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Earthquake-induced landslide inventories can be generated using field observations but
doing so can be challenging if the affected landscape is large or inaccessible after an
earthquake. Remote sensing data can be used to help overcome these limitations. The
effectiveness of remotely sensed data to produce landslide inventories, however, is
dependent on a variety of factors, such as the extent of coverage, timing, and data
quality, as well as environmental factors such as atmospheric interference (e.g., clouds,
water vapor) or snow and vegetation cover. With these challenges in mind, we use a
combination of field observations and remote sensing data from multispectral, light
detection and ranging (lidar), and synthetic aperture radar (SAR) sensors to produce a
ground failure inventory for the urban areas affected by the 2018 magnitude (Mw) 7.1
Anchorage, Alaska earthquake. The earthquake occurred during late November at high
latitude (∼61°N), and the lack of sunlight, persistent cloud cover, and snow cover that
occurred after the earthquake made remote mapping challenging for this event. Despite
these challenges, 43 landslides were manually mapped and classified using a combination
of the datasets mentioned previously. Using this manually compiled inventory, we
investigate the individual performance and reliability of three remote sensing techniques
in this environment not typically hospitable to remotely sensed mapping. We found that
differencing pre- and post-event normalized difference vegetation index maps and lidar
worked best for identifying soil slumps and rapid soil flows, but not as well for small soil
slides, soil block slides and rock falls. The SAR-based methods did not work well for
identifying any landslide types because of high noise levels likely related to snow. Some
landslides, especially those that resulted in minor surface displacement, were identifiable
only from the field observations. This work highlights the importance of the rapid collection
of field observations and provides guidance for future mappers on which techniques, or
combination of techniques, will be most effective at remotely mapping landslides in a
subarctic and urban environment.
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INTRODUCTION

The November 30, 2018 magnitude (Mw) 7.1 Anchorage, Alaska
earthquake, triggered substantial ground failure throughout
Anchorage and surrounding areas (Grant et al., 2020b; Jibson
et al., 2020). The earthquake was an intraslab event with a focal
depth of about 47 km and an epicenter about 16 km north of the
city of Anchorage. Most of the landslides triggered by the
earthquake were small (<15,000 m2), and shallow, attributed to
the relatively short duration of ground motion (1 min) and deep
source, which resulted in widespread shaking but without high
peak ground accelerations (Grant et al., 2020b; Jibson et al., 2020).
Peak ground accelerations reached ∼30% g. Despite the relatively
subdued ground failure, geotechnical damage to buildings and
structures was widespread (Franke et al., 2019). The last major
earthquake to significantly damage Anchorage was the 1964 M
9.2 Great Alaska earthquake, a subduction zone earthquake that
shook the city at similar levels to the 2018 earthquake but for
4–7 min and caused extensive landslide damage, including large
translational landslides in developed areas of the city (Hansen,
1965).

The 2018 earthquake is an important ground failure event to
document thoroughly not only because of the region’s history of
earthquake-triggered ground failure, but also as a key dataset
needed to improve hazard characterization in other geologically
and climatically similar regions in the world. Documenting events
with subdued ground failure is important because these events are
underrepresented in existing inventories. Field-based
observations, photos, and ground failure features recorded by
U.S. Geological Survey (USGS) scientists during the 10 days
immediately following the earthquake are summarized in
Grant et al. (2020a) and Jibson et al. (2020). However, around
the time of the earthquake, Anchorage was experiencing
approximately 6 h of daylight between 09:45 and 15:50, which
limited field observations. A cumulative total of 0.109 m of
snowfall occurred in Anchorage the 10 days following the
earthquake (NOAA/NWS Interactive Snow Information
https://www.nohrsc.noaa.gov/interactive), which also obscured
overflight observations, particularly at higher elevations (Grant
et al., 2020b; Jibson et al., 2020). Partial or complete snow
coverage persisted until late March (NOAA/NWS Interactive
Snow Information). Grant et al. (2020b) and Jibson et al.
(2020) note that their observations are generally incomplete
due to these adverse conditions experienced while collecting data.

Our long-term goal is to produce a complete and high-quality
landslide inventory associated with this event. The data collected
in the field, however, were not sufficient to build such an
inventory. The adverse conditions experienced indicate that an
inventory built solely on these data would be incomplete because
some landslide features may have been obscured by snowfall or
simply not documented (i.e., those landslides in areas not easily
accessible). Thus, we built an inventory by using both the field
observation data and remotely sensed data as they supplement

one another. To assemble our inventory, we first identified the
location of landslide features by comparing the field observation
data (photos) to high-resolution satellite imagery (WorldView-2,
WorldView-3, GeoEye-1). Once the location of the landslide was
determined, we used a variety of remote sensing methods to
locate the head scarp of the landslide feature and to also delineate
the landslide where possible. In creating our inventory, we found
that the effectiveness of remote sensing data to identify and
delineate landslides in this environment varied. In our study
area, some field-verified landslides could be identified and
delineated using multiple methods while others could not be
identified at all. Our inventory allowed us to determine the
capabilities and limitations of remotely sensed data to map
landslides in an environment such as Anchorage. This
knowledge can be used to guide remote mapping beyond the
field area and help us achieve our goal of eventually creating a
complete landslide inventory.

We use the landslide inventory to retroactively evaluate the
effectiveness of the three remote sensing methods used: 1) light
detection and ranging (lidar) elevation differencing, 2)
normalized difference vegetation index (NDVI) differencing,
and 3) synthetic aperture radar (SAR) amplitude change
detection (ACD). We compare these methods against the
inventory data in a subarea of Anchorage for which data for
all three methods are available. For clarity, we refer to this subarea
as the study area. We describe the effectiveness of each method to
identify certain landslide types and why some methods may have
outperformed others. Additionally, we identify environmental
and data-type specific challenges. While such an analysis will help
in our efforts to build a complete inventory beyond the study area,
this work can aid others in remote mapping as well.

BACKGROUND

The location, size, and spatial distribution of landslides can help
define regional landslide trends, reveal geologic and structural
patterns of a given environment, and inform landslide hazard and
susceptibility models (e.g., Keefer, 1984; Mirus et al., 2020).
Landslide inventories have long provided the foundation for a
wide variety of landslide research, such as updating and
improving landslide susceptibility models (Stanley and
Kirschbaum, 2017; Nowicki Jessee et al., 2018), optimizing
empirical and deterministic criteria for landslide early warning
systems (Baum et al., 2010; Mirus et al., 2018), or understanding
the role of hillslope erosion in landscape evolution (Larsen and
Montgomery, 2012). Thus, compiling landslide inventories after
triggering events (e.g., earthquake, rainfall) is highly beneficial for
landslide hazard assessment and risk reduction efforts.

Recent studies have emphasized the importance of landslide
inventory quality across a variety of triggering scenarios,
landscapes, and climates for landslide studies and model
development (Tanyaş et al., 2017; Mirus et al., 2020; Tanyaş
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and Lombardo, 2020). The accuracy and completeness of
landslide inventories vary due to data quality, accessibility, and
availability, as well as event-specific field conditions and
accessibility. Limitations in data resolution or field
observations also result in infrequent documentation of the
smallest landslides triggered by a seismic or rainfall event
(Guzzetti et al., 2012). Additionally, the end goals and purpose
for creating landslide inventories differ between authors and
across organizations, resulting in varying levels of detail and
data inclusion (e.g., Mirus et al., 2020).

Many advancements in landslide mapping and inventory
quality can be linked to the increasing availability and
attainability of remotely sensed imagery that aid in large scale
mapping (Guzzetti et al., 2012), complementing traditional field
observations. Manual image interpretation or automatic
detection methods can be used with a variety of aerial and
satellite data products, such as optical (visual) images,
multispectral images, laser scanning, and radar sensors to
develop inventories (Booth et al., 2009; Martha et al., 2011;
Harp et al., 2016; Mondini et al., 2019). The quality of
inventories developed using each approach varies, however,

and is dependent on a few variables. For example, manual
interpretation of imagery can be limited by the resolution of
data and experience of the mapper and can be time intensive
depending on the level of detail desired (Galli et al., 2008).
Automatic methods tend to increase the speed at which
inventories can be generated but have been shown to
overestimate the landslide-affected area resulting in a high
false positive rate (Li et al., 2014). Additionally, each data
product has inherent advantages and disadvantages. For
example, optical images can be hampered by poor weather
conditions, poor lighting, clouds, or snow. Active radar
methods typically avoid some barriers associated with optical
imaging; radar satellites emit their own energy and thus can
collect images at night, and the longer wavelengths used allow
imaging through clouds and other adverse weather conditions.
However, radar methods are still limited by geometric distortions
(e.g., layover, foreshortening, or shadowing), ground moisture,
dense vegetation or heavy snowfall, and atmospheric noise
(Colesanti and Wasowski, 2006; Rott and Nagler, 2006).
Imagery-based landslide mapping can be enhanced with the
continued improvement of image filtering, clustering,

FIGURE 1 | Location of the study area within Anchorage, AK. The extent of the lidar differenced area is shown in gray. Landslides are shown as orange squares
whereas he approximate location of field observations are shown as blue circles. The field observations consist of multiple photos of all types of ground failure (including
ground failure as a result of liquefaction) taken from various vantage points (ground, helicopter). Orange squares are locations that are included in the landslide inventory
for this study, which also have corresponding field observations in most cases.
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classification, change detection, multi-data integration, or other
techniques (Guzzetti et al., 2012 and references therein). Thus,
carefully examining the performance of these methods under
various circumstances can help improve the overall efficacy of
landslide mapping for others.

DATA AND METHODS

In this study, we constrain our study area to the extent covered by
the post-earthquake lidar (lidar differenced area, Figure 1)
because it is relatively well characterized by field observations
(Grant et al., 2020a). In addition to this, all other data we examine
(optical and SAR imagery) have coverage in this area (details of all
data used can be found in Table 1). We first used a combination
of field observations (Grant et al., 2020a), manual inspection of
optical imagery, and three different remote sensing methods
(lidar differencing, NDVI differencing, and SAR amplitude
change detection), to produce a landslide inventory in the
study area. We describe each method and the accompanying
datasets in detail in the following subsections. For each landslide,
we identify the approximate center of the head scarp as a point
and delineate the shape of the landslide if possible. Delineation of
each landslide involved creating a polygon of the landslide
affected area. The landslide-affected area includes both the
landslide scar and deposit. We classify each landslide
according to Keefer (1984) and note whether the landslide is
new or reactivated.

Using this manually compiled inventory, we then
retrospectively evaluate the effectiveness of the three remote
sensing methods to identify and delineate the different types
of mapped landslides individually without the benefit of manual
analysis and combined data sources. We do this by comparing the
probability distribution of landslide pixels and the non-landslide
pixels for each method. The intention of this exercise is to explore
how well these methods might work for automated mapping. Our
evaluation methods are detailed in Evaluation of Method
Effectiveness.

Field Observations and Optical Imagery
For this study, we used the 1,301 geotagged photos from the
ground and helicopter reconnaissance collected by Grant et al.
(2020a) within the study area to help map and delineate 43
landslides (Figure 1). Because of the differences in vantage points
and cameras used, the accuracy of coordinates associated with
each photo varies, thus this field observation database is used
primarily with comparisons against high-resolution optical

satellite imagery (WorldView-2, WorldView-3, GeoEye-1). We
use the high-resolution optical imagery to determine a
more accurate location for the manifestations of ground failure
in the field photos by matching geographic features seen in the
photos to those in the optical imagery (i.e., houses, structures,
roads).

Elevation Differencing
Elevation differencing determines the change in elevation
between two time periods using digital elevation models
(DEMs). The difference in elevation is determined at the pixel
scale by subtracting the change in elevation between two aligned
pixels (James et al., 2012). This method has proven effective for
mapping landslides in a variety of environments and climates
(e.g., Bull et al., 2010; Ventura et al., 2011; Prokešová et al., 2014;
Mora et al., 2018). The extent of the effectiveness of this method
for landslide mapping, however, is dependent on the spatial and
temporal resolution of the DEMs, quality of the data, and the
extent of coverage.

This study uses 1-m pre- and post-earthquake DEMs derived
from lidar data acquired by the state of Alaska andmade available
via the Alaska Division of Geological and Geophysical Surveys
(DGGS) elevation portal (DGGS Staff, 2013). The pre-event data
were collected in May 2015 while the post-event data were
acquired in December 2018, the week following the
earthquake. The reported vertical accuracy for the 2015 DEM
is 9.25 cm. Vertical accuracy of the 2018 DEM has not yet been
reported by the acquisition team. More information and
metadata for these datasets can be downloaded via the DGGS
elevation portal (DGGS Staff, 2013). The 2015 DEMwas provided
in feet, so this raster was converted to meters to remove a vertical
offset between the DEMs. The DEMs were aligned by first
clipping each to the area of which they both overlap. Then,
using the “raster align” tool in QGIS (3.10; https://www.qgis.org/),
the clipped DEMs were aligned to one another. Aligning the
DEMs involves rescaling and reprojecting the DEMs as needed
to ensure that the individual pixels in each image are aligned to
one another. After alignment, the DEMs are differenced using
the raster calculator in QGIS. The elevation differenced map is
computed as

ElevationDifference � DEMPost − DEMPre (1)

in which DEMPost refers to the 2018 DEM while DEMPre refers to
the 2015 DEM.

After creating the elevation differenced map, landslides were
identified by examining areas within the differenced map that
suggested there had been a significant increase or decrease in

TABLE 1 | The spatial resolution, wavelength, revisit time, and coverage offered by the sensors whose data were used in this study.

Data source Spatial resolution Wavelength Revisit time Global coverage

Sentinel-1 imagery ∼14 m C-band (5.6 cm) 12 days Yes
Sentinel-2 imagery 10 m NA 5 days Yes
DGGS (2015) lidar 1 m NA NA No
DGGS (2018) lidar 1 m NA NA No
ALOS-2 ∼10 m L-band (22.9 cm) 14 days Yes
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elevation (relative to surrounding landscape) since the DEMPre

was acquired (2015). The landslides are visually easy to identify,
as most of the study area experienced very little change in
elevation. Despite this, a majority of the areas that experienced
dramatic changes in elevation since 2015 were related to
development and mining activity. Thus, it is necessary to
differentiate elevation change that is solely due to landsliding
from these other events. To do so, we used high-resolution optical
imagery (WorldView-2, WorldView-3, GeoEye-1) to rule out the
changes that were the result of development or mining activity.

Normalized Difference Vegetation Index
Differencing
NDVI is used to map the relative distribution of vegetation in
landscapes. This can be useful for landslide mapping because
slope failure often results in damage to vegetation. NDVI maps
are generated using the near-infrared (NIR) and red (R) image
bands contained within a multispectral image (Deering and Haas,
1980):

NDVI � NIR − R
NIR + R

(2)

Because vegetation absorbs visible light and reflects near-
infrared light, this index gives an indication of the health of
existing vegetation at the pixel scale. It also maps the relative
distribution of vegetation in a landscape because non-vegetated
areas are classified with a lower NDVI value. Thus, NDVI
differencing maps can reveal areas where vegetation has been
damaged or stripped away from the landscape (i.e., due to
landslides). Differencing maps can be generated by subtracting
the pre-event NDVI pixels from the post-event NDVI pixels.
Then, within the change detection image, those pixels that
correspond to large changes in NDVI can be further assessed
visually to determine whether the change corresponds to a
landslide. As previously mentioned, we use optical imagery
(WorldView-2, WorldView-3, GeoEye-1) to determine if the
NDVI change corresponds to other phenomena such as urban
development and/or mining activity.

The lack of sunlight and presence of snow prohibited the
creation of accurate NDVI maps in the days immediately
preceding and following the event, so we instead used summer
NDVI composites from 2018 to 2019 to generate a NDVI
differencing map spanning the time of the earthquake. The
summer composites were produced using Google Earth Engine
(Gorelick et al., 2017) using satellite imagery from the European
Space Agency’s Sentinel-2 multispectral satellite. The 10 m
resolution composites are generated by taking the median
value of each pixel within an image collection after filtering
out pixels containing clouds. The composites are then used to
produce NDVI maps for the summers preceding and following
the earthquake and then differenced to isolate areas where
landslides triggered by the earthquake may have caused
damage to the normal vegetative cover. The NDVI differenced
map is computed as

NDVIDifference � NDVICompPre −NDVICompPost (3)

in which NDVIComppost refers to the summer 2019 NDVI
composite and NDVICompPre refers to the summer 2018
NDVI composite.

Synthetic Aperture Radar Amplitude
Change Detection
Synthetic aperture radar (SAR) amplitude images measure the
proportion of microwave backscattered from that area on the
ground, which depends on a variety of factors such as the type,
size, shape, orientation, roughness, moisture content, and
dielectric constant of reflectors within a given pixel. SAR
amplitude change detection (ACD) compares the amplitude
intensities between two dates to detect changes in amplitude
intensity that may indicate surface changes (e.g., floods, mass
movements, or liquefaction events).

Three sets of images are used for change detection before and
after the earthquake from the Sentinel-1 and ALOS-2 satellites
(Supplementary Table S1). Scene pairs include ascending
Sentinel-1 on November 17, 2018 and January 26, 2019,
descending Sentinel-1 data on November 22, 2018 and
December 4, 2018, and ascending ALOS-2 data on November
17, 2018 and January 26, 2018. Images were processed using
SNAP 7.0 software (SNAP - ESA Sentinel Application Platform
v7.10, http://step.esa.int). Both Sentinel and ALOS-2 products
were radiometrically calibrated to radar reflectivity per unit area,
filtered for speckle using a Lee filter operating as a 3 × 3 pixel
moving window, corrected for geometric/terrain distortions
using a range doppler orthorectification, and composited to
determine amplitude changes between the pre-event and post-
event image. Pixel intensity was converted to the backscattering
coefficient measured in decibel (dB) units that ranges from c.
+10 dB for very bright objects to −40 dB for very dark surfaces.
Differencing these data that are converted to decibel units is
equivalent to the log-ratio method used in other studies (Mondini
et al., 2019; Jung and Yun, 2020; Lin et al., 2021) to determine the
change in amplitude between SAR scenes. These studies compute
the log-ratio value as

Aratio � log10(Apre

Apost
) (4)

in which the Apre and Apost values correspond to the radar
brightness coefficient values (Mondini et al., 2019; Jung and
Yun, 2020; Lin et al., 2021). Once we converted our data to
dB units, the images were then simply differenced as

AmplitudeDifference � AmpPre − AmpPost (5)

Additionally, an amplitude change detection time series of
Sentinel-1 images between 2015/11/29 and 2020/11/01 was
generated using Google Earth Engine (see Data Availability
Statement). This approach produces pre- and post-event time
series maps utilizing Sentinel-1 ground range detected (GRD)
products. GRD products are processed to remove thermal noise
and are radiometrically and terrain calibrated. The processed data
are also provided in dB units, so the composited time-series maps
are differenced as

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6731375

Martinez et al. Evaluation of Remote Mapping Techniques

http://step.esa.int
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


AmplitudeDifference � AmpCompPre − AmpCompPost (6)

In the workflow, image composites are generated for time
periods preceding and following the event of interest utilizing VH
(vertical transmit, horizontal receive) polarization images. The
method utilizes both ascending and descending data to generate
the composites. Different polarizations and seasonal composites
(i.e., summer months only) did not impact the results. List of the
SAR scenes used can be found in the Supplementary Data
Sheet S1.

Evaluation of Method Effectiveness
Manual mappers visually look for discontinuities in remote
sensing products that correspond to landslides. They typically
use knowledge of where landslides are more likely to occur (e.g.,
steep coastal bluffs, riverbanks) to guide their efforts. Automatic
mapping relies on a similar approach and can be implemented
using either pixel-based or object-based image analysis methods.
Pixel-based methods are those that classify imagery at the pixel
scale and do not take into consideration neighboring pixels
(Scaioni et al., 2014). Object-based image analysis typically
involves the use of thresholding and segmentation techniques
(Martha et al., 2011). Thresholding typically entails removing or
masking the areas within target images where landslides are least
likely to occur, similar to the way in which a manual mapper uses
their knowledge of landslide susceptibility to guide their efforts.
Segmentation groups the portions of the image into objects
comprising similar pixels (Hölbling et al., 2015) working the
same way as a human would to identify continuous sets of pixels
that may correspond to a landslide. A set of rules, which can be
prescribed by the mapper or determined using machine learning
algorithms, can be applied to the target image to determine which
of the objects or pixel clusters correspond to landslides.
Automatic methods tend to struggle with differentiating
similar objects from one another, resulting in a large number
of false positives (Li et al., 2014). Because of this, automatic
methods tend to be more successful when those landslide pixels
and subsequently the objects to which they correspond are
markedly different from the surrounding pixels (Rosin and
Hervas, 2005).

With these concepts in mind, the performance of each of the
three remote sensing methods is compared using the probability
distributions of landslide pixels versus landscape pixels for each
method. This is done in order to determine whichmethods would
be more useful at delineating landslides of different types in this
environment using both manual and automatic mapping
methods without prior knowledge of the exact location of the
landslides. Those landslide pixels that are markedly different
from the remaining pixels in the target image would have a
probability distribution that differs from the general landscape
distribution and thus, likely be more easily identifiable using both
manual and automatic approaches.

To generate the probability distributions for each method, we
sampled the landslide pixels and landscape pixels of each
corresponding raster. We sampled the values at all landslide
pixels and then randomly sampled an equal number of pixels
from the landscape (non-landslide areas). We then plotted the

probability distributions of the sampled landslide and landscape
pixels for each method to facilitate comparison. To determine the
effect of noise removal on the distributions and to smooth all layers
to roughly the same resolution for more direct comparison, the
elevation and NDVI differenced raster images were smoothed using
a Gaussian filter with a standard deviation of ∼15 m. The results of
this smoothing on the distributions can be seen in Supplementary
Figure S2. Noise removal did not significantly impact the results, so
we do not filter the final data. We show the percentage of observed
landslide pixels as a point over each bin in the probability
distributions for each method. This displays, for each method,
the range of values where landslides are likely to be found.

LANDSLIDE DETECTION AND METHOD
EFFECTIVENESS

Landslide Inventory
Within the study area, we were able to successfully document the
location of 43 landslides using the combined methodologies,
including three soil block slides, nine soil slumps, 20 soil slides,
nine rapid soil flows, and two rock falls (those landslides that were
not classified by those who gathered field observations were
classified using the field photos and remote sensing data). Of
these landslides, we were able to delineate 39 (90%) as they were
easy to identify visually using the remotely sensed data; the
remaining 4 (9%) were mapped with a point at the
approximate location that was determined using field
observations. Field photos of these undelineated landslides (two
soil slides and two incipient soil slumps) can be seen in Figure 2. Of
the 43 landslide events, 38 (88%) were identifiable using the
elevation differenced map and 21 landslides (48%) were
identifiable using the NDVI differenced map. No landslides
could be delineated using the ACD methods. Remote mapping
methods failed to aid in the identification and delineation of four
landslides identified in the field, and five landslides not observed in
the field were mapped using remote mapping methods. A visual
representation of each method is presented in Figure 3. Because
the data we used have varying degrees of spatial and temporal
resolution, the accuracy of each mapped landslide varies. Accuracy
refers to the location of the landslide, the existence of the landslide
(i.e., whether it can be confidently attributed to the earthquake) and
the delineation. Mapping uncertainty associated with each feature
can be found in Supplementary Table S3.

Method Performance Summary
As previously mentioned, elevation and NDVI differencing were
able to aid in the identification and delineation of most landslides
whereas ACD methods were largely ineffective. This statement is
supported by Figures 4A,B, where the probability distributions of
the landslide pixels in the elevation and NDVI change maps differ
greatly from those of the remaining landscape in comparison to
results from the amplitude-based methods (Figures 4C–F) which
are essentially indistinguishable. The distributions of the
landscape and landslide pixels for the ACD methods are
similar, which suggest that the data are generally too noisy to
identify and delineate landslides.
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For the elevation differenced map, the probability distribution
for the landslide pixels is negatively skewed. Because a negative
change in elevation corresponds to erosion, this suggests that the
landslides mapped are mostly erosional (i.e., soil slides, rapid soil
flows). The NDVI change distribution is positively skewed,
suggesting that the mapped landslides are those that are severe
because they remove vegetation and leave a significant scar on the
landscape. The minimum landslide area mapped using elevation
differencing was 26 m2 while the minimum area mapped by the
NDVI differencing method was 355 m2. SAR ACD methods
were ineffective primarily due to noise (possibly caused by
atmospheric interference, snowfall, moisture, and dense
vegetation) hindering the delineation and identification of
landslides. Additionally, the amplitude values of the resulting
landslide scar or deposit were similar to the original landscape
(i.e., soil slide occurring in areas of unvegetated, exposed soil),
preventing the utility of this method. Geometric distortion also
prevented any delineation of landslides along coastal bluffs using
the SAR ACD methods. Because of these issues with SAR ACD
methods, we will only discuss the effectiveness of elevation and
NDVI differencing to delineate landslide types in subsequent
sections.

Elevation Differencing
The probability distributions for the soil slumps, soil slides, and
rapid soil flows suggest that elevation differencing was more
effective at delineating these landslide types than the others (soil
block slides and rock falls) in our study area (Figures 5C, E, G).
This is based on the fact that the distribution of landslide pixels
for these landslide types differs from the general landscape
distribution and also because, over a certain range of elevation

change values, a relatively high percentage of landslide pixels is
observed. Landslide pixels associated with soil block slides and
rock falls (Figures 5A,I) are too similar to the remaining
landscape distribution to state that elevation differencing can
be effective at delineating those landslide types automatically.
Despite this, the field observations allowed us to identify and
delineate the soil block slides using the elevation differenced map.
So, in regard to manual mapping, the differencing was helpful to
delineate these types of landslides but only with prior knowledge
of likely landslide locations. This suggests that automatic methods
may not be able to systematically map soil block slides using
elevation differencing. Rock falls, in our study area, were not able
to be delineated using the lidar differenced map. Even with
knowledge that they occurred and the general vicinity in
which they occurred, delineation was challenging. This could
be attributed to their deposits being thin and the time difference
between the lidar datasets producing noise that corresponds to
non-earthquake related changes. Only two rock falls were
mapped in the study area, which limits our observations of
these features.

Normalized Difference Vegetation Index Differencing
The probability distributions for the soil slumps and rapid soil
flows suggest that NDVI differencing was more effective at
delineating these landslide types than the others (Figures
5D,H). This is based on the fact that the distribution of
landslide pixels for these landslide types differs from the
general landscape distribution and also because, over a certain
range of NDVI change values a relatively high percentage of
landslide pixels is observed. Soil block slides, soil slides, and rock
falls (Figures 5B, F, J) are too similar to the remaining landscape

FIGURE 2 | The map on the left (A) shows the location of landslides by type as well as the location of those landslides that could not be delineated using remote
sensing mapping methods (labeled B–E on the map). Corresponding photos of those landslides can be seen to the right of the map. The top center photo shows a (B)
soil slide with a person for scale. The top right (C) and bottom center (D) show incipient soil slumps and the bottom right (E) shows a soil slide. (Photo Credits: USGS).
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distribution to state that NDVI differencing is effective at
delineating these landslide types.

DISCUSSION

In this study, lidar elevation differencing and NDVI differencing are
proven to be more effective at identifying and delineating landslides
in an urban subarctic environment than SAR ACD methods.
Elevation differencing proved useful to identify and delineate soil
slumps, soil slides and rapid soil flows, while NDVI differencing is
more effective at capturing soil slumps and rapid soil flows. The
success of the elevation differencing method at delineating soil
slumps, soil slides and rapid soil flows can be attributed to the
fact that they have distinct erosional or depositional signatures which
increases the extent of the landslide affected area. Because soil slumps
tend to result in a large, semi-coherent landslide deposit left in the

landscape, the probability distribution for this landslide type is
positively skewed and thus, these landslides are easy to delineate
using elevation differenced data. Soil slides and rapid soil flows have
an elongated erosional signature with small and thin deposits, which
result in a negatively skewed probability distribution.

The success of the NDVI differencing method at delineating soil
slumps and rapid soil flows can be attributed to their severity and size,
with the major limiting factor being that landslides need to occur in
vegetated areas in order for NDVI methods to be useful. Because soil
slumps and rapid soil flows are disruptive to the overlying vegetation,
they have the potential to have a lasting impact on the landslide
affected area. Even though the images used in our study are a year
apart, these landslides are still able to be delineated due to their
severity and ability to leave a lasting scar on the landscape. Thus, in
scenarios where these landslide types are known to have been
triggered, the methods presented here could prove useful at
identifying those landslides and delineating them.

FIGURE 3 | An example of the performance of each method at detecting rapid soil flows (outlined in red). Panel (A) shows the performance of elevation differencing
and (B) shows the performance of NDVI differencing. PanelsC–E display the performance of the remaining SAR ACD methods. An aerial photo of these rapid soil flows
can be seen in panel (F) (Photo Credit: USGS).
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Although the earthquake occurred in late fall with winter
conditions, seasonal NDVI composites preceding and following
the earthquake were shown to be effective at identifying and
delineating landslides. Because the NDVI composites were
generated using widely available Sentinel-2 data, the method
can be easily implemented in future studies. The resolution of
this data (10 m resolution), however, may fail to map smaller
landslides. In this study, for instance, the minimum landslide area
that could be mapped using the NDVI differenced data was
355 m2. While not widely available, higher resolution imagery
containing NIR bands, such as from theWorldView sensors, may
be able to generate higher resolution NDVI differencing maps.

Challenges to Overcome
While we were able to effectively identify and delineate landslides
observed in the field using the remote sensing methods, and delineate
an additional five that were not identified in the field, we also faced
many challenges that prevented us frommapping all landslides in our
study area. Snow accumulation and lack of sunlight were the primary
challenges associated with landslide mapping using field and

multispectral data, but the expression of the landslides due to the
nature of the ground motion also played a crucial role. Despite the
November 30 earthquake being the largest earthquake since theM 9.2
Great Alaska earthquake to affect the Anchorage area, the landslides
triggered were generally small, shallow, and limited in number (Jibson
et al., 2020).Many slope failures consisted ofminor slope cracking and
deformation (e.g., Figure 2) that may result in costly damage to
structures but are too subtle to identify via the remote sensing
methods. In addition, many of these geotechnical failures were
repaired prior to the date of the post-event imagery used in this
study (we had to wait until the Spring or Summer for post-event
images to be of sufficient quality for mapping). To summarize,
producing a complete and high-quality landslide inventory is
challenging for this particular earthquake due to the environmental
conditions as well as the subdued surface expression of the landslides.

Within our study area, we failed to delineate soil slides and soil
slumps that were identified in the field with remotely sensed data.
This is primarily attributed to the resolution of the NDVI (∼10 m)
and elevation data (1 m) because these failures were small. This
may also result in a failure to effectively map rock falls as well.

FIGURE 4 | Probability distributions comparing landslide pixels to landscape pixels for each method. Panel (A) and (B) display the distributions for the elevation and NDVI
differencing, respectively. Panels (C–F) display the distributions of the remaining SARACDmethods. Confidence interval for each point shown as gray line (significance level 0.05).
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FIGURE 5 | Probability distributions comparing landslide pixels to landscape pixels by landslide type for the elevation and NDVI differencing methods. Panels (A)
and (B) display the distributions that correspond to soil block slides for the elevation and NDVI differencing methods, respectively. Similarly, panels (C) and (D)
correspond to soil slumps, panels (E) and (F) correspond to soil slides, (G)and (H) correspond to rapid soil flows and (I) and (J) correspond to rock falls. Confidence
interval for each point shown as gray line (significance level 0.05).
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However, there were only two rock falls in our study area so with
this small sample size it is difficult to definitively say if rock falls are
generally challenging to map using the methods presented here.
Additionally, NDVImay have failed to capture some landslides due
to the composites being produced from images taken several
months before and after the earthquake event, if vegetation
disruption was minor, the vegetative cover could have fully
recovered in that time. While we were able to successfully use
NDVI differencing to map other landslides in our study area, this
method is unfortunately not applicable above tree line in arid or
semi-arid environments due to a lack of vegetation and thus lack of
changes in vegetation due to landslide scouring. Though outside
the study area, there were some rock falls above tree line in the
mountainous areas east of Anchorage (Grant et al., 2020b; Jibson
et al., 2020). Elevation differencing can solve these issues, however
there are limitations related to data availability as well as the spatial
and temporal resolution of the data. Here, ourmapping was limited
by the extent of the 1-m DEM data and the 3-year time difference
between the pre- and post-DEMs. One way to overcome this may
be to use the DEMs available as part of the ArcticDEM project
(Porter et al., 2018). The ArcticDEM data are derived from stereo
satellite imagery and made available for a large portion of the
northern latitudes at 2 m resolution. The data are periodically
released, however, and at the time of publication the latest release
did not include any post-earthquake DEMs. Depending on data
access and computer processing power, one could also generate
these DEMs using stereo satellite imagery and the NASA AMES
stereo pipeline (Beyer et al., 2018). One limitation, however, is that
unlike lidar methods, the ArcticDEM project produces a digital
surface model (DSM) that does not remove vegetation. This
emphasizes the importance of collecting regular “pre-event”
baseline data to facilitate rapid and reliable mapping.

Despite the many advantages of using SAR sensors for mapping
surface changes, SAR ACDmethods were not effective at mapping
landslides in this study due to several geomorphologic, radiometric,
and image processing factors (see Mondini et al., 2021 for a recent
review). During image pre-processing, both horizontal-horizontal
(HH) and horizontal-vertical (HV) polarization scenes were
considered. HV scenes typically had lower (darker) backscatter
and did not improve landslide detection, therefore only HH scene
results are shown herein. Additionally, we found that a Lee filter
operating as a 3 × 3 pixel moving window sufficiently reduced
speckle, as determined visually and by comparing the variance in
the intensity image before and after filtering.

Multiple platforms with different SAR bands and look
directions were used to optimize landslide detection. A direct
comparison of C-band (Sentinel-1) versus L-band (ALOS-2)
performance is challenging due to the different temporal and
spatial resolutions of the scenes. While the L-band scene
contained less speckle than the C-band scenes, it did not
result in an improvement in landslide detection. Landslide
events must cause surface changes of a significant magnitude
to be recognizable in the SAR imagery, thus changes in the
amplitude were not sufficiently higher than the noise or
speckle effect to identify surface changes. One of the most
significant limiting factors for landslide detection in this study
was illumination issues caused by the side-looking geometry of

the SAR system, which results in geometric distortions in steep
terrain, such as layover (top of a backscattering object is recorded
closer to the radar than the lower parts of the objects) and radar
shadows (lack of radar illumination). While both ascending and
descending scenes were considered, steep, south-facing slopes
where many of the landslides occurred still experienced
significant geometric distortions, preventing landslide detection.

SAR can penetrate clouds and image during the day or a night,
providing a potential workaround for mapping in the dark in
subarctic and arctic regions. However, the snow coverage may
have resulted in the large amount of noise present in our SAR
scenes. Thus, the main question arising from this work is what other
methods can we further develop to help with landslide mapping in
dark, snow covered environments? A second questions is: what
methods will help to map small and subdued landslides? The
motivation for the first question is due to the need for mapping
in subarctic regions, the second question arises from the fact that in
many instances’ landslide inventories are produced for events that
are extreme and leave an easily discernible mark on the landscape
(Tanyaş et al., 2018). Thus, the landslide inventories that are
generally used for modeling efforts tend to rely on information
from these dramatic events and not events that result in smaller
landslides. This situation results in subsequent models relying on
these inventories to be biased. The answer to both questions can be
obtained by further testing and developing methods in such an
environment (where visibility is limited due to snow and lack of
sunlight) and under similar conditions (limited surface expression of
landslide damage).

Our work indicates the value of closely analyzing and further
developing remote mapping methods in environments such as
Anchorage, AK, and for events that result in minor surface
deformation. A similar earthquake event occurred on March 31,
2020, in Stanley, Idaho. After the Mw 6.5 earthquake, USGS field
reconnaissance efforts were restricted due to the ongoing COVID-
19 pandemic. In addition, local response was stymied due to
avalanche risk and late season snow limiting ground visibility via
aircraft (Idaho Geological Survey, 2020). The Idaho event is just one
example that highlights the utility of remote mapping in an
environment such as Anchorage, AK. Anthropogenic climate
change has also been shown to alter the characterization and
frequency of landslides occurring in subarctic conditions (Coe
et al., 2018; Coe, 2020) suggesting that developing such methods
will be of high importance into the future. Here, we suggest that
exploring remote mapping methods systematically can lead to a
better understanding of landslide mapping in such an environment.
Such development in the field could then greatly improve
earthquake-triggered landslide susceptibility and hazard models.

The challenges left to overcome relate mainly to the resolution
and quality of the data available. ArcticDEM data could potentially
be used to map landslides in subarctic environments. Additionally,
higher resolution satellite imagery could be used to generate NDVI
maps. Digital image correlation (DIC) of high-resolution satellite
imagery may be more effective at capturing coherent landslides such
as soil block slides (Bickel et al., 2018). Despite the ineffectiveness of
the SAR ACD methods, InSAR (Interferometric Synthetic Aperture
Radar) could be used to map coherent deformation, such as lateral
spreading, as well (Saroli et al., 2005). TheNASA-ISRO SARmission
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(NISAR) with a projected launch date of 2022, will have a long
(L-band) wavelength, 3–10m resolution, temporal resolution of
12 days, and will be freely available and open to the public. Since
L-band radar can penetrate the tree canopy at greater depths than
C-band, these new data may be useful in detecting landslides in
forested areas (Rosen et al., 2017).

CONCLUSION

In our study, we provide evidence that remote mapping can
augment field-based inventories by aiding in the discovery of
previously unobserved landslides and also help to better delineate
the landslide-affected area. Simultaneously, we also highlight the
importance of rapid post-earthquake field observations in
environments such as Anchorage, AK, as these allowed us to
build an adequate inventory and also developmethods to map the
remaining area affected by the earthquake.

Broadly, we demonstrate a gap in our knowledge of earthquake-
triggered ground failure in arctic and subarctic environments in
winter conditions because of difficulties in remote mapping under
such circumstances. With many earthquake-prone areas subject to
such circumstances (northern Japan, Alaska, Canada, Iceland) and
many other regions prone to similar geologic conditions andwinter
weather, there is merit in determining an effective way to map
landslides in such an environment. To date, few earthquake-
induced landslide inventories are located in these subarctic
environments despite the relatively high amount of seismic
activity (Tanyaş et al., 2018). Many of the identified challenges
are not unique to Alaska; thus, the observations and mapping
methods described in this study can provide the foundation for
others to develop workflows for mapping landslides in subarctic
and urban regions and improve response and landslide inventory
efforts in these challenging environments.
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Tanyaş, H., Allstadt, K. E., and van Westen, C. J. (2018). An Updated Method for
Estimating Landslide-Event Magnitude. Earth Surf. Process. Landf. 43,
1836–1847. doi:10.1002/esp.4359
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