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The viscosity of carbonate melts is a fundamental parameter to constrain their
migration and ascent rates through the mantle and ultimately, their role as carbon
conveyors within the deep carbon cycle. Yet, data on the viscosity of carbonate melts
have remained scarce due to experimental limitations and the lack of appropriate
theoretical descriptions for molten carbonates. Here, we report the viscosity of
K2Mg(CO3)2 and K2Ca(CO3)2 melts up to 13 GPa and 2,000 K by means of
classical molecular dynamics (MD) simulations using optimized force fields and
provide first evidence for non-Arrhenian temperature-dependent viscosity of
molten carbonates at mantle pressures. The viscosity of K2Mg(CO3)2 and
K2Ca(CO3)2 melts ranges respectively between 0.0056–0.0875 Pa s and
0.0046–0.0650 Pa s in the investigated pressure-temperature interval. Alkali(ne)
carbonate melts, i.e. mixed alkali and alkaline earth carbonate melts -K2Mg(CO3)2
and K2Ca(CO3)2− display higher viscosity than alkaline earth carbonate melts -CaCO3

and MgCO3− at similar conditions, possibly reflecting the change in charge
distribution upon addition of potassium. The non-Arrhenian temperature-
dependence of the viscosity is accurately described by the Vogel-Fulcher-
Tammann model with activation energies Ea for viscous flow that decrease with
temperature at all investigated pressures, e.g. from ∼100 kJ/mol to ∼30 kJ/mol
between 1,300 and 2,000 K at 3 GPa. Pressure is found to have a much more
moderate effect on the viscosity of alkali(ne) carbonate melts, with activation volumes
Va that decrease from 4.5 to 1.9 cm3/mol between 1,300 and 2,000 K. The non-
Arrhenian temperature-viscosity relationship reported here could be exhibited by
other carbonate melt compositions as observed for a broad range of silicate melt
compositions and it should be thus considered when modeling the mobility of
carbonate melts in the upper mantle.
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INTRODUCTION

Despite the rare occurrence of carbonate-rich volcanism in the
present-day Earth (Woolley and Kjarsgaard, 2008; Jones et al.,
2013), carbonate melts produced by incipient melting of
carbonated lithologies play a critical role in subsurface
magmatic processes and they are major phases for the storage
and transport of carbon in the upper mantle (Dasgupta and
Hirschmann, 2010; Dasgupta, 2013; Stagno, 2019). The
percolation of carbonate-rich melts through the mantle, even
at melt fractions as low as < 0.1 vol% (Gaillard et al., 2008;
Massuyeau et al., 2021), has a large impact on the geochemical
and geodynamic evolution of the Earth’s interior. Because of their
excellent wetting properties, low density and low viscosity (e.g.
Minarik and Watson, 1995; Dobson et al., 1996; Hammouda and
Laporte, 2000; Kono et al., 2014; Ritter et al., 2020), carbonate
melts are regarded as efficient metasomatic agents involved in the
redistribution of incompatible trace elements and volatiles in the
mantle (Green and Wallace, 1988; Yaxley et al., 1991; Rudnick
et al., 1993; Dixon et al., 2008; Kiseeva et al., 2012; Poli, 2015;
Keller et al., 2017), as well as in the generation of diamond-
forming kimberlitic magmatism (Dalton and Presnall, 1998;
Korsakov and Hermann, 2006; Russell et al., 2012; Sparks,
2013; Sun and Dasgupta, 2019). Besides, carbonate-rich melts
are often proposed as an explanation for the low velocity zones
(Dasgupta and Hirschmann, 2010; Fischer et al., 2010; Gardés
et al., 2020) and electrical anomalies (Gaillard et al., 2008; Naif
et al., 2013; Sifré et al., 2014; Massuyeau et al., 2021) observed at
the Lithosphere-Asthenosphere-Boundary (LAB) beneath
oceanic ridges and continents.

Although the chemistry and reactivity of carbonate-rich melts
has been extensively investigated over the past decades (e.g.,
Wallace and Green, 1988; Veksler et al., 1998; Yaxley and
Brey, 2004; Gudfinnsson and Presnall, 2005; Hammouda and

Keshav, 2015 and references therein; Gervasoni et al., 2017), their
physical properties (e.g. density and viscosity) remain poorly
constrained to date despite their control onmelt mobility through
the mantle (Table 1). Particularly, the viscosity of melts governs
the migration rates and the efficiency of melt transport across the
mantle, hence affecting the carbon fluxes at depth and towards
the surface (Keller et al., 2017). Data scarcity for mantle carbonate
melts at relevant pressure-temperature conditions reflects the
experimental challenges associated with direct viscosity
measurements due to their high reactivity (Treiman and
Schedl, 1983; Treiman, 1995), and the limitations of
theoretical formalisms to predict the properties of complex
chemical systems (Vuilleumier et al., 2014; Wilding et al.,
2016; Wilson et al., 2018; Desmaele et al., 2019a, 2019b; Hurt
andWolf, 2019). Experimental studies of carbonate melt viscosity
have thus been performed mostly at room pressure for
endmember alkali (Li, K, Na) carbonate melts as well as their
binary mixtures (e.g., Janz, 1988; Sato et al., 1999; Di Genova
et al., 2016), with only three studies reporting carbonate melt
viscosities at high pressure to date (Dobson et al., 1996; Kono
et al., 2014; Stagno et al., 2018). Pioneering measurements by
Dobson et al. (1996) using the falling sphere technique coupled
with synchrotron X-ray imaging determined the viscosity of
K2Mg(CO3)2 and K2Ca(CO3)2 melts up to 5.5 GPa. Reported
viscosities for those compositions are however ca. one order of
magnitude larger than more recent results for CaCO3,
CaMg(CO3)2 and Na2CO3 melts obtained by using an ultrafast
X-ray imaging technique with improved accuracy on the viscosity
determination (Kono et al., 2014; Stagno et al., 2018).
Interestingly, these later studies report comparable viscosities
for all investigated compositions and negligible pressure effects
on the viscosity that are difficult to reconcile with computational
studies (Desmaele et al., 2019a; 2019b). The scarcity of currently
available data thus precludes the identification of pressure,

TABLE 1 | Compilation of available high pressure viscosity data for alkali(ne) carbonate melts from experiments and classical/ab-initio MD simulations.

Melt composition Pressure [GPa] Temperature [K] Method Reference

K2Mg(CO3)2 (KM) 3, 5.5 1,073–1,473 Synchrotron shadowgraph + Falling sphere Dobson et al. (1996)
3 1,247–1,687 Classical MD Desmaele et al. (2019b)

10−4 -13 1,200–2,000 Classical MD This study

K2Ca(CO3)2 (KC) 2.5, 4 1,223–1,423 Synchrotron shadowgraph + Falling sphere Dobson et al. (1996)
10−4, 2.5, 3 1,094–1,584 Classical MD Desmaele et al. (2019b)
10−4–13 1,200–2,000 Classical MD This study

K2CO3 (K) 4 1,773 Synchrotron shadowgraph + Falling sphere Dobson et al. (1996)
10−4–15 1,100–2,073 Classical MD Desmaele et al. (2019a) a

CaCO3 (C) 0.9–6.2 1,653–2,063 Synchrotron + Falling sphere Kono et al. (2014)
10−4–15 1,100–2,073 Classical MD Desmaele et al. (2019b) a

10−4–15 1,623–3,273 Classical MD + Ab-initio MD Vuilleumier et al. (2014) a

MgCO3 (M) 10−4–15 1873–2,073 Classical MD Desmaele et al. (2019b) a

CaMg(CO3)2 (CM) 3–5.3 1,683–1,783 Synchrotron + Falling sphere Kono et al. (2014)
10−4–15 1,653–2,073 Classical MD Desmaele et al. (2019b) a

Na2CO3 1.7–4.6 1,473–1,973 Synchrotron + Falling sphere Stagno et al. (2018)
10−4–15 1,100–2,073 Classical MD Desmaele et al. (2019a) a

25M75K 2 1,523 Synchrotron shadowgraph + Falling sphere Dobson et al. (1996)

aSelected P-T conditions, typically two temperature conditions per isobar.
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temperature and compositional effects on the viscosity of
carbonate melts and hence, the quantitative modelling of melt
migration processes (Table 1).

In the past decades, computational methods have emerged as a
powerful tool to probe the chemical structure and physical
properties, including the viscosity, of molten systems at high
pressure-temperature conditions difficult to access
experimentally (e.g. Kubicki and Lasaga, 1988; Rustad et al.,
1990; Tissen et al., 1994; Genge et al., 1995; Guillot and Sator,
2007a, 2007b, 2011; Vuilleumier et al., 2014; Corradini et al.,
2016; Wilding et al., 2016, 2019; Li et al., 2017; Dufils et al., 2017,
2018; Wilson et al., 2018; Desmaele et al., 2019b, 2019a; Hurt and
Wolf, 2019). Molecular dynamics (MD) simulations based on ab
initio and/or classical approaches have thus significantly
contributed to expand the available viscosity datasets for
carbonate melts at relevant pressure-temperature conditions
(Table 1). Nevertheless, the theoretical studies remain largely
limited to simple endmember compositions due to the high
computational cost of the ab initio calculations and the lack of
appropriate force-fields to describe the atomic/ionic interactions
in classical simulations of complex multicomponent carbonate
melts (Genge et al., 1995; Vuilleumier et al., 2014; Li et al., 2017;
Desmaele et al., 2019a, 2019b; Hurt and Wolf, 2019). Recently,
Desmaele et al., (2019a) developed optimized classical force-fields
for molten carbonates in the system Li2CO3-Na2CO3-K2CO3-
MgCO3-CaCO3 based on experimental data and melt structures
issued from ab initio simulations of molten CaCO3 (Vuilleumier
et al., 2014), MgCO3, CaMg(CO3)2 (Desmaele et al., 2019b),
Na2CO3 and K2CO3 (Desmaele et al., 2019a). These force-
fields accurately reproduce experimental data on the density
(e.g. Liu and Lange, 2003; O’Leary et al., 2015), viscosity (e.g.
Janz, 1988; Kono et al., 2014) and electrical conductivity (e.g.
Gaillard et al., 2008; Kojima, 2009; Sifré et al., 2014) of simple and
binary carbonate melts. These results open the possibility for
studies of the viscosity of complex carbonate melts at pressure
and temperature conditions previously unexplored (Table 1).

Here, classical molecular dynamics simulations using the
optimized force-fields developed by Desmaele et al. (2019a)
have been conducted to determine the viscosity of alkali(ne)
melts, i.e. mixed alkali and alkaline-earth carbonate melts -
K2Mg(CO3)2 and K2Ca(CO3)2 - up to 13 GPa between 1,000
and 2,000 K. These compositions mimic incipient melts of
subducted continental potassium rich lithologies at high
pressure (8–13 GPa; Grassi and Schmidt, 2011b, 2011a;
Kiseeva et al., 2013) and allow a direct comparison of the
results with previous high pressure experimental studies
(Dobson et al., 1996). The results constrain pressure and
temperature effects on the viscosity of alkali(ne) carbonate melts
and reveal non-Arrhenian temperature-viscosity relations that
could not be anticipated from the data available to date.

MATERIALS AND METHODS

A total of 106 classical MD simulations were performed to
determine the viscosity of K2Mg(CO3)2 and K2Ca(CO3)2
(hereafter referred to as KM and KC, respectively) melts

from room pressure to 13 GPa and 1,000–2,000 K, with
1–3 GPa and 100 K increments. The MD simulations were
conducted with the DL_POLY 2.0 code (Smith and Forester,
1996) in the microcanonical (NVE) ensemble, where the
number of atoms (N), the volume (V) and the total energy
(E) are fixed. The pressure (P) and temperature (T) conditions
at equilibrium were determined in isothermal-isobaric (NPT
ensemble) runs using a Nosé-Hoover thermostat. The
thermodynamic parameters, P, T and EPot, are calculated
from block averages of 500 k time steps after the system has
reached equilibrium (Figure 1). The system was composed of
N � 2002 atoms in a cubic box with periodic boundary
conditions in 3D (Figure 1) as described in Desmaele et al.
(2019b). The interionic interactions were described using
empirical force fields recently developed for alkali and
alkaline carbonate melts that take into account both the
long-range Coulomb interactions and the short-range
repulsion-dispersion interactions (Desmaele et al., 2019a).
The force field is decomposed as a sum of pair potentials for
the intramolecular (i.e. interactions within a carbonate CO3

2−

molecule) and intermolecular (i.e. between all ions)
contributions, where the carbonate ion is featured as flexible
and nondissociative (for further details see Desmaele et al.,
2019a; 2019b). The interaction parameters employed in the
simulations are those reported in Desmaele et al. (2019a,
2019b). The equations of motion for atoms were solved using
the Verlet algorithm with a time step of 1 fs (10−15 s) and
simulation runs lasted for 107 steps (i.e. 10–20 ns). The run
duration is thus sufficiently long compared to the characteristic
time scale for viscous relaxation τ in carbonate melts, i.e. few ps
to tens of ps as given by the Maxwell relation τ � η/G∞, where
the shear modulus at infinite high frequencies G∞ is ∼1010 Pa
(Dingwell and Webb, 1999) to achieve convergence of the
simulations even at the lowest temperatures investigated here
(Desmaele et al., 2019b). The convergence is confirmed by the
attainment of a viscosity plateau region in the time-dependence
of the simulated viscosity at all P-T conditions and thus ensures
the robustness of the reported viscosity data (Figure 1D and
Supplementary Figure S1).

The shear viscosity of carbonate melts was then calculated by
intergrating the auto-correlation function of the off-diagonal
elements of the stress tensor S(t) using the Green-Kubo
equation (Boon and Yip, 1980; Hess, 2002; Vuilleumier et al.,
2014):

η � 1
kBTV

∫∞
0

S(t)dt (1)

where kB is the Boltzmann’s constant and S(t) is described as:

S(t) � ∑
α≠ β

<Pαβ(t) · Pαβ(0)> (α, β � x, y, z) (2)

Pαβ � ∑N
i�1

miv
α
i v

β
i +∑N

i�1
∑N
j> i

Fαijr
β
ij (3)

where mi is the mass of the ion i, vαi is the component α of its
velocity, rβij and vβi are the component β of the distance between
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ions i and j, and the velocity of the atom i, respectively, and Fα
ij is

the component α of the force acting between ions i and j. The
brackets refer to an average over the trajectories of all the ions in
the simulation cell. Subsequently, the viscosity is derived by fitting
the integral of the auto-correlation function of the stress tensor by
an exponential function (Figure 1D):

η(t) � η∞(1 − e
(−t/τ)β

) (4)

where η∞ is the desired viscosity, τ is the viscous relaxation time,
and β is the stretching factor, which ranges between 0 (ultra-low
viscosity melts) and 1 (highly viscous melts). A least-square
minimization fit is performed in the short time shift region,
where the statistics on the integrated auto-correlation function of
S(t) is excellent (e.g. < 100 ps in Figure 1D), to retrieve the
viscosity plateau independently of the fluctuations at long time
shifts that could bias the results (Supplementary Figure.S1).

The accuracy of the auto-correlation function strongly
depends on the number of time steps. Therefore, simulation
runs were extended to 20 ns to keep the statistical uncertainties on
the viscosity data around ±15% up to 1,700–1,800 K as estimated

from the quality of the fit to the integrated auto-correlation
function of the stress tensor S(t) (Figure 1D). Uncertainties
further increase with temperature due to the larger
fluctuations in temperature (and pressure), particularly during
large simulation runs (Zhang et al., 2015), which hamper the
unambiguous identification of the plateau region of the Green-
Kubo integral to extract the viscosity (Figure 1D). We
conservatively estimate that total uncertainties can reach ca. ±
40% at 2,000 K, the highest temperature of this study,
although the overall precision is much better and typically
yields viscosities within 10–15%. Statistical fluctuations on
pressure and temperature were typically ΔP � ± 0.5 GPa and
ΔT/T � ± 1%, respectively.

The stability of the melt phase at all investigate pressure-
temperature conditions was verified by monitoring the atomic
diffusion coefficients that, even at the highest pressures, display
characteristic values for molten systems with e.g.DCO2−

3
∼ 1 × 10−9

to 7 × 10−9 m2/s (Desmaele et al., 2019a). Furthermore, the
investigated conditions up to 6 GPa fall above the
experimental liquidus reported for the K2CO3-MgCO3 and
K2CO3-CaCO3 systems (Ragone et al., 1966; Cooper et al.,
1975; Shatskiy et al., 2015).

FIGURE 1 | Classical MD simulation run in K2Ca (CO3)2 melt (KC) at 13 GPa and 2,000 K. (A)–(B) Snapshots of the simulation box containing N � 2002 atoms. (C)
Output of a classical MD simulation from the isothermal-isobaric (NPT) ensemble where the thermodynamic parameters (P, T, V) are calculated from block averages of
500 k time steps, after the system has reached equilibrium. All given uncertainties are the result from statistical fluctuations, i.e. standard deviation from the average. (D)
Integral of the auto-correlation function of the stress tensor S(t) for K2Ca(CO3)2 melt at 3.9 GPa and 1,472 K derived from the MD simulation run in the NVE
ensemble (purple line), and corresponding fit (green line) to an exponential function [Eq.4] to determine the viscosity.
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RESULTS

The simulation conditions and the viscosity results are
summarized in Table 2. The viscosity of KM and KC melts

ranges respectively between 0.0056–0.0875 Pa s and
0.0046–0.0650 Pa s in the investigated pressure-temperature
intervals. Figures 2, 3 display the temperature and pressure
dependence of the viscosity of KM and KC melts at the

TABLE 2 | Viscosities of K2Mg(CO3)2 and K2Ca(CO3)2 melts computed in the NVE ensemble as a function of pressure and temperature conditions. Uncertainty for pressure
and temperature are ±0.5 GPa and 1%, repectively. Uncertainties in viscosity are typically ±15% up to 1,800 K and ca. ±40% at higher temperatures.

K2Mg(CO3)2 (KM) melt K2Ca(CO3)2 (KC) melt

Pressure Temperature Viscosity η Pressure Temperature Viscosity η

GPa K Pa s GPa K Pa s

10−4 999 0.088 10−4 1,097 0.020
10−4 1,096 0.026 10−4 1,190 0.013
1.0 1,095 0.072 1.0 1,188 0.023
10−4 1,212 0.016 2.0 1,196 0.034
1.0 1,186 0.032 10−4 1,285 0.0098
10−4 1,275 0.013 1.0 1,294 0.014
1.0 1,295 0.021 1.9 1,284 0.024
2.0 1,302 0.030 3.0 1,300 0.032
3.0 1,287 0.044 4.9 1,282 0.065
10−4 1,412 0.010 10−4 1,385 0.0083
2.0 1,379 0.022 2.0 1,400 0.014
3.0 1,398 0.026 3.0 1,406 0.021
4.0 1,402 0.035 4.1 1,420 0.025
6.0 1,396 0.080 6.1 1,429 0.039
10−4 1,480 0.0090 10−4 1,479 0.0068
2.0 1,502 0.015 2.0 1,507 0.012
3.0 1,492 0.0193 3.9 1,472 0.021
3.9 1,473 0.0290 5.0 1,495 0.022
4.9 1,485 0.0340 10−4 1,575 0.0063
6.9 1,481 0.0580 3.0 1,601 0.012
10−4 1,580 0.0081 4.0 1,604 0.015
1.0 1,585 0.010 6.0 1,588 0.022
3.0 1,585 0.014 7.0 1,585 0.025
5.0 1,606 0.023 8.9 1,586 0.037
7.0 1,590 0.034 10−4 1,690 0.0060
9.1 1,608 0.047 3.0 1,699 0.011
10−4 1,716 0.0069 4.9 1,677 0.016
3.0 1,711 0.012 7.0 1,717 0.019
4.0 1,700 0.015 8.0 1,695 0.022
5.9 1,685 0.020 9.0 1,695 0.027
8.1 1,724 0.026 9.9 1,685 0.028
10.0 1706 0.037 10.9 1,669 0.037
10−4 1,788 0.0062 10−4 1,796 0.0055
2.0 1,786 0.0091 4.9 1,775 0.014
4.0 1,818 0.012 7.0 1,802 0.016
4.9 1,761 0.015 8.0 1,793 0.019
6.9 1,783 0.020 8.9 1,779 0.020
9.0 1,799 0.022 10.9 1,786 0.026
10.9 1,774 0.034 11.9 1,787 0.027
10−4 1,906 0.0059 10−4 1,884 0.0050
2.0 1,879 0.0088 6.0 1,896 0.013
4.0 1,888 0.011 8.0 1,883 0.016
6.0 1,889 0.014 10.0 1,911 0.018
7.9 1,875 0.017 11.9 1,862 0.023
10.1 1,921 0.020 12.9 1,865 0.028
11.9 1,874 0.029 10−4 2,040 0.0046
10−4 1,965 0.0056 3.0 1,997 0.0080
3.0 1,979 0.0093 5.0 1,991 0.0105
5.0 1,986 0.011 7.0 2,012 0.012
7.0 1,995 0.014 10.0 2,001 0.016
9.0 2,010 0.016 11.0 1,991 0.018
11.0 1,989 0.019 12.0 2,000 0.019
13.0 1,995 0.022 13.0 2,003 0.020
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investigated conditions. The viscosity of both melts follows a
similar trend: it decreases with increasing temperature at
constant pressure and increases linearly upon compression
along an isotherm. Temperature appears as the primary
control parameter on the viscosity of alkali(ne) carbonate
melts whereas the effect of pressure is generally lower,
although it is enhanced as temperature decreases
(Figure 3). An interesting observation from the present
results is that the viscosity of KM and KC melts only
decreases linearly with temperature over a narrow (high)
temperature interval (i.e. Arrhenian behavior), while a
notable curvature in the logη vs 1/T data is apparent over
the investigated temperature range at different pressures
(Figure 3), thus indicating non-Arrhenian (i.e. fragile
behavior, Angell, 1995) behavior. Yet, this behavior
apperars to become less pronounces as pressure increases,
even though the temperature span of the data is more
limited above 9 GPa (Figure 3). The non-Arrhenian
evolution of the viscosity implies a temperature-dependent
activation energy Ea of viscous flow (Figure 4) that may reflect
changes in atomic/molecular-scale interactions and
configuration in the melt (e.g. clustering) with temperature
as discussed below (Glasstone et al., 1941). To the best of our
knowledge, this is the first observation of non-Arrhenian
temperature-dependent viscosity in carbonate melts at high
pressure, a feature that could not be anticipated from the
limited P-T range covered by previous studies (Table 1).

DISCUSSION

Effect of Temperature and Pressure on the
Viscosity of Alkali(ne) Carbonate Melts
The viscosities of KM and KC melts reported here typically agree
within errors with previous simulations by Desmaele et al.

(2019b), with the exception of the highest temperature data
where differences reach values of up to 40% (Figure 5).
Differences may partially originate from larger
uncertainties when fitting the auto-correleation functions
to extract the viscosity due to larger fluctuations at high
temperature (Figure 1D). In contrast, while the
experimental data by Dobson et al. (1996) for KC melts are
in strinkingly good aggrement with the MD results, those of
KM melts are substantially lower than the theoretical
predictions (Figure 5). Moreover, Dobson et al. (1996)
reported negligible pressure effects on the viscosity of both
compositions contrarily to the present results (Figure 3) and
those of Desmaele et al. (2019b). The contrasting results for
KM melt could be partially reconciled considering the large
uncertainties (∼50%) estimated for the experimental results
(Dobson et al., 1996), although possible experimental
shortcoming cannot be excluded. We note for intance
inconsistencies in the experimental viscosity dataset for
high K-carbonate melts from the same study - KM and
25MgCO3-75K2CO3 melts - (Figure 5) that could result
from incomplete melting of the samples and/or convection
in the high pressure cell as recognized by the authors (Dobson
et al., 1996), as well as from limitations in the detection of the
falling-sphere (Kono et al., 2014; Stagno et al., 2018) and/or
possible sample decomposition/contamination. In particular,
hydration of the highly hygroscopic KM samples and/or
boron contamination from the assembly (Malfait et al.,
2014) that would both decrease the viscosity of the melt
cannot be ruled out because detailed analysis of the
recovered samples are not reported by Dobson et al. (1996).

Further, we employ the data to implement a model for the
pressure-temperature dependence of the viscosity of KM and
KC melts at upper mantle conditions. Among the different
equations commonly employed to describe the non-
Arrhenian temperature dependence of the viscosity (e.g.

FIGURE 2 | Effect of temperature on the viscosity of (A) K2Ca(CO3)2 (KC) and (B)K2Mg(CO3)2 (KM) melts along isobars from ambient pressure to 13 GPa. Symbols
are MD calculated viscosities and lines represent fits to the data by the Vogel-Fulcher-Tammann (VFT [Eq. 6]) model. Colors have the same meaning in both figures.
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Richet, 1984; Giordano and Dingwell, 2003; Russell et al., 2003),
the Vogel-Fulcher-Tammann (VFT) equation (Vogel, 1921;
Angell, 1995) was selected here owing to its ability to fit
viscosity data over a wide range of temperature and to its
empirical character:

log η � AVFT + ( BVFT

T − TVFT
) (5)

where AVFT is the pre-exponential factor and represents the
viscosity at infinite temperature, i.e. the high temperature limit
to viscosity, BVFT is a fitting parameter (in K) related to the
pseudo-activation energy for viscous flow, i.e. RBVFT (in J/mol,
with R the ideal gas contant, 8.314 J/mol.K), which represents the
resistance to the structural rearrangement of the melt (Richet,
1984; Bottinga and Richet, 1995), and TVFT is the temperature at
which the viscosity becomes infinite (i.e. temperature of
divergence).

The logη-(P,T) datasets for each melt composition (i.e. 53
viscosity data points each, Table 2) were thus fitted to the VFT
equation including an expansion of the BVFT term to
parametrize the effects of pressure on melt viscosity as:

log η � AVFT + (B1 + B2P
T − TVFT

) (6)

where B1 and B2 are adjustable parameters and P is the pressure,
in bar. The VFT coefficients were optimized by using a non-linear
regression routine to minimize the differences between predicted
viscosities, i.e. by [Eq. 6], and the original viscosity datasets
(Table 2). Uncertainties associated with the fitting parameters
were obtained by the bootstrap resampling method, where the
original datasets were randomly resampled 100,000 + 1 times and
the optimized VFT parameters processed to derive the 95%
confidence intervals (Supplementary Note S1). The best-fit
VFT parameters [Eq. 6] derived on the original datasets for

FIGURE 3 | Temperature and pressure dependence of the viscosity of (A)–(C) K2Ca(CO3)2 (KC) and (B)–(D) K2Mg(CO3)2 (KM) melts. Symbols are MD calculated
viscosities in this study. Solid lines represent fits to temperature- and pressure-dependence by the VFT model [Eq. 6]. Error bars in a) and b) correspond to ±15% up to
1,800 K (<0.55 K−1) and ±40% at the higest temperatures. For the sake of clarity, error bars are only reported for the room pressure data but apply to all other isobars.
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each melt composition are reported in Table 3 along with their
uncertainties. The VFT models reproduce the original databases
(Table 2) with average residuals of ±0.05 and ±0.04 log units for
KM and KC melts, respectively, and associated average relative
errors of 3 and 2.2% and Root Mean Square Errors (RMSE) of
0.06 and 0.05, that support the goodness of the fits. Moreover, the
random distribution of the residuals over the databases further
indicates the lack of systematic errors with either pressure or
temperature in the calibration (Supplementary Figure.S1).
Attempts to fit the temperature-dependence of the KM and
KC viscosity datasets by an Arrhenian model result in lower
reproducibility of the datasets (Supplementary Figures S2−S4)
as shown by the goodness of fit metrics (Supplementary Table
S1). Additional details of the quantitative comparison between
the VFT and Arrhenian fit models, which confirms the non-
Arrhenian behaviour of alkali(ne) carbonate melts over the
investigated P-T conditions, are provided in Supplementary
Note 1.

The optimal value of AVFT parameter for KM and KC melts in
the preferred VFT model, −2.62+0.18−0.15 and −2.41+0.09−0.09 respectively,
agree well within mutual uncertainties, and suggest a
compositional independent infinite temperature viscosity for
carbonate melts as observed for silicate melts (e.g. Giordano
and Dingwell, 2003; Russell et al., 2003; Giordano et al., 2008).
Nevertheless, additional viscosity data over a broader P-T-
compositional range would be required to validate this
observation. The linear increase of the BVFT parameter with

increasing pressure (Figure 4A), and hence of the pseudo-
activation energy RBVFT, suggests a progressive hindering of
structural rearrangements in the melt at high pressure (Richet,
1984; Bottinga and Richet, 1995). At ambient pressure, the
derived pseudo-activation energies for KM and KC melts,
respectively 3, 740+1840−1746 and 1, 290+765−557 J/mol, are significantly
lower than the range of values reported for silicate melts,
4,000–12,000 J/mol (Russell et al., 2003; Giordano et al., 2008;
Li et al., 2021). The best-fit TVFT values, 720+147−104 and 914+90−86 for
KM and KC, respectively, fall below the corresponding liquidus
temperatures at ambient pressure, 870–900 K for KM (Ragone
et al., 1966) and ca. 1080 K for KC (Cooper et al., 1975).

The activation energy, Ea, which depends on both pressure and
temperature, is further calculated from the slope of the curves in
Figure 3, obtained by differentiating log η as provided by Eq. 6
with respect to 1/T following:

Ea � 2.303R
z log η
z(1/T) � 2.303R(B1 + B2.P)( T

(T − TVFT))
2

(7)

where R is the gas constant, 8.314 J/mol.K, and the B1, B2 and
TVFT parameters for each melt composition are taken from
Table 3. The activation energy Ea values for both KM and KC
melts are reported in Figure 4 as a function of temperature at
selected pressures, i.e. ambient, 3 and 6 GPa. The activation
energy Ea decreases with temperature regardless of pressure
and/or melt composition, in agreement with the decrease of

FIGURE 4 | (A) Evolution with pressure of the best-fit B parameter in the VFT model for K2Mg(CO3)2 (KM) and K2Ca(CO3)2 (KC) melts; (B) Activation energy Ea for
KM and KC melts as a function of temperature at selected pressures, 10−4, 3 and 6 GPa (this study) and comparison with literature data for alkali and alkaline earth
carbonate melts. Symbols and black lines show respectively experimental data for alkali carbonate melts at ambient pressure by Di Genova et al. (2016) and Sato et al.
(1999). Grey lines show the temperature-independent (Arrhenian) Ea at 3 GPa derived from classical MD simulations for CaCO3, MgCO3 and KM-KC melts by
Desmaele et al. (2019b); (C) Temperature dependence of the activation volume Va for KC and KMmelts. The lines are guides for the eyes. Error bars were determined by
propagation of undertainties [Eq.8] and correspond to ∼20% of the value.
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the energy barrier for viscous flow at higher temperature
(Bottinga and Richet, 1995). The effect of temperature on Ea
is, however, more pronounced at higher pressures (Figure 4B).
The ambient pressure activation energies derived here for KM
and KC melts are higher than typical values for alkali carbonates
melts, i.e. K2CO3, Na2CO3 and Li2CO3 (24–35 kJ/mol), as determined
by experimental studies at 1,050–1,200 K (Sato et al., 1999; Di Genova
et al., 2016) and classical MD simulations (Desmaele et al., 2019a) in
the 1,100–1,900 K temperature range (Figure 4B). Our results at
3 GPa and low temperature compare well with the constant (i.e.
Arrhenian) Ea of 80 kJ/mol reported for KMandKCmelts at the same
pressure in Desmaele et al. (2019b), although differences increase with
temperature as the VFT model predicts a decrease of Ea down to
∼20–30 kJ/mol at 2,000 K. Moreover, the activation energies for KM
and KC melts are generally larger than those calculated for the end-
members CaCO3 and MgCO3 melts (43–49 kJ/mol) at similar P-T
conditions (Desmaele et al., 2019b), consistent with the compositional
effects discussed in detail below (Figure 5).

Pressure appears to have a non-negligible effect on the calculated
viscosity of alkali(ne) carbonate melts (Figure 4) in contrast with the
reports from experimental studies (Dobson et al., 1996; Kono et al.,
2014; Stagno et al., 2018). We suggest that the large uncertainties in
early viscosity measurements, 50% (Dobson et al., 1996), and the
limited viscosity datasets reported in recent studies (Kono et al., 2014;
Stagno et al., 2018), do not allow resolving pressure effects. Contrary
to temperature, the pressure dependence of the viscosity is linear
within the uncertainties (Figure 3). The activation volume of viscous
flow, Va, can be derived from the pressure effect on viscosity by
differentiating Eq. 6 as:

Va � 2.303RT
zlogη
zP

� 2.303RT
B2

(T − TVFT) (8)

where R is the gas constant, and the parameters TVFT and B2 are
provided inTable 3 for eachmelt composition. The activation volumes
Va derived for both KM and KC melts are positive at all investigated
temperatures, and range from 4.5–3.5 cm3/mol at 1,300 K to
∼2–1.9 cm3/mol at 2,000 K (Figure 4C). These Va values are
consistent with those reported in previous MD simulations for
alkali and alkaline-earth carbonate melts, i.e. 2.2–4.7 cm3/mol
(Desmaele et al., 2019a; 2019b). The results also compare well with
the Va values for CaCO3-CaMg(CO3)2 melts retrieved using the
experimental viscosity model of Kono et al. (2014) and Eq.8, i.e.
3.6 cm3/mol and 1.1 cm3/mol at 1,600 and 1,800K, respectively.
Conversely, Stagno et al. (2018) reported an activation volume from
viscosity measurements on Na2CO3 melt, Va � 54.52 cm3/mol, which
is an order of magnitude larger than the results discussed above. We
note however that this value does not represent the activation volume
due to the non-Arrhenian fit model employed in the data analysis and
therefore cannot be directly compared to the results obtained here.
Additional inconsistencies in the Na2CO3 melt viscosity model,
including for instance a temperature of divergence of the viscosity
(i.e, T0 in Stagno et al. (2018)) that is larger than the lowest temperature
investigated and hence implies the divergence of the predicted viscosity
on the calibration temperature interval, preclude the use of the fitting
parameters to retrieve the Va [Eq. 8] for comparison. These issues will
be addressed in a Corrigendum that is currently in preparation (V.
Stagno, pers. comm). The trend that emerges from the available data on
the activation volume Va of viscous flow of carbonatemelts is that they
are positive at mantle conditions and comparable with typical values
reported for intermediate polymerized to depolymerized silicate melts,
Va ∼ 2–6 cm3/mol at 1,800–2,000 K (e.g. Liebske et al., 2005; Rai et al.,
2019; Li et al., 2021).

Compositional Effects on the Viscosity of
Alkali(ne) Carbonate Melts
The viscosities of KM and KC melts at 3 GPa and various
temperatures are compared to available data at similar conditions
for alkali and alkaline earth (and mixtures thereof) carbonate melts

FIGURE 5 | Effect of temperature on the viscosity of K2Mg(CO3)2 (KM,
blue) and K2Ca(CO3)2 (KC, orange) melts from this MD study (full circles) and
comparison with literature data for alkali and alkaline carbonate melts. All data
are reported at 3 GPa unless indicated next to the symbols (in GPa).
Solid lines represent fits to the temperature dependence of the viscosity data
by the VFT model (present data) and dashed lines by an Arrhenian model
(literature data). Errors bars on KM, KC and K2CO3 melts from Dobson et al.
(1996) correspond to 50% (not shown for the sake of clarity). Viscosities of
silicate melts are indicated for comparison (Giordano et al., 2008).

TABLE 3 | Best-fit parameters for the Vogel-Fulcher-Tammann (VFT) model [Eq.
6] fitted to the pressure-temperature dependence of the viscosity of
K2Mg(CO3)2 (KM) and K2Ca(CO3)2 (KC) melts.

VFT parameter KM melt KC melt

AVFT (Pa s) −2.62+0.18−0.15 −2.41+0.09−0.09
B1 (K) 449+221−210 155+92−67
B2 (K/bar) 0.0075+0.0008−0.0013 0.0055+0.0006−0.0008
TVFT (K) 720+147−104 914+90−86

Residuala ±0.05 ±0.04
Rel. errorb (%) 3.0 2.2
RMSEc 0.06 0.05

1Average residual � <|observed-predicted |> (in log units).
2Average reative error� <|(observed–predicted)/observed |> x100 (in %).
3AverageRootMeanSquare Error �



1
n

√ ∑n
i�1 (Observed − Predicted)2 (in log uits).
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from experiments and MD simulations in Figure 5. Most carbonate
melt viscosities reported to date fall between –2.6 and –1.2 on the
logarithmic scale, which is generally several orders ofmagnitude lower
compared to silicate melts (e.g. Giordano and Dingwell, 2003; Liebske
et al., 2005; Giordano et al., 2008;Wang et al., 2014). The viscosities of
K2CO3melt at 4 GPa and 25MgCO3-75K2CO3melt at 2 GPa reported
by Dobson et al. (1996) are significantly larger than those of the whole
data sets and likely overestimated as discussed above.

Although specific compositional effects on the viscosity of
carbonate melts are difficult to assess at this stage due to the
limited datasets available and the inconsistencies between studies
(Figure 5), some general trends can be identified. Molten CaCO3,
MgCO3 andCaMg(CO3)2 show similar viscosities (Kono et al., 2014;
Vuilleumier et al., 2014; Desmaele et al., 2019a, 2019b), which are
larger than the viscosity of alkali carbonate melts, such as K2CO3 or
Na2CO3, reported from MD studies by Desmaele et al. (2019a).
Interestingly, the viscosity of KM and KC melts from this study and
that of Desmaele et al., 2019b is larger than the viscosities of the
corresponding alkali and alkaline earth end-members (Figure 5).
Although this result may appear counter-intuitive, experimental
studies show that the viscosity of binary ionic liquid mixtures can
be higher or lower than the viscosity of the end-members, or close to
their arithmetic mean (Fillon and Brennecke, 2017). The enhanced
viscosity of KC and KMmelts compared to the end-members likely
results from the increase in Coulombic interactions between the
metal cations (i.e. Ca, Mg, K) and/or carbonate groups upon mixing
that will modify the charge distributions and enhance the dynamics
in the system, hence increasing the viscosity (Wilson et al., 2018).
Aditionally, we note that the experimental viscosities of Na2CO3

melt (Stagno et al., 2018) are substantially larger than the results
from MD simulations (Desmaele et al., 2019a) but comparable to
those of calcitic, magnesitic and dolomitic melts at similar pressures
(Kono et al., 2014; Vuilleumier et al., 2014; Desmaele et al., 2019b).
The origin of the discrepancies between simulated and experimental
viscosities of Na2CO3melt is, however, difficult to identify within the
available data. With the exception of the results from Stagno et al.,
(2018), the data reported in Figure 5 suggest that alkali elements (i.e.
Na and K) play a crucial role in modifying the viscosity of carbonate
melt. This effect may result from the larger ionic radii of alkalis (Di
Genova et al., 2016; Stagno et al., 2018) and/or enhanced interactions
with alkaline elements upon substitution as discussed above. In
contrast, the limited compositional effects on the viscosity of alkaline
earth carbonate melts, CaCO3-CaMg(CO3)2 (and likely MgCO3)
melts (Figure 5), upon Ca and Mg exchange reflect their structural
similarities, with only minor differences in the interatomic distances
as shown by X-ray diffraction studies (Kono et al., 2014). The effect
of potassium on the viscosity of alkaline carbonate melts contrasts
with its role in silicate melts, where the viscosity increases upon
increasing the field strength of the network-stabilizing cation
following the trend: ηK+ < ηNa+ < ηSr+ < ηCa2+ < ηMg2+

(Dingwell, 2007). Contrary to previous reports (Kono et al., 2014;
Stagno et al., 2018), the data reported in Figure 5 reveal
compositional effects on the viscosity of alkali(ne) carbonate
melts, despite the limitations to identify clear trends. Additional
data on the viscosity of alkali(ne) carbonate melts, including a broad
range of mixed compositions in the systems MgCO3-CaCO3-
K2CO3-Na2CO3 would be required to draw further conclusions.

Non-Arrhenian Viscosity of Carbonate
Melts in the Mantle
The non-Arrhenian temperature-dependent viscosity (fragile
behavior) reported here for alkali(ne) carbonate melts is
somehow not unexpected as the departure from an exponential
activation law (i.e. Arrhenian behavior) is a common feature for
most melt/liquid systems investigated to date, including for a broad
range of silicate melt compositions over geologically relevant
temperature intervals (Richet, 1984; Angell, 1995; Webb, 1997).
Notable exceptions to this trend are highly polymerized silicatemelts
(i.e. strong melts, Angell, 1995) such as SiO2 and granitic-albitic
melts that display Arrhenian behavior at all investigated temperature
conditions (e.g. Richet, 1984; Webb, 1997; Giordano and Dingwell,
2003). The strong/fragile pattern reflects the sensitivity of the liquid/
melt structure to temperature changes, which is in turn controlled by
the structural arrangements and nature of bonding in the system
(Angell, 1995). For silicate melts, there is a clear correlation between
the melt fragility and the degree of polymerization defined by the
NBO/T parameter (Giordano et al., 2013;Malfait and Sanchez-Valle,
2013). The fragility exhibited by carbonatemeltsmay thus arise from
their ionic nature, characterized by simple Coulomb interactions,
that readily permit for a variety of particle orientations and
coordination states to reorganize the structure in response to
thermal perturbations. Recent MD simulations performed in
molten Na2CO3 provide indeed evidence for the formation of
low-dimentional structures in the CO3

2− network (e.g. chains,
triangles and tetrahedra) that are temperature dependent and
change the melt dynamics and hence, enhance melt fragility
(Wilding et al., 2016; Wilson et al., 2018). Note that pressure also
favors the formation of extended low-dimensional networks of
CO3

2− pairs and the rise of CO3+1 local coordination
environments in KM melt that result in an increase of melt
viscosity with pressure (Wilding et al., 2019) consistent with the
present observations (Figure 3).

The alkali(ne) carbonate melts investigated here are to date
the only carbonate melt compositions displaying a non-
Arrhenian temperature dependent viscosity (Figure 5), likely
due to the limited temperature range investigated by previous
studies (Table 1). Therefore, departures of the viscosity from
theArrhenian behavior may not be ruled out for other carbonate
melt compositions as observed for silicate melts (e.g. Richet,
1984; Webb, 1997; Giordano and Dingwell, 2003). The present
results thus advice against the application of a simple Arrhenian
model to extrapolate over a broad range of temperature the
available data for the viscosity of other carbonate melt
compositions (Figure 5). This will predict changes in
viscosity with temperature that are larger than indicated by
the non-Arrhenian behavior observed here and, in turn, would
result in underestimations of carbonate melt mobility in the
upper mantle. This point is particularly critical when modeling
carbonate magmatic processes at crustal and shallow upper
mantle conditions (< 7 GPa), e.g. carbonate magma chamber
dynamics or carbonate melt mobility beneath mid-oceanic
ridges, as they span the conditions where the strongest non-
Arrhenian behavior of the viscosity has been observed
(Figure 3).
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CONCLUSION

The viscosity of alkali(ne) carbonate melts, KM and KC, has been
determined over a broad range of pressure and temperature
conditions, i.e. from ambient pressure to 13 GPa and
1,000–2,000 K, by means of classical MD simulations. Both
melt compositions are more viscous than alkaline carbonate
melts, i.e. CaCO3, MgCO3 and CaMg(CO3)2, likely due to the
change in charge distribution upon potassium substitution.
Temperature appears as the primary control parameter on the
viscosity of alkali(ne) carbonate melts, even though pressure
effects are not negligible in contrast with previous reports.
Most interestingly, this study identifies for the first time non-
Arrhenian temperature-dependent viscosities in carbonate melts
at high pressure, while the viscosity increases linearly with
pressure at all investigated conditions. The non-Arrhenian
viscosity of KM and KC melts may arise from the formation
of temperature-dependent low-dimensional structures in the
melt that are more drastic in the carbonate network than in
the cation network (Wilson et al., 2018). Therefore, the non-
Arrhenian behaviour may be expected for other carbonate melt
compositions regardless of the cation nature, although the
experimental and/or theoretical confirmation is still awaiting.
The present results might be taken into account when modeling
the mobility of carbonate melts in the upper mantle.
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