 111, 187–194.
doi:10.1016/j.jenvman.2012.07.022

Jiang, C., Xiong, L., Wang, D., Liu, P., Guo, S., and Xu, C. Y. (2015). Separating the
Impacts of Climate Change and Human Activities on Runoff Using the
Budyko-type Equations with Time-Varying Parameters. J. Hydrol. 522,
326–338. doi:10.1016/j.jhydrol.2014.12.060

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 67719121

Feng et al. Blue and Green Water Resources

https://doi.org/10.1029/2008wr007615
https://doi.org/10.1016/j.jhydrol.2015.03.027
https://doi.org/10.1016/j.agwat.2016.03.004
https://doi.org/10.13031/2013.42256
https://doi.org/10.1002/hyp.9747
https://doi.org/10.1016/j.agwat.2016.01.006
https://doi.org/10.1002/hyp.13153
https://doi.org/10.1111/1752-1688.12482
https://doi.org/10.1007/s12665-014-3782-8
https://doi.org/10.3321/j.issn:1001-8166.2006.03.001
https://doi.org/10.3321/j.issn:1001-8166.2006.03.001
https://doi.org/10.1002/hyp.10536
https://doi.org/10.1016/j.jhydrol.2012.08.055
https://doi.org/10.1007/s10584-012-0570-x
https://doi.org/10.1007/s10584-012-0570-x
https://doi.org/10.1016/j.jhydrol.2018.02.071
https://doi.org/10.5194/hessd-8-483-2011
https://doi.org/10.1098/rsta.2012.0410
https://doi.org/10.1098/rsta.2012.0410
https://doi.org/10.1061/(asce)wr.1943-5452.0000118
https://doi.org/10.1061/(asce)0733-9496(2006)132:3(129)
https://doi.org/10.1002/hyp.7160
https://doi.org/10.1016/j.jhydrol.2012.12.016
https://doi.org/10.1016/j.jhydrol.2012.12.016
https://doi.org/10.1007/s00704-018-2474-9
https://doi.org/10.11870/cjlyzyyhj201811012
https://doi.org/10.11870/cjlyzyyhj201811012
https://doi.org/10.7522/j.issn.1000-0240.2017.0045
https://doi.org/10.7621/cjarrp.1005-9121.20200122
https://doi.org/10.7621/cjarrp.1005-9121.20200122
https://doi.org/10.3389/feart.2021.677191
https://doi.org/10.1002/hyp.9540
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1073/pnas.1222475110
https://doi.org/10.1073/pnas.1222475110
https://doi.org/10.1016/j.jhydrol.2009.09.028
https://doi.org/10.1007/s00704-013-0951-8
https://doi.org/10.13031/trans.58.10805
https://doi.org/10.1016/j.jhydrol.2009.06.026
https://doi.org/10.1016/j.jenvman.2012.07.022
https://doi.org/10.1016/j.jhydrol.2014.12.060
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Kauffman, S., Droogers, P., Hunink, J., Mwaniki, B., Muchena, F., Gicheru, P., et al.
(2014). Green Water Credits - Exploring its Potential to Enhance Ecosystem
Services by Reducing Soil Erosion in the Upper Tana basin, Kenya. Int.
J. Biodiversity Sci. Ecosystem Serv. Manage. 10 (2), 133–143. doi:10.1080/
21513732.2014.890670

Kennedy, J., and Eberhart, R. C. (1995). “Particle Swarm Optimization,” in
Proceedings of IEEE International Conference on Neutral Networks (Perth,
Australia.

Keys, P. W., and Falkenmark, M. (2018). Green Water and African Sustainability.
Food Sec. 10 (3), 537–548. doi:10.1007/s12571-018-0790-7

Knutti, R., and Sedláček, J. (2012). Robustness and Uncertainties in the New
CMIP5 Climate Model Projections. Nat. Clim Change 3 (4), 369–373.
doi:10.1038/nclimate1716

Koch, S., Bauwe, A., and Lennartz, B. (2013). Application of the SWAT Model for a
Tile-Drained lowland Catchment in North-Eastern Germany on Subbasin Scale.
Water Resour. Manage. 27 (3), 791–805. doi:10.1007/s11269-012-0215-x

Kucherenko, S., Feil, B., Shah, N., and Mauntz, W. (2011). The Identification of
Model Effective Dimensions Using Global Sensitivity Analysis. Reliability Eng.
Syst. Saf. 96 (4), 440–449. doi:10.1016/j.ress.2010.11.003

Kundu, D., Vervoort, R. W., and van Ogtrop, F. F. (2017). The Value of Remotely
Sensed Surface Soil Moisture for Model Calibration Using SWAT. Hydrol.
Process. 31, 2764–2780. doi:10.1002/hyp.11219

Kunnath-Poovakka, A., Ryu, D., Eldho, T. I., and George, B. (2021). Parameter
Uncertainty of a Hydrologic Model Calibrated with Remotely Sensed
Evapotranspiration and Soil Moisture. J. Hydrologic Eng. 26 (3), 1–15.
doi:10.1061/(asce)he.1943-5584.0002055

Lathuillière, M. J., Coe, M. T., and Johnson, M. S. (2016). A Review of green- and
Blue-Water Resources and Their Trade-Offs for Future Agricultural
Production in the Amazon Basin: what Could Irrigated Agriculture Mean
for Amazonia. Hydrol. Earth Syst. Sci. 20 (6), 2179–2194. doi:10.5194/hess-20-
2179-2016

Lee, M.-H., and Bae, D.-H. (2015). Climate Change Impact Assessment on green
and Blue Water over Asian Monsoon Region. Water Resour. Manage. 29 (7),
2407–2427. doi:10.1007/s11269-015-0949-3

Li, Z., Liu, W.-z., Zhang, X.-c., and Zheng, F.-l. (2009). Impacts of Land Use Change
and Climate Variability on Hydrology in an Agricultural Catchment on the Loess
Plateau of China. J. Hydrol. 377, 35–42. doi:10.1016/j.jhydrol.2009.08.007

Liu, C. M., Li, Y. Z., and Liu, X. M. (2016). Impact of Vegetation Change on Water
Transformation in the Middle Yellow River. Yellow River 38 (10), 7–12.
doi:10.3969/j.issn.1000-1379.2016.10.002

Liu, J., and Yang, H. (2010). Spatially Explicit Assessment of Global Consumptive
Water Uses in Cropland: Green and Blue Water. J. Hydrol. 384, 187–197.
doi:10.1016/j.jhydrol.2009.11.024

Liu, X., Ren, L., Yuan, F., Singh, V. P., Fang, X., Yu, Z., et al. (2009). Quantifying the
Effect of Land Use and Land Cover Changes on green Water and Blue Water in
Northern Part of China.Hydrol. Earth Syst. Sci. 13 (103), 735–747. doi:10.5194/
hess-13-735-2009

Luan, X.-B., Yin, Y.-L., Wu, P.-T., Sun, S.-K., Wang, Y.-B., Gao, X.-R., et al. (2018).
An ImprovedMethod for Calculating the Regional CropWater Footprint Based
on a Hydrological Process Analysis. Hydrol. Earth Syst. Sci. 22, 5111–5123.
doi:10.5194/hess-22-5111-2018

Lyu, L., Wang, X., Sun, C., Ren, T., and Zheng, D. (2019). Quantifying the Effect of
Land Use Change and Climate Variability on Green Water Resources in the
Xihe River Basin, Northeast China. Sustainability 11 (2), 338–414. doi:10.3390/
su11020338

Mafuta, C. (2018). The Value of green Water Management in Sub-saharan Africa:
A Review. J. Contemp. Water Res. Edu. 165, 67–75. doi:10.1111/j.1936-
704X.2018.03294.x

Mengistu, D. T., and Sorteberg, A. (2012). Sensitivity of SWAT Simulated
Streamflow to Climatic Changes within the Eastern Nile River basin.
Hydrol. Earth Syst. Sci. 16 (2), 391–407. doi:10.5194/hess-16-391-2012

Mu, Q., Zhao, M., and Running, S. W. (2011). Improvements to a MODIS Global
Terrestrial Evapotranspiration Algorithm. Remote Sensing Environ. 115 (8),
1781–1800. doi:10.1016/j.rse.2011.02.019

Ngo, L. A., Masih, I., Jiang, Y., and Douven, W. (2016). Impact of Reservoir
Operation and Climate Change on the Hydrological Regime of the Sesan and
Srepok Rivers in the Lower Mekong basin. Climatic Change 149, 107–119.
doi:10.1007/s10584-016-1875-y

Pandey, B. K., Khare, D., Kawasaki, A., and Mishra, P. K. (2019). Climate Change
Impact Assessment on Blue and green Water by Coupling of Representative
CMIP5 Climate Models with Physical Based Hydrological Model. Water
Resour. Manage. 33 (1), 141–158. doi:10.1007/s11269-018-2093-3

Postel, S. L., Daily, G. C., and Ehrlich, P. R. (1996). Human Appropriation of Renewable
Fresh Water. Science 271 (5250), 785–788. doi:10.1126/science.271.5250.785

Rajib, A., Evenson, G. R., Golden, H. E., and Lane, C. R. (2018). Hydrologic Model
Predictability Improves with Spatially Explicit Calibration Using Remotely
Sensed Evapotranspiration and Biophysical Parameters. J. Hydrol. 567,
668–683. doi:10.1016/j.jhydrol.2018.10.024

Rathjens, H., Oppelt, N., Bosch, D. D., Arnold, J. G., and Volk, M. (2015).
Development of a Grid-Based Version of the SWAT Landscape Model.
Hydrol. Process. 29 (6), 900–914. doi:10.1002/hyp.10197

Reshmidevi, T. V., Nagesh Kumar, D., Mehrotra, R., and Sharma, A. (2018). Estimation
of the Climate Change Impact on a Catchment Water Balance Using an Ensemble
of GCMs. J. Hydrol. 556, 1192–1204. doi:10.1016/j.jhydrol.2017.02.016

Robinson, S., Mason-D’Croz, D., Sulser, T., Islam, S., Robertson, R., Zhu, T., et al.
(2015). The International Model for Policy Analysis of Agricultural
Commodities and Trade (IMPACT): Model Description for Version 3.
SSRN J., 1–116. Washington DC. IFPRI Discussion Paper. doi:10.2139/
ssrn.2741234

Rockström, J., Falkenmark, M., Allan, T., Folke, C., Gordon, L., Jägerskog, A., et al.
(2014). The Unfolding Water Drama in the Anthropocene: towards a
Resilience-based Perspective on Water for Global Sustainability. Ecohydrol. 7
(5), 1249–1261. doi:10.1002/eco.1562

Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., and Gerten, D.
(2009). Future Water Availability for Global Food Production: The Potential of
green Water for Increasing Resilience to Global Change.Water Resour. Res. 45
(7), 142–157. doi:10.1029/2007wr006767

Rockström, J., and Gordon, L. (2001). Assessment of green Water Flows to Sustain
Major Biomes of the World: Implications for Future Eco-Hydrological
Landscape Management. Phys. Chem. Earth 26 (11/12), 843–851.
doi:10.1016/S1464-1909(01)00096-X

Rodrigues, D. B. B., Gupta, H. V., and Mendiondo, E. M. (2014). A Blue/green
Water-Based Accounting Framework for Assessment of Water Security.Water
Resour. Res. 50 (9), 7187–7205. doi:10.1002/2013wr014274

Rouholahnejad, E., Abbaspour, K. C., Srinivasan, R., Bacu, V., and Lehmann, A.
(2014). Water Resources of the Black Sea Basin at High Spatial and Temporal
Resolution. Water Resour. Res. 50 (7), 5866–5885. doi:10.1002/2013wr014132

Rouholahnejad, E., Abbaspour, K. C., Vejdani, M., Srinivasan, R., Schulin, R., and
Lehmann, A. (2012). A Parallelization Framework for Calibration of
Hydrological Models. Environ. Model. Softw. 31, 28–36. doi:10.1016/
j.envsoft.2011.12.001

Schuol, J., Abbaspour, K. C., Yang, H., Srinivasan, R., and Zehnder, A. J. B. (2008).
Modeling Blue and green Water Availability in Africa. Water Resour. Res. 44
(7), b212–221. doi:10.1029/2007WR006609

Siebert, S., and Döll, P. (2010). Quantifying Blue and green Virtual Water Contents
in Global Crop Production as Well as Potential Production Losses without
Irrigation. J. Hydrol. 384 (3), 198–217. doi:10.1016/j.jhydrol.2009.07.031

Sivapalan, M., Thompson, S. E., Harman, C. J., Basu, N. B., and Kumar, P. (2011).
Water Cycle Dynamics in a Changing Environment: Improving Predictability
through Synthesis. Water Resour. Res. 47 (10), 599–609. doi:10.1029/
2011WR011377

Veettil, A. V., and Mishra, A. K. (2018). Potential Influence of Climate and
Anthropogenic Variables on Water Security Using Blue and green Water
Scarcity, Falkenmark index, and Freshwater Provision Indicator. J. Environ.
Manage. 228, 346–362. doi:10.1016/j.jenvman.2018.09.012

Veettil, A. V., andMishra, A. K. (2016). Water Security Assessment Using Blue and
green Water Footprint Concepts. J. Hydrol. 542, 589–602. doi:10.1016/
j.jhydrol.2016.09.032

Wang, L., Chen, S., Zhu,W., Ren, H., Zhang, L., and Zhu, L. (2021). Spatiotemporal
Variations of Extreme Precipitation and its Potential Driving Factors in china’s
north-south Transition Zone during 1960-2017. Atmos. Res. 252 (4),
105429–105514. doi:10.1016/j.atmosres.2020.105429

White, M., Gambone, M., Yen, H., Arnold, J., Harmel, D., Santhi, C., et al. (2015).
Regional Blue and green Water Balances and Use by Selected Crops in the
U.S. J. Am. Water Resour. Assoc. 51 (6), 1626–1642. doi:10.1111/1752-
1688.12344

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 67719122

Feng et al. Blue and Green Water Resources

https://doi.org/10.1080/21513732.2014.890670
https://doi.org/10.1080/21513732.2014.890670
https://doi.org/10.1007/s12571-018-0790-7
https://doi.org/10.1038/nclimate1716
https://doi.org/10.1007/s11269-012-0215-x
https://doi.org/10.1016/j.ress.2010.11.003
https://doi.org/10.1002/hyp.11219
https://doi.org/10.1061/(asce)he.1943-5584.0002055
https://doi.org/10.5194/hess-20-2179-2016
https://doi.org/10.5194/hess-20-2179-2016
https://doi.org/10.1007/s11269-015-0949-3
https://doi.org/10.1016/j.jhydrol.2009.08.007
https://doi.org/10.3969/j.issn.1000-1379.2016.10.002
https://doi.org/10.1016/j.jhydrol.2009.11.024
https://doi.org/10.5194/hess-13-735-2009
https://doi.org/10.5194/hess-13-735-2009
https://doi.org/10.5194/hess-22-5111-2018
https://doi.org/10.3390/su11020338
https://doi.org/10.3390/su11020338
https://doi.org/10.1111/j.1936-704X.2018.03294.x
https://doi.org/10.1111/j.1936-704X.2018.03294.x
https://doi.org/10.5194/hess-16-391-2012
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1007/s10584-016-1875-y
https://doi.org/10.1007/s11269-018-2093-3
https://doi.org/10.1126/science.271.5250.785
https://doi.org/10.1016/j.jhydrol.2018.10.024
https://doi.org/10.1002/hyp.10197
https://doi.org/10.1016/j.jhydrol.2017.02.016
https://doi.org/10.2139/ssrn.2741234
https://doi.org/10.2139/ssrn.2741234
https://doi.org/10.1002/eco.1562
https://doi.org/10.1029/2007wr006767
https://doi.org/10.1016/S1464-1909(01)00096-X
https://doi.org/10.1002/2013wr014274
https://doi.org/10.1002/2013wr014132
https://doi.org/10.1016/j.envsoft.2011.12.001
https://doi.org/10.1016/j.envsoft.2011.12.001
https://doi.org/10.1029/2007WR006609
https://doi.org/10.1016/j.jhydrol.2009.07.031
https://doi.org/10.1029/2011WR011377
https://doi.org/10.1029/2011WR011377
https://doi.org/10.1016/j.jenvman.2018.09.012
https://doi.org/10.1016/j.jhydrol.2016.09.032
https://doi.org/10.1016/j.jhydrol.2016.09.032
https://doi.org/10.1016/j.atmosres.2020.105429
https://doi.org/10.1111/1752-1688.12344
https://doi.org/10.1111/1752-1688.12344
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Xia, L., Song, X. Y., Fu, N., Li, H. Y., and Li, Y. L. (2017). Impacts of Land Use
Change and Climate Variation on green Water in the Loess Plateau Gully
Region——A case study of Nanxiaohegou basin. J. Hydraulic Eng. 48 (6),
678–688. doi:10.13243/j.cnki.slxb.20160900

Xiao, C. C., Wu,W. H., and Deng, R. (2016). Research on problems of construction
eco-compensation mechanism in Xiangjiang River Basin. Environ. Sci. Manag.
41 (3), 395–406. doi:10.3969/j.issn.1673-1212.2016.03.034

Xu, J. (2013). Effects of climate and land-use change on green-water variations in
the Middle Yellow River, China. Hydrological Sci. J. 58 (1), 106–117.
doi:10.1080/02626667.2012.746462

Yang, L., Xu, Y., Han, L., Song, S., Deng, X., and Wang, Y. (2016). River Networks
System Changes and its Impact on Storage and Flood Control Capacity Under
Rapid Urbanization.Hydrol. Process. 30 (13), 2401–2412. doi:10.1002/hyp.10819

Ye, J., Li, W., Li, L., and Zhang, F. (2013). "North drying and south wetting"
summer precipitation trend over China and its potential linkage with aerosol
loading. Atmos. Res. 125-126 (1), 12–19. doi:10.1016/
j.atmosres.2020.105429doi:10.1016/j.atmosres.2013.01.007

Zang, C. F., Liu, J., van der Velde, M., and Kraxner, F. (2012). Assessment of spatial
and temporal patterns of green and blue water flows under natural conditions in
inland river basins in Northwest China. Hydrol. Earth Syst. Sci. 16 (8),
2859–2870. doi:10.5194/hess-16-2859-2012

Zang, C., and Liu, J. (2013). Trend analysis for the flows of green and blue water in
the Heihe River Basin, northwestern China. J. Hydrol. 502, 27–36. doi:10.1016/
j.jhydrol.2013.08.022

Zhang, T., and Chen, Y. (2017). Analysis of dynamic spatiotemporal changes in
actual evapotranspiration and its associated factors in the Pearl River Basin
based on MOD16. Water 9 (11), 832–918. doi:10.3390/w9110832

Zhao, A., Zhu, X., Liu, X., Pan, Y., and Zuo, D. (2016). Impacts of land use change and
climate variability on green and blue water resources in the Weihe River Basin of
northwest China. Catena 137, 318–327. doi:10.1016/j.catena.2015.09.018

Zhuo, L., and Hoekstra, A. Y. (2017). The effect of different agricultural
management practices on irrigation efficiency, water use efficiency and
green and blue water footprint. Front. Agr. Sci. Eng. 4 (2), 185.
doi:10.15302/j-fase-2017149

Zuo, D., Xu, Z., Peng, D., Song, J., Cheng, L., Wei, S., et al. (2015). Simulating
spatiotemporal variability of blue and green water resources availability with
uncertainty analysis.Hydrol. Process. 29 (8), 1942–1955. doi:10.1002/hyp.10307

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Feng, Yang and Han. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 67719123

Feng et al. Blue and Green Water Resources

https://doi.org/10.13243/j.cnki.slxb.20160900
https://doi.org/10.3969/j.issn.1673-1212.2016.03.034
https://doi.org/10.1080/02626667.2012.746462
https://doi.org/10.1002/hyp.10819
https://doi.org/10.1016/j.atmosres.2020.105429
https://doi.org/10.1016/j.atmosres.2020.105429
https://doi.org/10.1016/j.atmosres.2013.01.007
https://doi.org/10.5194/hess-16-2859-2012
https://doi.org/10.1016/j.jhydrol.2013.08.022
https://doi.org/10.1016/j.jhydrol.2013.08.022
https://doi.org/10.3390/w9110832
https://doi.org/10.1016/j.catena.2015.09.018
https://doi.org/10.15302/j-fase-2017149
https://doi.org/10.1002/hyp.10307
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Impacts of Climate Change on Blue and Green Water Resources in the Xiangjiang River Basin of the Yangtze River, China
	Highlights
	1 Introduction
	2 Materials and Methods
	2.1 Study Area Description
	2.2 Description of the Soil and Water Assessment Tool Model
	2.3 The Blue and Green Water Balance of the Soil and Water Assessment Tool Model
	2.4 Climate Change Model and Scenario Design
	2.5 Data Collection

	3 Model Inputs and Model Setup
	3.1 Input Data Processing
	3.1.1 Spatial and Attribute Data Processing
	3.1.2 Future Climate Data and Their Downscaling
	3.1.3 MOD16 Data Processing

	3.2 Simulation Protocol
	3.2.1 River Network Calibration and Division of Subbasins and Hydrological Response Units
	3.2.2 Model Calculation Method Setup
	3.2.3 Setup of Water Resource Use Scenario
	3.2.4 The Methodology of Blue and Green Water Modeling

	3.3 Sensitivity Setup and Analysis
	3.4 Model Uncertainty Setup and Description

	4 Results and Discussion
	4.1 Model Calibration, Validation, and Uncertainty Analysis
	4.1.1 Design of the Calibration–Validation Period
	4.1.2 Uncertainty Analysis of the Improved Blue and Green Water Simulations

	4.2 Temporal Analysis of Blue and Green Water Under Climate Change Scenarios
	4.2.1 Annual Variation in Blue Water Resources Under Different Climate Scenarios
	4.2.2 Annual Variation in Green Water Flow Under Different Climate Scenarios
	4.2.3 Annual Variation in Green Water Storage Under Different Climate Scenarios
	4.2.4 The Division of Blue and Green Water Resources and Their Monthly Variation

	4.3 Impacts of Climate Change on the Spatial Distribution of Blue and Green Water
	4.3.1 Spatial Distribution of Blue Water Resources
	4.3.2 Spatial Distribution of Green Water Flow
	4.3.3 Spatial Distribution of Green Water Storage


	5 Summary and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


