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Detecting and forecasting riverine floods is of paramount importance for adequate disaster
risk management and humanitarian response. However, this is challenging in data-scarce
and ungauged river basins in developing countries. Satellite remote sensing data offers a
cost-effective, low-maintenance alternative to the limited in-situ data when training,
parametrizing and operating flood models. Utilizing the signal difference between a
measurement (M) and a dry calibration (C) location in Passive Microwave Remote
Sensing (PMRS), the resulting rcm index simulates river discharge in the measurement
pixel. Whilst this has been demonstrated for several river basins, it is as of yet unknown at
what ratio of the spatial scales of the river width vs. the PMRS pixel resolution it remains
effective in East-Africa. This study investigates whether PMRS imagery at 37 GHz can be
effectively used for flood preparedness in two small-scale basins in Malawi, the Shire and
North Rukuru river basins. Two indices were studied: The m index (rcm expressed as a
magnitude relative to the average flow) and a new index that uses an additional wet
calibration cell: rcmc. Furthermore, the results of both indices were benchmarked against
discharge estimates from the Global Flood Awareness System (GloFAS). The results show
that the indices have a similar seasonality as the observed discharge. For the Shire River,
rcmc had a stronger correlation with discharge (ρ � 0.548) than m (ρ � 0.476), and the
former predicts discharge more accurately (R2 � 0.369) than the latter (R2 � 0.245). In
Karonga, the indices performed similarly. The indices do not perform well in detecting
individual flood events when comparing the signal to a flood impact database. However,
these results are sensitive to the threshold used and the impact database quality. The
method presented simulated Shire River discharge and detected floods more accurately
than GloFAS. It therefore shows potential for river monitoring in data-scarce areas,
especially for rivers of a similar or larger spatial scale than the Shire River. Upstream
pixels could not directly be used to forecast floods occurring downstream in these specific
basins, as the time lag between discharge peaks did not provide sufficient warning time.
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INTRODUCTION

Natural hazards are considered disasters when they disrupt the
functioning of a society and cause human, material, economic or
environmental losses that the community or society cannot cope
with using its own resources (IFRC, 2020). Floods are among the
most frequent and globally widespread of disasters: Between 2000
and 2019, flooding accounted for 44% of all reported disasters,
affecting 1.65 billion people globally (CRED and UNDRR, 2020).
The intensity and number of floods occurring annually has also
been rising in many locations in recent years, a trend likely to
persist in the light of climate change (Chidanti-Malunga, 2011;
Aich et al., 2013; IPCC, 2014). Simultaneously, floods have been
increasingly causing economic, material, and human losses due to
rapid population growth and economic development in
developing countries, including in flood-prone areas (Hussain
et al., 2005).

One region that is increasingly affected by weather-related
disasters is Sub-Saharan Africa. Economies here are largely
dependent on (often rain-fed) agriculture (Svendsen et al.,
2009), leading to a substantial economic dependency on
meteorological and hydrological conditions and a vulnerability
to anomalies in these conditions (Chidanti-Malunga, 2011).
Better monitoring and forecasting systems can improve
respectively humanitarian response and anticipatory action
(van den Homberg et al., 2020), whereby vulnerable people are
supported in taking early action prior to the hazard happening
(an approach called forecast-based financing). In this way, their
vulnerability is reduced and resilience increased. Unfortunately,
there are many data-sparse areas in Africa, and Malawi
specifically (Ngongondo et al., 2011; Mwale et al., 2012),
where hydrological and meteorological data, important
components of these systems, are unavailable or not of
satisfactory quality.

Alternative strategies for flood forecasting are being explored
in countries facing these challenges, one of which being the
application of satellite remote sensing for monitoring and
forecasting (De Groeve, 2010; Palmer et al., 2015). The
potential of optical remote sensing data is widely covered in
literature, but optical data are less suitable for this purpose due to
the cloudiness that often occurs in times of flood surges (Smith,
1997). Furthermore, satellites carrying optical sensors, such as
SPOT or Landsat TM, have a relatively long return period
(Weintrit et al., 2018), which is not ideal for preventative
monitoring. Remote sensing from Global Navigation Satellite
System-Reflectometry (GNSS-R), such as NASA’s CYGNSS
mission, has recently gained attention as a viable alternative to
optical sensors for flood monitoring due to its ability to operate
under cloudy conditions (Chew et al., 2018; Chew and Small,
2020; Unnithan et al., 2020). However, CYGNSS currently does
not provide (near-) daily spatial coverage over land due to the
pseudo-random sampling technique of GNSS-R satellites,
yielding this method less optimal for real-time applications
until more satellites are launched (Chew and Small, 2020).

Passive sensors that operate on the microwave part of the
electromagnetic spectrum (e.g., SSMI/I, SMMIS, AMSR-E) are
also less limited by cloud cover, atmospheric haze or Sun

illumination and have a near-daily revisit time (D’Addabbo
et al., 2018). The relatively low radiation intensity in the
microwave spectrum causes the spatial resolution of the data
to be relatively low, meaning the data are most suitable for
analyses over larger-scale water features (Smith, 1997) One of
the ways in which floods can be assessed using passive microwave
remote sensing (PMRS) is the CM-ratio (rcm), a method first
developed by Brakenridge et al. (2007). This satellite-derived
signal uses the brightness temperatures (Tb) obtained from Ka
band passive microwave radiometry, comparing the values from a
measurement cell M to those of a dry calibration cell C. In areas
with a well delineated flood plain, increases of the ratio over time
can be synchronous with discharge increases, as the in-pixel water
area expands (Hirpa et al., 2013). In addition to this method, an
additional “wet” calibration cell can be introduced to the
equation. This surface water-covered cell provides an
indication of the Tb of surface water in the area, which helps
to convert the ratio into the fraction of surface water within the
cell, a variable which is spatially interpretable. While van Dijk
et al. (2016) introduced this method by estimating water extent
from Short-Wave Infrared imagery from MODIS, assuming a
value for the emissivity of water, Neisingh (2018) expanded on
this by using PMRS data only, a method named the CMC-ratio
(rcmc).

The applicability of rcm for flood detection and forecasting has
been investigated in the Zambezi watershed (De Groeve, 2010),
and the Brahmaputra and Ganges watersheds (Hirpa et al., 2013).
Furthermore, the Global Disaster Alert and Coordination System
(GDACS) has adapted an automated rcm system as presented by
Kugler and De Groeve (2007) for development of a Global Flood
Detection System (GFDS), which obtains and processes AMSR-E
imagery for global flood monitoring in real-time. Whether or not
the system performs well in simulating discharge, is dependent on
local factors: GFDS stations in tropical climates with a river width
of >1 km, a discharge of >500 m3 s−1, and a lower density of
surrounding vegetation tend to perform better than smaller-scale
rivers, rivers in more densely vegetated areas or in different
climates (Revilla-Romero et al., 2014).

Whilst the GFDS does include stations in East-Africa,
coverage in Malawi is sparse, and the applicability of the CM-
method in smaller-scale watersheds in Malawi has not been
studied as of yet in any published work. Although smaller
rivers in this area may not have the optimal river width or
discharge described by Revilla-Romero et al. (2014), the
tropical climate and relatively open structure of the vegetation
could still allow for Virtual Gauging Stations (VGSs)
measurements with a high correlation with in-situ observed
discharge. Furthermore, the potential of introducing a wet
calibration cell in the microwave spectrum to estimate
inundation extent has been proposed and analyzed in a thesis
by Neisingh (2018), but was as of yet not further investigated.

This study therefore aims to investigate whether openly
available PMRS data of 25 km-resolution can be used for
monitoring and forecasting of floods in two relatively small-
scale basins inMalawi. We will focus on two calibrated variants of
the PMRS-derived index rcm. The first index is them index, which
represents the rcm as a magnitude relative to the average
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conditions, calibrated using historical signal data. The second is
rcmc, which uses an additional wet calibration target and can be
interpreted spatially. We will investigate what the potential is for
PMRS-data to detect the occurrence and magnitude of riverine
floods in downstream areas, comparing the indices with in-situ
discharge data as well as a flood impact database. Secondly, we
will investigate whether the smaller sizes of these specific basins
allow for establishing a relationship between upstream and
downstream m- and rcmc-signals, and we will discuss the
potential use of PMRS for early warning purposes. We
hypothesize that, although the footprint of typical PMRS
sensors is relatively large, the wetting of smaller floodplains
within this footprint may provide sufficient changes in both
PMRS-indices for the detection and forecasting of floods.
Furthermore, we hypothesize that the study area with the
relatively wider river and larger basin will be more suitable for
flood detection and forecasting using PMRS than the study area
with the smaller-scale river. The results were benchmarked
against a more widely used, global flood model, the Global
Flood Awareness System (GloFAS), which is presently used by
humanitarian organizations for early warning systems.

MATERIALS AND METHODS

Study Area
Malawi
The Republic of Malawi is a landlocked country in the southeast
of Africa, bordered by Lake Malawi. Malawi’s economy is mostly
agro-based, with 35% of the country’s Gross Domestic Product
(GDP) originating from the agricultural sector (DoDMA, 2015).
However, only 2.3% of all cultivated land, and 66.0% of all arable
land suitable for irrigation was irrigated in 2011 (FAO, 2011),
yielding the country very dependent on the weather. It is
estimated that floods and droughts together reduce the
country’s GDP by 1.7% (Pauw et al., 2011).

Malawi has a subtropical climate with a wet and warm growing
season that takes place from November to April (DoDMA, 2015;
Malawi Meteorological Services, 2020). Flooding accounts for
approximately 40% of all recorded disasters in the country
(Mijoni and Izadkhah, 2009), affecting millions of lives and
frequently causing displacement, economic damage and
casualties. Despite the floods being a reoccurring
phenomenon, the series of devastating floods in January 2015
was far more destructive than most recent disasters: it affected
more than one million people in the country, with 230,000 people
displaced, 172 reported missing, and 170 reported fatalities
(Guha-Sapir, 2020). As recently as 2019, floods occurring in
the wake of Cyclone Idai had a destructive impact on the
country as well (Guha-Sapir, 2020). As extreme events like
this are expected to happen more frequently in the near future
(Mijoni and Izadkhah, 2009; DoDMA, 2015), flood risk will
increase as well, unless more drastic disaster risk management
measures are taken (Šakić Trogrlić et al., 2019).

Many of the current flood risk management practices in
Malawi are the result of community-based systems, funded by
international donors. An example of this is the CB-EWS, that

monitors rainfall and water level gauges and disseminates
messages downstream (Šakić Trogrlić et al., 2019). The
official national Early Warning System (EWS) consists of
the Operational Decision Support System (ODSS), a
meteorological, hydrological and hydraulic flood forecasting
and warning system that predicts riverine floods on the short-
term, i.e., approximately three days (Ammentorp and Richaud,
2016). It is currently only operational in the Lower Shire
Valley. This valley is considered one of the areas in Malawi
that is most severely affected by floods (Mijoni and Izadkhah,
2009).

Several early warning systems in other countries include or
are in the process of including triggers generated by the
Global Flood Awareness System (GloFAS) (Boelee et al.,
2017; Jjemba et al., 2018), a global flood model based on
rainfall data and hydrological and hydraulic model output.
GloFAS is freely available and provides medium-range
forecasts. Its maximum lead time is 30 days, and the daily
forecast data are provided with a maximum lead time of
15 days. The applicability of GloFAS for flood preparedness
in Malawi has been investigated by 510, the data initiative of
the Netherlands Red Cross, for the Lower Shire Valley. It was
found that GloFAS cannot accurately predict absolute
discharge values in the area, but that it could be used in
forecasting systems if trigger levels would be set correctly
(Teule, 2019).

FIGURE 1 | Upstream and downstream Virtual Gauging Stations (VGSs)
along the North Rukuru (A) and Shire River (B) in Malawi. One grid cell is
approximately 25 × 25 km. The labels on the cells are used for referencing
throughout this thesis, with the letter corresponding to the district
Chikwawa (C) or Karonga (K). Data sources: RCMRD (2015); Brodzik et al.,
(2016); National Statistics Office of Malawi, (2018); OpenStreetMap
contributors (2020).
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Selection of Districts and Virtual Gauging Stations
Suitable administrative districts of interest for this study were
selected based on their vulnerability, exposure to riverine floods
and lack of coping capacity as reported on the Community Risk
Dashboard by 510 (510 an initiative of the Netherlands Red
Cross, 2020). From the resulting districts, Karonga and
Chikwawa were deemed most relevant as they are labeled
“areas of intervention” in the ECHO III and ECHO V projects
of the Red Cross, emphasizing their importance for the work of
the Malawi Red Cross Society and its partner National Societies.

Within each district, one downstream VGS was selected; A
grid cell the size of a pixel from the PMRS-dataset (Figure 1). The
VGSs had to be situated relatively downstream in the watershed,
have a known record of riverine flooding, and have a visible flood
plain as identified from optical satellite imagery. The latter was
visually assessed, making use of the time slider function in Google
Earth Pro 7.3.2. Series of upstream VGSs were subsequently
selected in order to assess whether upstream and downstream
satellite PMRS-signals are related. The headstream of both rivers
was identified making use of a waterway shapefile line
(OpenStreetMap contributors, 2020), supplemented with basin
and flow accumulation maps (created with Arcmap 10.8 using the
ASTER GDEM (NASA/METI/AIST/Japan Spacesystems and
U.S./Japan ASTER Science Team, 2019). Subsequently, the
river flow was traced upstream, where each PMRS-pixel
upstream from the downstream VGS was marked as upstream
VGS (Figure 1).

Shire River and North Rukuru River
For the district of Karonga, the downstream VGS (9°56′15″S,
33°50′44″E, cell K0 on Figure 1A) is situated in the grid cell
covering the capital of the district, Karonga Town. Riverine
flooding of the North Rukuru River has occurred here every
wet season between 2009 and 2016, with the floods in 2010 and
2016 reported especially severe (Manda and Wanda, 2017). The
North Rukuru River is the main river in this low-lying region,
meandering through the grid cell and eventually draining into
Lake Malawi (Figure 1A). The river itself is up to 100 m wide
during the wet season. Its floodplains (up to 125 m wide on each
side) are home to many informal settlements, which are especially
vulnerable to flood events, including frequent low-impact events
(Manda and Wanda, 2017). The North Rukuru River shows a
strong seasonal pattern in streamflow, with a wet season starting
in November/December, reaching a peak that in most years does
not exceed 100 m3 s−1, before gradually reclining from May
onwards to a discharge of nearly 0 m3 s−1. Therefore, regarding
width and size, the river does not meet the optimal conditions
specified by Revilla-Romero et al. (2014).

For the district of Chikwawa, the focus is on the Shire River,
the largest river in Malawi that originates in Lake Malawi and
flows into the Zambezi River in Mozambique (Figure 1B). The
downstream VGS is located along the Lower Shire River, covering
the city of Chikwawa (16°04′07″S, 34°49′50″E, cell C0 on
Figure 1B). The city is frequently hit by riverine floods,
including the severe floods in 2015 and 2019 (Guha-Sapir,
2020). At Chikwawa, the Shire River showcases a unimodal
seasonal pattern in streamflow, with a peak occurring in

February or March. Discharge ranges from an average of
approximately 400 m3 s−1 in the dry season to an average of
600 m3 s−1 in the wet season. During the latter season, the river is
approximately 300 mwide in the VGS, its floodplains up to 800 m
when measured from the center of the river. Thus, the “regular”
river width is still narrower than the optimal conditions specified
by Revilla-Romero et al. (2014), but its average discharge does
meet the conditions in the wet season.

Data Acquisition and Treatment
PMRS Data
Tb data were obtained from NASA’s Making Earth System Data
Records for Use in Research Environments (MEaSUREs)
Calibrated Enhanced-Resolution Passive Microwave Daily
EASE-Grid 2.0 Brightness Temperature ESDR, Version 1
(Brodzik et al., 2016), a freely available dataset including
PMRS imagery from different platforms and sensors. The
dataset itself spans from 1978 to 2017, but some platforms in
the dataset are still operational. All acquired data were Level 3-
processed to NASA standards prior to acquisition, meaning the
raw data were processed to sensor units (Tb), calibrated, and
mapped onto a resampled grid with a resolution of 25 km. Due to
the gridding, the data may be temporally averaged or ignore
overlapping satellite swaths altogether (Brodzik et al., 2016). A
long-term timeseries of Tb was created by downloading
MEaSUREs data from different platforms and sensors with the
software WGet, and combining them in one dataset, spanning
from 1978 to 2017 (see Supplementary Material).

Brakenridge et al. (2007) used the horizontally polarized Tb,
from the descending node, measured in the 36.5 GHz channel of
the Advanced Microwave Scanning Radiometer (AMSR-E), as
this frequency suffered little interference from radio frequencies
or the oxygen and water vapor spectral lines. This is in accordance
with the optimal settings for rcmc as defined by Neisingh (2018),
and those used by other research on the topic of rcm-signals (De
Groeve et al., 2007; De Groeve, 2010; Hirpa et al., 2013).
Horizontally polarized imagery from the descending node was
therefore used here as well. As a frequency, 37 GHz was chosen
over 36.5 GHz since data at this frequency in MEaSUREs covered
a longer period.

Generally, electromagnetic radiation in the microwave region
is unaffected by cloudy conditions. However, some cloud-
induced noise could remain in the Tb-signal in cases of
thunderstorms or heavy rain events. A filter method was
applied to the data in order to eliminate this, and account for
the fact that the satellites do not achieve full swath coverage near
the equator. The filter method had to be able to be applied in real-
time and could therefore not be looking to future neighboring
values, as this would remove valuable flood response time in real-
time. Therefore, the Tb data for each cell was filtered using the
same approach as De Groeve (2010) and van Dijk et al. (2016): A
filter was applied to the values that takes the average of the
preceding four values and the current value. This window
removes some data gaps, most notably in the period
1978–1987, when the satellite return period is two days rather
than one, and eliminates some noise, while retaining the flood
peaks in the data. However, this method does reduce and delay
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the effect of signal peaks occurring in real-time, as it averages
them out with the lower values occurring previously.

Locating Calibration Targets
Environmental factors such as physical surface temperature,
differences in emissivity (e.g., through differences in vegetation
cover), and atmospheric moisture have a considerable effect on
raw Tb values measured by satellites (De Groeve, 2010; van Dijk
et al., 2016). The CM-methodology is therefore based on the
assumption that cells that are located within a reasonable distance
from one another are similarly affected by these “noise factors”
(van Dijk et al., 2016). The dry calibration cell Cd should be
located within the temperature-correlation length of M,
minimizing the influence of these variables from the ratio
(Brakenridge et al., 2007; De Groeve, 2010; van Dijk et al.,
2016). At the same time, however, Cd must be located outside
of the river reach of M, yielding it a relatively stable calibration
target.

M was represented by either the downstream VGS
(downstream flood detection analysis) or the upstream VGSs
(upstream-downstream relationship analysis) in each basin
(Figure 1). Cd was chosen by applying a spatial buffer of
50 km (2 pixels of 25 km on each side) around M. Within this
kernel, the cell with a yearly average Tb-signal closest to the 95th
percentile of all cells was chosen as Cd, a method similar to that of
van Dijk et al. (2016). This process was repeated for each year.
While this would mean that Cd would likely not be at the same
location each year, making the timeseries less homogenous, it
would account for long-term changes in river reach and
hydrometeorological conditions throughout time. The wet
calibration target Cw, which is needed for the calculation of
rcmc, was manually chosen as the nearest cell to M that was
fully covered by a large water body. The Cw-cell for the Shire River
was therefore located in Lake Chilwa, and that of the North
Rukuru River in Lake Malawi, the closest large and permanent
bodies of water for the two downstream VGSs (see
Supplementary Material). It was assumed that surface
temperatures, emissivity and atmospheric moisture in these
locations were similar here as in the respective M-cells.

Calculation of Satellite Indices
Satellite indices were calculated using Tb-timeseries from the
located M, Cd, and Cw cells, after the filter method had been
applied to it. The two signals that were compared in this study
were m and rcmc, which are both related to the rcm, but
standardized with respect to the average historical signal in
this particular area (m) or recalculated into a surface water
fraction (rcmc).

m is directly related to rcm and uses historical rcm-signals to
express the observed rcm as the number of standard deviations
from a base value. In order to calculatem, rcm was calculated first:

rcm � TbCd

TbM

, (1)

where TbM is the Tb of a measurement cell containing a substantial
fraction of floodplain surface water, assumed to be correlated to

increases and decreases of river flow, and TbCd
is the Tb of a closely

located, dry calibration target, Cd. From rcm, m is calculated,
which is the relative magnitude (or anomaly) of the rcm compared
to the average rcm in that particular cell. The index should hereby
account for cells that have permanent water bodies within them,
such as lakes or wider rivers, without counting them toward an
inundation. The index is calculated as

m � rcm − μrcm
σrcm

, (2)

where rcm is the ratio as calculated in Eq. 1, μrcm is the average rcm
over a baseline period, and σrcm is the standard deviation of rcm
over this same period. This standardized index was introduced by
De Groeve et al. (2007) and further elaborated upon by De Groeve
(2010). Themean and standard deviation were calculated over the
complete dataset available (1978–2017), meaning m has a perfect
linear correlation with rcm. Findings pertaining to this index can
therefore be extended to rcm.

rcm represents a proxy for discharge, and not a quantitative
hydrological variable, which means it is not easily interpretable in
the context of flood mapping. The second index studied here, the
rcmc, can be interpreted more easily, as it represents an estimate
for the fraction of surface water within the M-cell. Whilst De
Groeve (2010) and van Dijk et al. (2016) performed similar
calculations with an assumed emissivity for water, Neisingh
(2018) introduced the addition of a fully surface-water covered
calibration cell to the equation. The index is calculated as

rcmc �
TbCd−TbM

TbCd− TbCw

, (3)

where TbCd
is the Tb in the dry calibration cell (Cd), TbM the Tb in

the measurement cell containing the river, and TbCw the Tb in a
second nearby calibration cell that is mostly covered by surface
water (Cw). The identification of Cw can be difficult in areas
lacking large water bodies in close proximity, considering the
coarse spatial resolution of most PMRS data: water bodies often
only cover part of a pixel, and using water bodies further away
from the M-cell would increase the influence of environmental
variables on the respective signals, as described in Locating
Calibration Targets.

Gauge Data
Average daily discharge at the gauging station at Chikwawa
(1L12) between 1977 and 2009 was obtained from the
Department of Water Resources of Malawi (2019). Data from
the Mwakimeme station in Karonga (8A5) between 1968 and
1991 was obtained from the Global Runoff Data Centre (2020).
For both stations, discharge entries older than 1979 (the first full
year of the PMRS dataset) were not utilized.

Flood Database
A flood impact database was created by combining impact data
from EM-DAT (Guha-Sapir, 2020), with flood hazard data from
the Dartmouth Flood Observatory (Dartmouth Flood
Observatory, 2020) and the GLIDE-database (GLIDE, 2020).
All floods that were tagged to have taken place in the districts
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of Chikwawa and Karonga were selected. Floods tagged as flash
floods or those with a duration of one day were dropped, as the
distinction between natural, short-term signal fluctuations and
flash floods cannot be made by just looking at the satellite signal,
and because many flash floods tend to go unreported. Floods that
only had a starting or ending month and no precise dates
recorded were assumed to start on the first day of the month,
or end on the last day of the month, respectively.

As many of the flood entries contained information on the
affected districts and rivers only, and not the precise location
where the flood took place, the resulting flood database was
quality checked with an analysis of annual discharge extremes at
our downstream points of interest. The maximum discharge
observed within the timespan of these floods was extracted in
order to check whether the reported flood occurred during annual
peak discharge. If so, it was assumed that the flood took place in
our downstream area of interest.

Relationship With Discharge
Regression Analysis
The relationship between the satellite signals and observed
discharge was established in a regression analysis. The
discharge data in Chikwawa showed a significant interannual
baseflow trend (Kelly et al., 2019) due to variations in rainfall
(Jury, 2014), whereas the satellite signals did not show this trend
due to their standardized nature. As this would mean that the
relationship with discharge would change throughout time, and
as the aim of this research is to set up a forecasting system,
yielding the recent values the most relevant, it was decided to
apply the regression for both locations only on the five most
recent years of discharge record, which were also relatively stable
in baseflow. The seasonal oscillations were assumed to have an
equal impact on both datasets in this relatively short period.
Furthermore, only the months of December up to and including
April were used in this step, as we are primarily interested in the
wet season. Frequently occurring low discharge values in the dry
season would potentially impact the relationship, and have also
shown to not be well simulated by rcm (Brakenridge et al., 2007;
Revilla-Romero et al., 2014).

The datasets from Chikwawa (cell C0) and Karonga (cell K2)
were each divided into two random subsets, both comprising half
of the five years of data. The relationships between the discharge
data and m and rcmc were tested for normality of residuals,
homoscedasticity, and linearity to assess whether a parametric
or non-parametric correlation would be most appropriate.
Normality was tested with a Shapiro-Wilk test at 5%
significance level, and homoscedasticity was tested with a
median-based Levene’s test. Both yielded a p-value of less than
0.05 for the discharge data and both rcmc and m, meaning the null
hypotheses of normality and homoscedasticity were rejected. The
assumption of linearity was assessed visually with a scatterplot
(discharge vs. satellite signals), and rejected as well. A non-
parametric test using Spearman’s correlation coefficient (ρ)
was therefore deemed most appropriate. ρ is calculated as

ρ � 1 − 6∑ d2i
n(n2 − 1), (4)

where the data are ranked from 1 to n (the number of data
points), and di � xi − yi, the difference in ranking i and n. The
relationship was simulated with a second-degree polynomial
regression, applied to the training data, as this was the lowest
order at which monotonicity could be achieved in Chikwawa. In
Karonga, monotonicity could not be achieved with any
polynomial order. Spearman’s ρ was calculated using the
testing data and the polynomial predictions. The significance
of the coefficient was assessed by calculating a two-sided p-value
to test the null hypothesis that the predictions and test-values are
uncorrelated (α � 0.05).

Time-Lagged Cross-Correlation
A time-lagged cross correlation (TLCC) was conducted to
identify which VGS, if any, could be used for forecasting
downstream satellite signals, in the same manner as Hirpa
et al. (2013) found upstream VGSs to be useful in forecasting
downstream floods in larger-scale watersheds. If a VGS showed a
strong correlation (ρ > 0.7) and also had a lag time of at least one
day, this VGS would be suitable for forecasting.

As the TLCC assumed stationarity, the datasets were made
stationary first. Whereas the Augmented Dickey-Fuller Test at
a 95% confidence level rejected the null-hypothesis that the
downstream (cells C0, K2) and upstream discharge data and
satellite signals in the wet season (i.e. December to April) were
non-stationary, this test does not account for seasonality but
merely for the presence of a unit root. A visual examination of
the datasets confirmed that the data indeed has a long-term
trend (also see Seasonality of Discharge and Satellite Signals).
This is especially true for the discharge at Chikwawa, which
shows a clear and significant change in baseflow over the years.
Interannual trends were removed from all datasets in linear
segments. Locations where the changes in annual mean value
shift from positive to negative or vice versa were used as break
points. The data also showed strong seasonal oscillations,
which is why the seasonal component was subsequently
removed from the data by fitting a second-degree
polynomial oscillating curve and subtracting this from the
detrended values (see Supplementary Material for an
illustration).

The TLCC was conducted by artificially shifting the stationary
data with a lag time ranging from −20 to 20 days. At each lag time,
a pairwise correlation was conducted and Spearman’s ρ was
calculated to see how the correlation changed with different
time steps, and at which lag time the correlation would be
strongest.

Relationship With Flood Occurrence and
Timing
Extreme Value Analysis
To assess how well registered flood events are detected by our
VGSs, a threshold of what a “relevant” flood is needs to be defined
first. This was done by using the concept of the return period
(treturn), the statistically estimated time it takes for a flood of a
certain severity to repeat itself, where a flood with a treturn of five
years has a probability each year of 0.2 (20%) to return. Whereas
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communities may be better prepared to cope with floods with a
low treturn, floods with a higher treturn generally cause more
damage. FbF-programmes are designed to be activated during
floods with a treturn of at least five years, constituting a balance
between the costs associated with activation and the benefits that
the program bring to the affected communities. For this reason,
this treturn was chosen for the flood threshold definition.

An extreme value analysis was conducted on the complete
discharge dataset including the trend. For each hydrological year
(May to April), the annual maximum was extracted. The
corresponding PMRS signal values at these peaks were sorted,
after which a rank was attributed to them. The probability (p) of
each occurring value was calculated as

p � n − r + 1
n + 1

, (5)

where n is the total number of peaks and r is the rank of the value.
This number was then converted into a treturn in years by taking
the inverse of p:

treturn � 1
p
. (6)

A polynomial curve was fitted to the existing data points to
find the discharge value corresponding to five years, applying
the lowest degree at which a smooth line through the points
could be obtained (Figure 2). This was a 10th degree
polynomial. The rcmc and m-thresholds were identified by
using one of two alternative approaches, depending on the
outcome of the discharge-signal regression relationship
identified previously:

1. If the observed discharge to satellite signal correlation proved
strong (ρ > 0.7) and significant, the m and rcmc values
corresponding to treturn � 5 would be identified by solving
the polynomial equation for the 5 years discharge threshold.

2. If the observed discharge to satellite signal correlation was not
strong and/or not significant, the values corresponding to
treturn � 5 would be calculated in a similar manner as the
discharge threshold, applying the abovementioned flood
frequency analysis on the original rcmc- and m-signals
between 1978 and 2017.

The resulting discharge, m index and rcmc-thresholds with
treturn � 5 were used in the detection performance assessment. To
account for the uncertainties associated with using high-order
polynomial equations, the resulting thresholds were visually
compared with the graphs in Figure 2.

Performance Assessment
A confusion matrix was constructed for the different satellite
indices (Table 1) to assess their performance in detecting floods,
where each table entry represented one hydrological year (May to
April). If a year included a registered flood event, and this event
occurred within a maximum of 14 days from the exceedances of
the determined satellite signal threshold, it was considered a “hit”
(H), i.e. a correctly detected flood. This margin was chosen
because observed flood peaks in discharge data may precede a
maximum in floodplain inundation, and this time difference can
be up to a couple of days (Brakenridge et al., 2007), and because
the backwards-looking filter method may have delayed some
signal increases by averaging with preceding (lower) values. More
details and examples on how the “misses”, “false alarms” and
“correct negatives” were determined can be found in the
Supplementary Material. The confusion matrix was
constructed using a per-year approach, because the large
number of days in the year where no flood occurred (such as
the dry season) would lead to a high number of “correct
negatives”, distorting the results.

Different metrics can be calculated from the confusion matrix,
which in turn can be used to evaluate the forecasting or detection
skills of a model. Therefore, the Critical Success Index (CSI), False
Alarm Ratio (FAR) and Probability of Detection (POD) were
calculated using the equations

SPOD � nH

(nH) + (nM), (7)

SFAR � nFA

(nH) + (nFA), (8)

FIGURE 2 | Peaks of the CMC-ratio (rcmc), m index (m) and discharge
per hydrological year vs. their respective return periods in years for Chikwawa
and Karonga. The red line is a 10th (K2-discharge: 2nd) degree polynomial
curve through the data points. Data source: Brodzik et al., 2016.

TABLE 1 | Confusion matrix.

Observed

Yes No

Modeled Yes Hits (H) False Alarms (FA)
No Misses (M) Correct Negatives (CN)

Notes: In the context of this study, “Observed” refers to events reported in the impact
database, and “Modeled” refers to exceedances of the trigger threshold.
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SCSI � nH

(nH) + (nM) + (nFA), (9)

where nH is the number of hits, nM the number of misses and
nFA the number of false alarms. The POD represents the
fraction of the reported floods that was successfully
forecasted, whereas the FAR represents the fraction of all
alarms that were false according to the records, a measure
of failure to exclude non-event cases. The CSI, also called the
Threat Index, stands for the fraction of modeled floods that
was also reported. As no single statistic can describe the skill of
a model by itself, all three metrics were considered in
evaluating the skill of the satellite signals in detecting
discharge.

Comparison With GloFAS
The PMRS-method’s performance was compared with
hindcasting data from GloFAS in order to compare the
detection skill of the presented method with an existing
EWS. The global model had daily average discharge
estimates available (2000–2018) in a global NetCDF-file
with a grid of 0.1° × 0.1°, obtained through the Copernicus
Climate Data Store and distributed by the Copernicus Climate
Change Service by ECMWF (Harrigan et al., 2020). A 5 years
treturn-threshold was generated from the discharge estimates
(2000–2017) using the same method as was used for the
satellite data. This threshold, the discharge estimates and
the compiled flood database were used to generate a
confusion matrix at both cell K0 and C0 and compare the
performance of this global model with that of the PMRS-
method when the data is treated similarly.

RESULTS

PMRS Series per Cell
The timeseries of the Tb per cell (M, Cd and Cw) can be found in
Figure 3. Points where a transition to a different satellite
sensor/platform was made are clearly visible as amplitude
shifts in the series, for example in 1996. This can be
attributed to the fact that the MEaSUREs-dataset is
resampled from different satellite overpasses and platforms,
and each resampled cell corresponds to slightly different “real”
ground footprints. The aforementioned phenomenon is
especially apparent in cell K0, which is bordered by Lake
Malawi (Figure 3B). This causes different signals depending
on whether the original footprint covers a substantial part of
the lake or not. The shifts in signal are mostly canceled out by
converting Cd andM into a ratio-based index such as m or rcmc

as visible in Figures 4A,B, since the ratios represent the
relative difference between cells from the same platform in
the same period. However, in Karonga especially, a shift
remains visible in 1987 after conversion to a ratio, where
the Nimbus-satellite was merged with the first satellite of
the DMSP-series (Figures 5A,B). This might have to do
with the orbit of the DMSP-satellites and the resulting
fraction of water in the footprint of the data prior to
resampling into the EASE Grid. The amplitude shift
changes the satellite signals’ relationship with discharge
throughout time.

Looking at the relative differences between the cells, Cd andM
in Chikwawa (VGS C0) show a similar trend over time
throughout the timeseries (Figure 3A), except during flood
events, as one would expect. Cw shows a clear peak in 1996,
that also impacted the rcmc-signal in this year. This can be
attributed to severe receding of Lake Chilwa in 1995–1996
(Njaya et al., 2011), causing the Tb of Cw to rise and
approximate the Tb-value of M.

In the downstream Karonga VGS (cell K0), Cd and M do not
follow a similar trend throughout the timeseries, and the
difference in Tb between Cd and M is much larger than was
the case in the C0 VGS (Figure 3B). VGSs situated more
upstream in the North Rukuru basin did show a Cd-M pattern
more similar to the C0 VGS in Chikwawa. The reasons for this
discrepancy will be discussed in Raw Tb Signals. As the first VGS
with a realistic signal was cell K2 (Figure 3C), the rest of the
research project therefore focused on K2 as a proxy for the
downstream area of interest in Karonga, and did not take into
account cell K0 anymore.

Detection of Discharge
Seasonality of Discharge and Satellite Signals
The satellite signals and discharge data follow a similar seasonal
cycle in the Shire downstream VGS (cell C0) as well as the North
Rukuru proxy downstream VGS (VGS K2) (Figure 4),
supporting the assumption that seasonal differences have a
similar influence on the discharge and satellite signals. The
interannual trend present in the discharge series of Chikwawa
is not visible in the satellite signals, due to the fact that the latter

FIGURE 3 | Brightness temperature (Tb) values in Kelvin (K) of the wet
calibration (Cw, blue line), dry calibration (Cd, green line) and measurement (M,
orange line) cells in the downstream virtual gauging station in (A) Chikwawa
(cell C0), (B) Karonga (cell K0) and (C) the proxy Karonga cell (cell K2).
Data source: Brodzik et al., 2016.
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are standardized relative to the prevailing hydrometeorological
conditions at that point in time (Figures 4A,B): in a wetter year,
all cells will show a “wetter” signal’, meaning their relative
difference and hence the ratios remain unaffected.

The seasonal oscillations of satellite signals and discharge data
in cell K0 did not coincide. The resulting rcmc values were

unusually high compared to the values found in cell C0 as a
result of this, despite the narrower width of the North Rukuru
River compared to the Shire River. K2, the proxy VGS situated
more upstream, showed a better correspondence of seasonality
(Figures 5A,B) compared to the discharge data, and more
realistic rcmc-values (Figure 5D) (see Supplementary Material).

FIGURE 4 |Observed discharge and downstream (cell C0) satellite signals rcmc (A),m (B) between 1979 and 2009, andmeanmonthly discharge and downstream
satellite signals rcmc (C) and m (D). rcmc � CMC-ratio, m � m index. Data sources: Brodzik et al., 2016; National Hydrological Services of Malawi, 2019.

FIGURE 5 |Observed discharge and downstream (cell K2) satellite signals rcmc (A),m (B) between 1979 and 1991, andmean monthly discharge and downstream
satellite signals rcmc (C) and m (D). rcmc � CMC-ratio, m � m index. Data sources: Brodzik et al., 2016; Global Runoff Data Center, 2020.
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Relationship Downstream PMRS-Signals and
Discharge
Figures 6, 7 show the correlation and regression analysis at both
locations. For the Shire River in Chikwawa, both m and rcmc

presented moderate correlations with discharge (Figure 6), with a
ρ of 0.548 for rcmc and 0.476 form. For the North Rukuru River in
Karonga, which is by far the smallest stream of the two, no
physically meaningful correlation was found (Figure 7), with a ρ
of −0.067 for rcmc and −0.119 for m. All correlations yielded a
p-value smaller than the α of 0.05 and were therefore considered
significant, with the exception of the correlation between
discharge and rcmc in Karonga (p-value � 0.190).

Furthermore, the results of the regression based on the test
data show that the model underpredicts higher discharge values
in Karonga as well as Chikwawa (Figures 6, 7), which is the
product of the insufficient fit of the regression line to the training
data. The regression in VGS C0 yielded an R2 of 0.369 for rcmc and
0.245 for m. In cell K2, the regression indicated an R2 of ∼0.000
for rcmc and m.

Detection of Flood Occurrence
Flood Database Quality
In Chikwawa, a total of 15 floods were registered during the
period 1989–2017, 12 of which occurred during the period of the
available discharge data (until 2009), and three outside of this
period. Of these resulting events, one flood took place during a
data gap, and three took place in a period where the annual
discharge peak did not occur (indicating that either no flood took
place, or that it was not the most severe event of the year). The

resulting eight reported floods in the database (i.e. 67% of the
reported floods within the discharge dataset’s timespan) took
place during annual discharge peaks at the downstream area of
interest. In Karonga, the quality of the flood records could not be
validated, as all registered floods occurred outside the timespan of
the discharge dataset (1978–1991).

Flood Threshold
Due to the limited strength of the correlation between high
discharge values and satellite signals, the satellite thresholds
were defined with an extreme values analysis. The curves used
to identify the satellite and discharge values with a 5 years treturn
are found in Figure 2. The flood threshold was defined as a
discharge of 1,358 m3 s−1, an rcmc of 0.168 and an m of 2.659 in
Chikwawa. In Karonga, the flood threshold was defined as a
discharge of 303 m3 s−1, with satellite thresholds 0.081 for rcmc

and 3.076 for m.
For four of the 15 registered floods in Chikwawa, including the

severe flooding in 2015, the treturn could not be calculated due to
the absence of discharge data. A treturn of five years or higher was
observed for four of the resulting 11 registered floods, based on
their maximum discharge value. All exceedances of the discharge
threshold occurred during registered flood events, meaning flash
floods did not impact the average daily discharge to the extent
that it increased the number of “Misses”.

Confusion Matrices and Performance Assessment
In the K2-cell in Karonga, both rcmc andm exceeded the five-year
threshold in seven flood seasons between 1989 and 2017
(Table 2A). Whereas most flood events from the database

FIGURE 6 | Chikwawa (cell C0) Spearman’s correlation of (A) rcmc, ρ �
0.548 and (B)m, ρ � 0.476. Regression results of (C) rcmc, R

2 � 0.369 and (D)
m, R2 � 0.245 for discharge and satellite signals. rcmc � CMC-ratio, m � m
index. Data sources: Brodzik et al., 2016; National Hydrological Services
of Malawi, 2019.

FIGURE 7 | Karonga (cell K2) Spearman’s correlation of (A) rcmc, ρ �
−0.067 and (B) m, ρ � −0.119. Regression results of (C) rcmc and (D) m, R2 �
∼0.000 for discharge and satellite signals. rcmc � CMC-ratio, m � m index.
Data sources: Brodzik et al., 2016; Global Runoff Data Center, 2020.
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occurred at or near annual peaks in the satellite signals, only two of
the 12 flood seasons with registered flood events were simulated by
threshold exceedances of the satellite signals: the 2011 floods by rcmc,
and the 2007 floods by m. The treturn of these floods could not be
calculated due to absence of discharge data in this period. In the C0-
cell in Chikwawa, m exceeded its five-year threshold in six flood
seasons between 1989 and 2017, and rcmc in five flood seasons. m
scored better than rcmc in the detection of registered flood events
(Table 2B).m also performed comparatively better if just the floods
with a treturn of five years or more were analyzed (Table 2C). The
simulated GloFAS-values (2000–2017), extracted from the hindcast
(Harrigan et al., 2020) at the coordinates of the C0 and K0-cell show
very high discharge-values compared to the observed values. Because
of this, the five-year treturn-thresholds of GloFAS were also relatively
high: Approximately 3,432 m3 s−1 at cell C0, and 1,224m3 s−1 at cell
K0, based on discharge peaks from the wet seasons in these years.
The corresponding confusion matrices can be found in Table 2.

The majority of registered floods go undetected with the
current threshold configuration (Table 2) Whereas the
registered floods occur at or near annual peaks in m index
and rcmc, these peaks often do not reach high enough to cross
the five-year treturn threshold. In all cases where a peak did not
occur directly within the period that was registered as a flood in
the impact database, the satellite peak occurred 11–18 days after
the discharge peak.

The low number of hits and high number of false alarms and
misses led to relatively poor success metrics (low POD and CSI,

and a high FAR) for both locations and satellite indices (Table 3).
In Chikwawa, the best success metrics were found in the
simulations done with m rather than rcmc or GloFAS. Hence,
m has a lower chance than rcmc of under-reporting actual flood
events (relatively high POD), a lower chance of misclassifying an
event as a flood event (relatively low FAR), and a higher chance
that a forecasted flood event was an actual flood event (relatively
high CSI). The reason behind this is as of yet unclear, although it
might have to do with the fact that the Cw-cell is situated too far
from the M and Cd-cell, influencing the annual peak height and
therefore the five-year threshold that was defined. Furthermore,
the metrics proved better in the analysis done on all floods in the
database, rather than just the floods that had been calculated to
have a treturn of five years or more. In Karonga, however, the
satellite signals performed similarly to one another, but more
poorly than was the case for Chikwawa. Furthermore, GloFAS
returned better success metrics than the PMRS method at this
location (Table 3).

Relationship Between Upstream and
Downstream Satellite Signals
The TLCC assessment showed that only a few upstream VGSs
showed a moderate to strong positive correlation with the
satellite signal observed at the downstream VGS (Figure 8).
Furthermore, none reached their peak at a lag time of one or
more days, as would be the case for VGSs that would be
suitable for usage in an early warning setting (Figure 8).
Instead, the lag times where the maximum ρ occurs
(i.e., the optimal lag times) either tended toward negative or
positive extremes that are not realistic for their location
upstream or remained at zero days. This means that the
upstream VGSs cannot be used for forecasting signals in the
downstream VGS using the PMRS-method. The optimal lag
times and their respective value for ρ are specified in the
Supplementary Material.

The strongest correlations with cell C0 for the Shire River were
found in VGS C1 (rcmc) and C2 (m). Along the North Rukuru, the
correlations with cell K2 were strongest in VGS K3 for both
indices, although only two upstream VGSs were available due to
the use of K2 as a proxy as downstream VGS. Hence, while the
VGSs situated close to the downstreamVGS generally showed the
highest correlations, correlation strength did not constantly
decrease with distance.

TABLE 2 | Confusion matrix for the satellite signals and GloFAS model output at
cells K2 and C0. 1 entry corresponds to 1 flood season between 1989 and
2017 (or 2000–2017 for GloFAS).

Flood events A: Obs K2 B: Obs C0 C: Obs C0
(treturn ≥ 5)

Yes No Yes No Yes No

Mod (m) Yes 1 6 5 1 1 1
No 11 12 9 15 3 25

Mod (rcmc) Yes 1 6 2 3* 0 5
No 11 12 12* 14 4 21

Mod (GloFAS) Yes 1 3 2 0 0 2
No 8 6 9 7 3 13

Notes: Obs � Observed, Mod �modeled. rcmc � CMC-ratio, m �m index, treturn � return
period, GloFAS � Global Flood Awareness System. In the Shire basin, one year was
counted double (marked with *), because floods were observed and modeled, within
>14 days of one another.

TABLE 3 | Success metrics for flood detection by the satellite signals at Virtual Gauging Station (VGS) number K2 (A) and C0 (B). For VGS C0, success metrics were also
calculated for just the floods with an observed peak discharge corresponding to a return period of 5 years or more (C).

A: K2 B: C0 C: C0 (treturn ≥ 5)

m rcmc GloFAS m rcmc GloFAS M rcmc GloFAS

POD 0.083 0.083 0.111 0.357 0.143 0.182 0.250 0.000 -
FAR 0.857 0.857 0.750 0.167 0.600 - 0.500 - 1.000
CSI 0.056 0.056 0.083 0.333 0.118 0.182 0.200 0.000 -

Notes: rcmc �CMC-ratio, m �m index, treturn � return period, POD � Probability of Detection, FAR � False Alarm Ratio, CSI �Critical Success Index. Entries with “-” represent entries where
numbers were divided by 0.
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DISCUSSION

Raw Tb Signals
The rcmc and m-index would ideally only show a spike if the Cd-
signal andM-signal differ, indicating a flood event. The proximity
of the Cd- and M-lines in Figure 3A indicate that this is roughly
the case for cell C0 along the Shire River. Whereas the lines are
not perfectly aligned, they follow a similar variability and a
distinctly different oscillating pattern and amplitude when
compared to the Cw-cell. In K0, the initial downstream VGS
along the North Rukuru, the signal of M showed to be more
similar in its oscillations to Cw (Lake Malawi) than to Cd

(Figure 3B). This was also the case for K1, the first best
upstream alternative to cell K0 (see Supplementary Material).
The VGSs K0 and K1 are situated close to Lake Malawi,
causing their Tb value to not follow the seasonal cycle of the
river, but that of Lake Malawi (which also shows much larger
fluctuations). As a result, the signal-to-noise ratio of the rcmc

and m-signals is relatively high, and the detection skill of the
ratios calculated from K0 and K1 is low. This was the reason
that K2 was eventually selected as a proxy downstream VGS
for Karonga.

PMRS-Signals and Discharge
Relationschip With Discharge
The interannual trend in the discharge data of Chikwawa caused
the relationship between discharge values and satellite signals to
be different in dry and in wet years. This proved to be one of the
main challenges encountered while performing a regression on
the data in Chikwawa. When the last five years–which showcased
relatively stable discharge values–were used in the regression, a

positive relationship could be quantified between discharge and
both rcmc and m (Figures 6A,B) in cell C0. The correlation
coefficients for Chikwawa were significant, yet only moderate.
The relatively low R2 shows that the model discharge predictions
do not fit the test data very well and, according to Figures 6C,D,
also underestimate high values, which are especially important for
flood prediction.

In the regression analysis done on K2, the polynomial failed to
identify the positive correlation that was expected betweenm/rcmc

and discharge. The regression line did not cover the high
discharge and satellite values in the training set (Figures
7A,B). The scatterplots provide more insight into this,
showing it is not merely a statistical problem; the highest
discharge-values in Karonga were not found where the highest
satellite values occurred, whereas this was the case in Chikwawa.
As a result of this, the regression on K2 has an R2 of nearly 0, and
the model severely underestimates discharge values (Figures
7C,D). One possible explanation for the weak correlation at
Karonga could be that the North Rukuru River and its flood
plains are of a much smaller scale than the Shire River in both
width and length (Figure 1), resulting in lower discharge values
(Figures 4A, 5A). This means its contribution to signal changes
in the relatively large PMRS-cell (25 × 25 km) is smaller than is
the case for the Shire River.

Comparison With Existing Studies
Brakenridge et al. (2007) introduced the rcm with his research
on a number of rivers, using a similar spatial resolution as was
used in this study. He compared it to average daily discharge
for three locations, and monthly values for three others
(Table 4). Note that R2 in our study was calculated based
on the relationship between predicted and observed

FIGURE 8 | Non-parametric time-lagged cross correlation of upstream (cells K3-K4; cells C1-C12) and downstream (cell K2; cell C0) satellite-indices along the
North Rukuru and Shire River. Correlations have been performed on stationary data, line labels correspond to VGSs depicted in Figure 1. Depicted are correlations for
the m-signal along the North Rukuru River (A) and Shire River (B), and for the rcmc along the North Rukuru River (C) and Shire River (D).
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discharge, rather than the relationship between observed
discharge and the satellite signal. The scatterplots in
Brakenridge et al. (2007) that included daily rather than
monthly discharge data do indicate a slightly better fit
between satellite data and discharge than could be
observed in Figures 6A,B, 7A,B. An explorative survey
through the historical satellite imagery available on Google
Earth Pro 7.3.3 shows that the rivers where the experiment of
Brakenridge et al. (2007) was done, range in width from 150
to 350 m (Wabash River), and 100–150 m (Red River). This is
a similar size to the Shire River, although smaller floodplains
are visible on the satellite imagery near Chikwawa compared
to the study areas in the United States. As flooding increases
the surface water fraction and therefore the value of the
satellite indices changes considerably, this could explain
why the PMRS-data from the United States is slightly
more sensitive to high discharge values than the Malawian
PMRS-data and shows stronger correlations.

In a study on PMRS flood detection in Namibia, De Groeve
(2010) reports “excellent correlation” between discharge values
and m. van Dijk et al. (2016) conducted a PMRS-experiment on a
global scale, correlating simulated water extent to monthly
discharge. Both the parametric and non-parametric correlation
coefficient of the observed and simulated discharge were 0.2 on
average (Table 4). The coefficient varied from region to region,
with the stations in East-Africa showcasing particularly high
coefficients in this study of larger than 0.9 (van Dijk et al.,
2016). Analyses done on the Zambezi River and Shire River
by respectively Keunen (2020) and Kramer (2018), the latter with
fine-resolution, commercially available data, also yielded
correlation coefficients higher than 0.7 (Table 4). In short,
whereas the Chikwawa PMRS-data shows a moderate positive
correlation and regression with the in-situ discharge data, they are
relatively weak compared to the results from some other studies
(Table 4).

Measurement Method and Averaging
PMRS-imagery is measured daily during a satellite overpass,
while the discharge data are averaged values calculated from
multiple sub-daily values. This may explain why the higher-end
discharge values are not well captured in the regression
relationship: Whereas a short-term discharge peak occurring
on a given day will affect the average daily discharge dataset,
the satellite overpass on that day might have occurred before or
longer after the peak, meaning it will be less well represented in
the satellite data. This could explain why in other studies, the R2 is
much higher at locations where average monthly discharge data
were used rather than daily values (Table 4). When discharge
data are averaged over a longer period, short-term peaks affect the
final value less than when they are averaged over a day, reducing
the occurrence of extremely high discharge values. And, as
Figures 6C,D, 7C,D show, high values are captured less well
by the regression. Therefore, it can be expected that the R2 would
be higher when the regression would be done on monthly
hydrograph data.

PMRS-Signals and Flood Events
As was the case in the regression analysis, the presented PMRS-
method showed greater flood event detection skill and a lower
rate of false alarms in the downstream cell of the Shire River than
in the downstream cell of the North Rukuru River (Tables 2, 3),
suggesting the PMRS-method may not be suitable for rivers with
a width/discharge comparable to the latter. Furthermore, the
analysis done with m in Chikwawa yielded more positive success
metrics than the analysis done with rcmc, implying that m is best
used for the detection of individual events at this specific location.

When comparing the results in Chikwawa when all floods are
included to the results when just the floods with treturn ≥ 5 are
considered, the success metrics are better for the latter subset of
results. As the calculated thresholds were based on a treturn of five
years, these relatively low scores for the treturn ≥ 5 analysis

TABLE 4 | Summary of relationships between passive microwave remote sensing indices and observed discharge found in existing literature.

River Country Parameter Value Order Sources

Shire Malawi R2 (Qobs vs. Qsim) (rcm) 0.48 2 This study
Shire Malawi R2 (Qobs vs. Qsim) (rcmc) 0.55 2 This study
Multiple Global r and ρ (Qobs vs. Qsim) 0.201 Various van Dijk et al. (2016)
Shire Malawi ρ (rcm vs. Q) 0.23 2 This study
Shire Malawi ρ (rcmc vs. Q) 0.36 2 This study
Wabash United States R2 (rcm vs. Q) 0.63 4 Brakenridge et al. (2007)
Red United States R2 (rcm vs. Q) 0.74 4 Brakenridge et al. (2007)
Siret Romania R2 (rcm vs. Q) 0.64 3 Brakenridge et al. (2007)
Niger Mali R2 (rcm vs. Q) 0.911 2 Brakenridge et al. (2007)
Mekong Cambodia R2 (rcm vs. Q) 0.971 3 Brakenridge et al. (2007)
Lena Russia R2 (rcm vs. Q) 0.961 3 Brakenridge et al. (2007)
Brahmaputra Bangladesh r (rcm vs. Q) ∼0.682 1 Hirpa et al. (2013)
Ganges Bangladesh r (rcm vs. Q) ∼0.592 1 Hirpa et al. (2013)
Zambezi Zambia ρ (rcm vs. Q) 0.86 2 Keunen (2020)
Shire Malawi r (rcm vs. Q) −0.7843 2 Kramer (2018)

Notes:Qobs � observed discharge,Qsim � simulated discharge, rcm � CM-ratio, r � Pearson’s correlation coefficient, ρ� Spearman’s correlation coefficient. Order � polynomial order used
in analysis.
1Monthly discharge/satellite data used.
2Maximum correlation found when using upstream VGSs to forecast downstream VGSs.
3Ratio was calculated as M/C, hence the negative coefficient.
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(Table 3C) can indicate two things: 1) The calculated 5-years
threshold for discharge is not accurate. With a lower threshold,
more floods would have been marked as having a treturn ≥ 5,
leading to more observed flood entries intoTable 2C and possibly
a higher number of hits. And/or: 2) The threshold configuration
for the PMRS-signals is not accurate. A lower threshold would
include more events as a hit and less as a miss.

The analysis in Tables 2B, 3B included more observed flood
events than in Tables 2C, 3C. The probability of achieving a
“hit” or “miss” was therefore lower for the latter confusion
matrix, causing comparisons between the two Shire confusion
matrices to be biased. Whereas the use of success metrics (POD,
CSI, FAR) should standardize some of this bias, research has
shown that the CSI is still highly dependent on event frequency
(Schaefer, 1990).

An adjustment of the threshold using more advanced
calculations for treturn could improve the success metrics for
both the North Rukuru and Shire River. For example, Jury
(2014) defines floods in Chikwawa as events with a discharge
of at least 1,200 m3 s−1. Whereas no treturn was mentioned with
this threshold, it is substantially lower than the 1,358 m3 s−1 used
in this study. De Groeve (2010) defined small regular floods to
typically have an m value of 2, whereas large and unusual floods
typically appear with an m of 4. This threshold is comparable to
the thresholds for m found in this study, although the
probabilities mentioned by the author of these floods
occurring are much lower than the yearly 20% aimed for in
this study. Yet, De Groeve (2010) studied a period of only seven
years, which could explain these probability differences. We
suggest more research is done on correctly setting the flood
threshold. It is important to note that the calculated satellite
thresholds are based on a sample size of roughly 30 years,
meaning the sample size of floods with a treturn of five years is
also relatively small. Looking at floods with a treturn of for example
one or two years instead may provide better skill scores, although
in an FbF-setting, activation every year would affect the cost-
benefit ratio of the humanitarian program. For the same reason,
the presented thresholding method can also not provide
meaningful conclusions on floods with treturn values higher
than 30.

A second factor that could improve the success metrics for
Chikwawa, is adding more recent in-situ gauge data to the
analysis. Some registered floods were omitted from the treturn
≥ 5 analysis due to lack of discharge records to calculate the treturn,
one of which being the flood of 2015. This event is in fact detected
by m and rcmc, but the event is not included in the confusion
matrix. It is estimated by the government of Malawi that the flood
event had a treturn of 500 years (Government of Malawi, 2015),
meaning this is an example of a “hit” that went unreported in
Table 2C.

Lastly, the success metrics could be improved if the
dependency of the analysis on a complete flood impact
database is reduced. Instead of comparing satellite threshold
exceedances with a database, they could be directly compared
with exceedances of certain observed discharge values as a proxy
for floods, reducing the risk that false alarms are caused by a lack
of impact data.

Flood Forecasting With PMRS
The fact that correlation strength did not constantly decrease with
distance from the downstream VGS, suggests that more factors
than the head stream influencem and rcmc signals, such as surface
characteristics (flood plain width, geomorphology) or the
presence of other rivers in the cells. When comparing the two
satellite signals, the rcmc exhibited slightly stronger upstream-
downstream correlations than m in the majority of VGS cells
along both rivers.

The lines in Figure 8with a maximum ρ at a lag time of 0 days,
correspond to VGSs of which the delay of the detected signal is on
average not longer than 24 h. The majority of the VGSs showed
this pattern. This is in contrast with the findings of Hirpa et al.
(2013), who used upstream VGSs to forecast discharge at a
downstream point. The authors of this study did find positive
lag times when using VGSs further upstream, but also studied
larger-scale watersheds than was done in this study. Brakenridge
et al. (2007) also found lag times at some of the downstreamVGSs
studied, but no lag time at others. The authors suggest that this
has to do with the geography of the river floodplains; some
floodplains are situated in flat terrain. Flooding there is induced
by local precipitation or snowmelt, inducing a synchronous rise
in discharge and satellite signal. However, floodplains with a
steeper gradient situated in drier conditions have their
inundation governed more by small-scale topography,
hydraulic connectivity and local resistance to flow, which may
lead to positive lag times (Brakenridge et al., 2007). The
immediate response of the satellite signals in cells C0 and K2
compared to upstream signals, indicate that the North Rukuru
River and the Shire River belong to the first group described, or
that they are simply too small-scale for this forecasting method.

The TLCC was implemented using the data from the complete
study period 1978–2017, and data points from only the wet
season. When only a few recent years are studied, or data over
the whole year are included, the ρ coefficients, lag times and
therefore the suitability of the upstream VGSs may be different.
Another factor that had a large influence on the analysis was the
method used to detrend the data. Using more advanced methods
may change the effect this step has on the forecasts and lag times.
The focus in this paper was on the relationship between upstream
VGSs with the downstream VGSs, due to the humanitarian
importance of the latter areas (hazard exposure, vulnerability,
etc.). From a hydrological perspective, however, it may also be
useful to perform a test by correlating all VGSs along the river
with one another, as floods may also take place at different points
along the river.

Comparison With Existing EWSs
Benchmarking Against GloFAS
The regression relationship between PMRS-indices and discharge
found in this study is not strong enough to directly compare the
discharge values with the values simulated by GloFAS.
Furthermore, GloFAS represents a true weather-to-flow model,
whereas the currently presented method is more hydrological in
nature, which complicates a direct comparison between the two.
An indication of the comparative detection skill of both methods
can be made by comparing the statistical indices resulting from
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them. Teule (2019) did a regression analysis on the discharges as
simulated by GloFAS in Chikwawa with observed discharge data.
The global model showed to have a correlation with discharge in
Chikwawa, quantified by the Pearson’s correlation coefficient
(which can be interpreted similarly to Spearman’s ρ) of 0.25.
The R2 was 0.06, indicating a lower skill than the statistics found
for both rcmc and m index in this study. This suggests that in
Chikwawa, the PMRS-method described in this study can more
accurately estimate discharge values compared to GloFAS. This
previous point was confirmed while doing the extreme value
analysis. The 5-years treturn threshold found using the GloFAS
data is more than double the threshold found for the observed
discharge data. This is in line with the findings by Teule (2019),
who also indicated that GloFAS tends to systematically
overestimate discharge at this location.

Exceedances of trigger thresholds can also be compared
directly, as GloFAS-data with a 0 day lead time is available for
both (part of) the K0 and C0-cells. The success metrics at C0 show
that, when the trigger thresholds for GloFAS are calculated the
same way as the thresholds in the PMRS-model were calculated,
m performs better than GloFAS in detecting flood events and it
generates fewer false alarms (Table 3). In K2, GloFAS returned a
low POD and CSI and a high FAR, but the success metrics
suggested slightly better performance than the PMRS-method at
this location. Caution should be taken when comparing the
metrics, however, as the GloFAS study period (2000–2018) is
shorter than the period used to construct the confusion matrices
for m and rcmc.

GloFAS is used in (pilots of) several national EWSs and is also
currently used by the Red Cross in Zambia. As it is a coupled
ocean-atmosphere general circulation model, it can represent
large-scale modes of variability such as the North Atlantic
Oscillation (NAO) or the El Niño–Southern Oscillation
(ENSO), among others (Emerton et al., 2018). In many
countries in Sub-Saharan Africa, including Malawi,
teleconnections are less prevalent to absent and the detection
or forecasting skill of models such as GloFAS is likely to be lower,
which explains the poor success metrics for this method in both
locations. Unfortunately, no historical data on ODSS, the EWS
currently in place in the Lower Shire River Basin, was available.
The discharge detection-skill of our model can therefore not be
compared to that of ODSS.

Practical Implications and Future Research
When used in a detection setting, the PMRS-method presented in
this study performs better than GloFAS in both detecting absolute
discharge and flood events in Chikwawa. However, the
applicability of the PMRS-method is location-dependent:
Whereas the detection skill for discharge is relatively high in
Chikwawa (cell C0), this is not the case in Karonga (cell K2). For
flood forecasting, the upstream VGSs in both locations did not
provide a sufficiently strong correlation with the downstream
satellite signal at a sufficient lag time to be qualified suitable for
use in an early warning setting. The current EWS in the Lower
Shire Basin, ODSS, makes use of high-frequency real-time rainfall
and water level data and precipitation forecasts (Ammentorp and
Richaud, 2016). As many data-scarce regions do not have access

to this data, the realization of ODSS (or a comparable system) is
not realistic there. In these areas, a coupled solution is possible
including a global model such as GloFAS and the presented
PMRS-method for calibration of discharge values, flood impact
estimation and support for humanitarian operations. Revilla-
Romero et al. (2015) showed that the use of raw PMRS-data
as a proxy for streamflow in the calibration of the GloFAS system
tends to improve the performance of this global model.

More research could be done in the potential spatial
applicability of rcmc by linking rcmc-data to high-resolution
Digital Elevation Models of the study area. Since rcmc can be
interpreted spatially as a fraction of flood water in the cell
(Neisingh, 2018), flood extents could be simulated on maps
just after (or even during) flood events, before the sky has
cleared up and therefore before optical satellite imagery of the
affected region is available. This could facilitate humanitarian
missions by being able to identify affected areas early on and
reach the people who are in need of humanitarian aid the most.

This research was done by using historical PMRS-data from
the MEaSUREs-dataset that spanned a period until 2017. Of
course, should PMRS be included in an EWS, it is important to
gain access to openly available recent data in real-time. At the
time of writing, multiple satellites and sensors that operate at or
near the 36.5–37.0 GHz frequency are currently operational and
provide data in (near) real-time, for example RosHydromet’s
Meteor-M N2 satellite series or the DMSP-F17 satellite, which
was used in this study. More research could be done in which
agencies provide open access to their PMRS-data, or where new
partnerships could be made.

Assumptions and Limitations
Suitability and Representativeness of Calibration
Targets
The way in which the calibration cells were chosen and the data
were treated impacted the outcome of this study substantially.
Firstly, the rcmc method is based upon the use of a wet calibration
target (Cw) covering a complete grid cell. For the case study of
Chikwawa, for example, the closest suitable target was located
125 km away, over Lake Chilwa. The drying of Lake Chilwa in
1996 is recognizable in Cw (Figure 3A) and the resulting rcmc for
Chikwawa, but the discharge records do not show this pattern at
all (Figures 4A,B), implying the Shire was likely unaffected by
this change. Hence, this is an example of a situation where the
large distance between M and Cw likely affected the accuracy of
the analysis negatively. In the case of Karonga, Cw was located
much closer to the VGSs. Here, however, the similarity of the
signal originating from the M- and Cw-cells indicates that M
should also not be in too close of a proximity to a large water
body, as the signal of the water body may influence what is
observed in theM-cell (Figure 3B). The choice to make use of Cw

(and thus the rcmc-signal rather than the m-signal) in an analysis
should therefore be taken cautiously, especially in the case of
coastal regions and should depend on the geography of the study
area in question. Secondly, the use of a dry calibration cell in the
calculations of m index and rcmc is based upon the assumption
that there is no water present in the dry calibration cell Cd, while
there are small streams and puddles present even in the driest
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regions, it was therefore assumed that their influence would be
negligible when observing the Tb of a large grid cell.

Effect of Filter Method
As mentioned in PMRS Data, a backwards-looking mean filter
was applied to the raw Tb data prior to the calculation of the
satellite indices. Applying a different filter method to the raw
data, such as the Savitzky-Golay filter based on a centered
window (Savitzky and Golay, 1964), could significantly alter
the outcomes of this study, as a backwards-looking filter may
delay the moment when flood-induced increases in satellite
signals are visible in the ratio. However, whereas applying
stronger filters to data can bend results more positively toward
significance, the question remains when an advanced filtering
method is justified, whether it can be used under operational
conditions (such as triggering early action), that require forecasts
based on only backward-looking data, and how it impacts the
relevance of the satellite data in connection to the real
hydrological relationships. More research should therefore be
done on which filtering method is most optimal in the context of
the use of PMRS for flood early warning.

Hydrological Complexities
This research is built upon the assumptions that generally, a
widening of a river upstream will lead to a widening of the river
and/or bank overflow downstream, and that an increase in
discharge leads to a widening of the river. In reality, the
propagation of a flood depends on many other factors,
including antecedent soil moisture and river diversions caused
by bank overflow. This could partially explain why the
correlations of the upstream VGSs did not decrease in
strength with distance from the downstream VGS in the
TLCC. The impact of geomorphic factors on the signal
response was also discussed by Brakenridge et al. (2007), who
observed that the shape and slope of the river impact whether or
not there is a lag between peak discharge records and peak signals.

Furthermore, presence of man-made barriers such as
hydroelectric dams regulates the hydrological relationships
between upstream and downstream points of interest. This
factor has not been taken into account in this study, but it
could be one of the reasons the TLCC did not produce a
potential forecasting VGS, as the Kapichira Hydroelectric
Power Station is situated just upstream from Chikwawa
(Figure 1B).

Lastly, the relatively large size of the VGS cells means that one
cannot be certain no other rivers or water bodies are present in
the VGS. This became apparent when studying K0, where not
only Lake Malawi is situated within the cell, but also some other,
mainly non-perennial rivers. This factor may impact the signals
in Chikwawa as well: Whereas no medium-to-large rivers other
than one tributary of the Shire are visible within the bounds of the
VGS, smaller streams and ponds can still influence the observed
signal. Using finer-resolution PMRS-data could possibly exclude
some of these disturbing factors, but calibration cells should be
chosen carefully: the rcmc and m utilize relative signal differences,
and fine resolution data tends to be spatially smooth. The
correlation between the rcm and commercially available, high

resolution (300 × 300 m) PMRS data in Malawi has been
researched by 510 (Kramer, 2018), and a strong correlation
was found in some pixels along the Shire River. Finer
resolution grids are available in the MEaSUREs dataset, but
were not used in this study due to the fact that they have been
merely resampled from coarser-resolution data, and because
longer timeseries were available of the coarser resolution grid.
Hence, more research could be done on the exact impact of the
spatial resolution of the PMRS-data on the detection skill.

Completeness of Flood Impact Database
Whereas it was assumed that the flood impact database was
relatively complete, floods may have taken place and gone
unreported, especially if they took place in a location with
little to no settlement (low exposure) or where high protection
led to a low impact (low vulnerability). Furthermore, floods may
have taken place along the Shire or North Rukuru River, but not
precisely at the location of our VGSs. This affects the relevance of
the success metrics, as the trustworthiness of misses and false
alarms depends on the assumption of a comprehensive database.
Based on the conducted quality check of the database, it is
assumed that floods that are described in the database did
indeed take place at our downstream VGSs, and that the
number of “hits” and “misses” and POD-metric derived from
them can be trusted. The POD should therefore be leading in the
interpretation of the success metrics in this study. In future
research, the flood impact database could be expanded using
methods such as text mining.

CONCLUSION

The aim of this research was to investigate whether openly
available, relatively coarse-resolution PMRS-data could be used
for flood-EWSs in the Shire River Basin in Chikwawa and the
North Rukuru River Basin in Karonga. The specific novelty is that
these represent two much smaller streams than so far used for
flood detection with PMRS. Two satellite indices were used,
including one relatively new one: the rcmc, which was proposed
by Neisingh (2018), and m, which is rcm expressed as a relative
magnitude.

We firstly hypothesized that the PMRS-method would be
adequate for detecting and forecasting floods in both study
areas. This hypothesis was only partially rejected; rcmc and m
contain a similar seasonality to the discharge hydrographs at both
locations, as long as the downstream VGS was located at a
sufficient distance from a large water body. However, only the
location in Chikwawa, which covers the relatively larger-scale
river, provided a moderate positive correlation between observed
discharge values and the satellite indices. Regarding the
forecasting potential, no VGS was identified that had both a
satellite signal that was strongly correlated to the downstream
satellite signal, and a positive lag time of >0 days at the point of
maximum correlation. This means that upstreamVGSs cannot be
integrated in a flood EWS to forecast downstream floods. Neither
rcmc nor m detected the majority of registered individual flood
events at the current threshold configuration. Considering the
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fact that the peaks of the satellite data that occur near the
registered floods, however, we suggest more research is done
in setting a correct trigger threshold or investigating events at
different treturn values, as this could provide a substantial
improvement from the success metrics presented in this
research. When comparing the detection potential of m and
rcmc, the latter performed better in estimating absolute
discharge values. However, when looking at flood occurrence,
the success metrics proved to be better for m. The previously
summarized findings did confirm our second hypothesis, namely
that the study area with the relatively wider river and larger basin
(Shire) will be more suitable for flood detection and forecasting
using PMRS than the smaller-scale study area (North Rukuru).

When benchmarking our findings against discharge values as
simulated by the global model GloFAS, the presented PMRS-
method would be preferred over GloFAS when it comes to both
flood event detection and discharge estimation in Chikwawa. In
Karonga, where the study area comprised a much smaller stream,
neither method provided satisfactory results, although GloFAS
performed slightly better. Relatively small streams such as the
North Rukuru will therefore have to rely on different detection
and forecasting tools than large-scale remote sensing data or
global models. Yet, the relatively low data demand of the
presented PMRS-method means that it has a potential to be
used to support EWSs in data-scarce, ungauged regions, whereas
this is more difficult to achieve for national EWSs such as ODSS
due to their high data demand. Overall, a coupled EWS solution
where a global forecasting model is calibrated with PMRS-
estimated discharge, and supported by PMRS-estimated flood
extent, seems optimal in these regions. Apart from further
research on threshold setting and different spatial resolutions,
research will be necessary on how to communicate the
uncertainties associated with each of the systems, how to
spatially interpret rcmc using a high-resolution digital elevation
model, and how to practically implement such a coupled solution.
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