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Natural fractured rocks usually contain background granular media and multi-scale fractures.
The coordination number is a crucial factor to characterize the connection of microstructural
elements. The determination of coordination numbers for modeling fractured rocks is
essential to interpret the distribution of cracks related to micromechanical properties. We
have built a consistent workflow of discrete element models (DEMs) coupled with discrete
fracture networks (DFNs). This DEM-DFN model could provide a simple formulation for high
calculation efficiency to model a more realistic and detailed description of fracture system. A
series of numerical experiments are set up, aiming to correlate window radius, particle size,
and crack length, whichwill benefit thewindow selection formeasuring coordination numbers
based on the crack characteristics. The coordination number determined in the DEM-DFN
modeling can be used to identify crack patterns in the spatial distribution.

Keywords: numerical simulation, crack information inversion, coordination number, measurement window,
DEM-DFN model

INTRODUCTION

Natural fractured rocks in sedimentary basins generally consist of background granular media and a
cluster of multiscale fractures. The former consists of irregular mineral (rock) grains jointed each
other, composing the main body of rockmasses. The latter refers to the microgeometry configuration
of crack surfaces which control the mechanical behavior of rock masses. Continuum- and discrete-
based methods have been widely used to model rocks. The former, mainly including finite-difference
and finite-element numerical approaches, takes matter to be continuously distributed throughout a
body. It provides a reasonable assumption for analyzing themacroscale behavior of rocks, with a high
computational efficiency but suffering from strong homogenization. The latter regards rocks as an
assembly of microstructural elements that interact with each other by microstructural forces, where
equilibrium, kinematics, and constitutive equations are generated for each microstructural element.
In the discrete-based model, the coordination number is a crucial factor to characterize the
connection of microstructural elements. In this study, we address the determination of
coordination numbers for modeling fractured rocks.

Such jointed media as rocks are natural to treat in a more fundamental and numerically intensive
manner (Brown, 2008) that can specifically account for individual factors that affect the mechanical
behavior of rocks. A discrete element method (DEM) (Cundall, 1971; Cundall, 1988) has the
potential to meet this need and is now often used to model rock deformations (Mühlhaus and
Vardoulakis, 1987; van Baars, 1996; Donzé et al., 1997; Williams and Rege, 1997; Oda and Iwashita,
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2000; Bolton et al., 2004; Shiu et al., 2008; Scholtès and Donzé,
2013). In this method, the rock mass is represented as an
assembly of discrete elements. Granular textures, particle-scale
kinematics, and force transmission can be correlated at the
microlevel (Cowin, 2004), constituting a powerful tool to study
the effect of microstructures on the macroscopic properties of
rocks. The DEM now appears as an efficient numerical method to
handle most of the problems with rock masses, such as material
heterogeneities, irregularly geometric characteristics, nonlinear
large deformations, and progressive failure through nucleation
and propagation of microcracks (Zhao, 2010; Jiang et al., 2017;
Liu and Fu, 2020a; Liu et al., 2021). It is worth to mention that
Murphy and Fehler (1986) conduct a DEM modeling for hot dry
rocks of enhanced geothermal systems and attribute microseismic
responses to shear slip along the joints in rocks. In this study, we
use the 2D DEM code PFC2D (Itasca, 2014) to implement the
coupled DEM-DFN modeling of fractured rocks.

Even a few cracks can significantly impact on the mechanical
behavior of rock masses. Current digital imaging techniques can
map heterogeneous rock properties in detail, including both
microcracks and grain structures at micrometer resolutions.
Spatial heterogeneities, aligned configurations, stress
orientations, rough fracture surfaces, and material anisotropies
strongly affect crack patterns and effective elastic characteristics
of fractured rocks. To model such intersecting and multiscale
fractures with a high density, we have to resort to discrete-based
models (Jing and Hudson, 2002). A discrete fracture network
(DFN) has been proposed for this purpose, which allows
simulation of very complex fracture networks. The DFN refers
to a microgeometry configuration of crack surfaces that explicitly
represents the topological relationship between individual
fractures or fracture sets. Combined with continuum- and
discrete-based approaches, the DFN has been widely used in
various engineering analyses with fractured rocks (Brady and
Brown, 1993; van Baars, 1996; Jing, 2003; Gale et al., 2007;
McClure, 2012; Alghalandis et al., 2017; Liu and Fu, 2020a).
Continuum-based approaches coupled with DFN could model
fractured rocks with only a sparsely connected DFN, but become
difficult for high-density and complex DFNs because of the
intrinsic limit of continuum-based methods (Jiang et al.,
2017). For more complex DFNs, discrete-based approaches
seem more suitable (Jing and Hudson, 2002), especially for
fractured rocks with a wide range of mineral compositions and
fabric anisotropies. In discrete-basedmethods coupled with a DFN,
the positions of fractures and cracks are predefined by the DFN
where the discrete elements crossing the DFNs are replaced by the
corresponding joint particles (i.e., DEs), then solving the resulting
system as a set of interacting elements according to Newtonian
mechanics. Lei et al. (2017) conduct a DFN modeling for the
mechanical and hydrological behavior of fractured rocks.
Harthong et al. (2012) propose a coupled DEM-DFN model for
strength characterization of rock masses.

The DEM connects elements through contact surfaces, with a
flexibility to handle the contact complexity of granular materials
(Zhao, 2010). Coordination number, defined as the average number
of contacts per grain, is one of the importantmicrostructural indexes
of jointed media and contributes largely to particle-scale kinematics

and microscopic mechanisms. The contact grid structure by
coordination number in a granular system reflects the tightness
and strength (e.g., Donzé et al., 1997; Scholtès and Donzé, 2013),
critical state (Rothenburg and Kruyt, 2004), dynamic strength
(Olson Reichhardt et al., 2015; Lemrich et al., 2017), and pore
throat connectivity (Andriamihaja et al., 2019) of rocks. Zhang
(2015) identifies the spatial distribution of cracks based on the
change of coordination numbers in the measurement window,
which shows a specific correlation between coordination numbers
and crack distributions. This motivates us to estimate the
coordination number in the measurement window for predicting
the distribution of cracks from a simple two-dimensional (2D)
scenario. For this purpose, we conduct a series of numerical
experiments by applying the coupled DEM-DFN 2D model to
emulate fractured rocks. We assume a homogeneous rock matrix,
which is widely used in the available studies (Lei et al., 2017; Liu and
Fu, 2020a; Liu and Fu, 2020b; Liu et al., 2021). Also, we keep a simple
formulation of the DEM (i.e., spherical particles and linear elastic
contact laws) for high calculation efficiency. The DFN is used to
realize a more realistic and detailed description of the fracture
system. The objective of this work is to optimize the window size
with attempts to determine the distribution of coordination
numbers, which captures the structural characteristics of cracks.
In general, too large or too small windows cannot be able to localize
the contact characteristics accurately and efficiently. We aim to
correlate window radii, particle sizes, and crack lengths, which will
facilitate the window selection for measuring coordination numbers
based on the crack characteristics. It provides us an easy way to
monitor the variation of coordination numbers to identify crack
patterns in the spatial distribution.

After a brief description of the coupled DEM-DFN model,
sensitivity analyses for single-crack and double-crack models
with different arrangements will be provided to emphasize the
effect of window sizes on the response, with the simulated crack
information compared to the actual crack information obtained
by digital imaging techniques. The resulting scale dependence of
coordination numbers on the window sizes helps to quantify the
correlation of window radii, particle sizes, and crack lengths for
the single-crack and double-crack models. We then apply rock-
fracturing and Brazilian splitting experiments with microcracks
to validate our numerical scheme.

THEORY OF COUPLED DEM-DFN MODEL

The coupled DEM-DFN model for fractured rocks combines the
rock matrix and fracture geometries represented by DEs and DFs,
respectively. The DFN is merged into the background DEM in a
simple yet efficient way, where the DE links that cross DFs are
removed (Curtin and Scher, 1990; Liu and Fu, 2020a; Liu et al.,
2021). In this section, we will introduce the coupled DEM-DFN
model in detail.

DEM for Intact Rock Modeling
We use the DEM to model intact rock because of its ability of
simulating the large deformation of jointed rock masses and
expressing the geometric property of rock grains. In the present
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DEM model, intact rock is represented by a set of bonded
spherical particles where elements interact through normal
and shear springs at contact surfaces. The density of
interaction bonds is controlled by coordination numbers to
represent the main aspects of different rock types’ behavior
(Scholtès and Donzé, 2013). Every unitary force is
accumulated for interaction where an explicit central finite
difference is introduced to integrate individual motion
equations for every element.

In this study, the optimal window of coordination-number
measurements for a specific fractured rock is investigated
based on the DEM code PFC2D platform (Itasca, 2014)
with regular hexagonal packings. The software uses rigid
particles with a soft-contact mode, which cannot change
their shapes or sizes, but allowing to overlap at contact
surfaces. A brief description of the DEM model is given in

Supplementary Appendix A for its particle-scale kinematics
and equilibrium. The DEM algorithm involves two steps.
First, interaction forces between DEs are calculated
according to the force-displacement law. Second, Newton’s
law of motion is applied to each DE to update its velocity and
position based on the force and moment, which is then time
integrated to find its new position. This process is repeated until
the simulation is finished. Figure 1A demonstrates the
calculation cycle system of any DE, connecting with the
normal and shear springs (see Figure 1B) at contact surfaces.
The force-displacement law applied to each contact to update the
contacting force using the microscale constitutive law, as shown
in Figure 1C.

The DEs do not correspond to real mineral grains with distinct
angularities and different sizes. The DEM formulation
phenomenologically describes the particle-scale contact

FIGURE 1 | Calculation cycle system (A) with normal and shear springs at contact surfaces (B) by microscale constitutive law (C).

FIGURE 2 | Baecher model for crack characterization. (A) 3D Baecher disk. (B) 2D simplification.
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behavior of jointed media by ignoring size-dependent effects for
fast computations. The matrix of intact rock is emulated as an
elastic, homogeneous, and isotropic medium. Even though this
kind of element arrangement is one of themost convenient way to
model discontinuum media, it may cause artificial anisotropy
(Zhao, 2010). Harthong et al. (2012) generate polydisperse
packings to avoid the anisotropic effect linked to regular
packings.

DFN for Complex Fracture Modeling
The DFN starts with spatial statistics associated with a fracture
network (fracture orientation, size, density etc.) measured by
high-resolution SEM (scanning electron microscope) of cores or
surface outcrops. These statistics reconstruct the topological
relationship between individual fractures or fracture sets and
can be used to generate realizations of fracture network with the
same spatial properties. Therefore, the resultant DFN is a

FIGURE 3 | Flowchart for DEM-DFN modeling.

FIGURE 4 | Ameasurement layout for a sample with Length ×Height in size. (A)Circular measuring windows. (B) Enlarged view of a circular window. Particles with
normal contacts are indicated in blue and particles affected by fractures are shown in red.
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geometry configuration of fracture surfaces that explicitly
represents the geometric property of individual fractures.

As shown in Figure 2, the DFN geometry is expressed by
discrete surface elements, generated usually based on the point
process represented by Baecher model (Baecher et al.,1977). For
3D cases, the Baecher model describes a crack as a disk (see
Figure 2A) with inclination and area. In the 2D plane, the crack
can be simplified as a line segment with different lengths and dip
angles (see Figure 2B). The point process determines the center
position of the crack, associated with the attributes of the point,
such as crack length, direction, inclination, and other crack
properties. It is worth noting that Harthong et al. (2012) do
not consider the discontinuity thickness of 2D and 3D models. In
this study, we could represent the crack aperture by the relative
normal displacement of joint particles on each side of the fracture.
We produce single-crack and double-crack models with different
lengths and dip angles. We optimize the window size to estimate
coordination numbers that capture the structural characteristics
of cracks based on a series of numerical experiments.

The obtained DFN can be inserted into the background DEM.
The entire calculation process for the coupled DEM-DFN
modeling is illustrated in Figure 3. First, the coordinates of
mass DEs are generate within a specific area, with the contacts
between DEs defined properly. Then, the corresponding DFN,
created by fracture attributes, is merged into the DEM, where the
contact links crossing the DFs are removed (Curtin and Scher,
1990; Liu and Fu, 2020a; Liu et al., 2021). The force and moments
acting on each DE are calculated, such that the position of DEs
can be updated by a central difference scheme. The updated
forces acting on every contact are estimated from the relative
displacement of DEs. More details are given in Supplementary
Appendix A. The resultant DEM-DFN coupling model can be
used to simulate fractured rocks.

Coordination Number
Oda (1977) experimentally investigates the coordination number
of random assembly of particles, which is defined as the mean
number of contacts between a particle and other particles around.
Interaction forces between every pair of particles are transferred
through their contact surfaces (Cundall, 1988). Therefore, the
coordination number is an important parameter to describe the
micromechanical behavior of materials. Previous studies have
given several typical formulas to compute the coordination
number (e.g., Scholtès and Donzé, 2013). Bathurst (1987)

defines the average coordination number in the particle
aggregation system as M/N, where M and N are the total
numbers of contacts and particles, respectively.

Some particles in a particle system are often in the state of no
contact or only one contact. Such contacts have no effect on the
force transmission in the particle system. These inaction particles
should not be considered when analyzing the coordination
number of particles in the system. Therefore, Thornton (2000)
excludes the inaction particles by defining the average
coordination number Cn in the particle system as,

Cn � 2Mc − N1

N − N1 − N0
,Cn ≥ 2 (1)

whereMc is the number of contact pairs, N is the total number of
particles, N1 is the number of particles with only one contact, and
N0 is the number of suspended particles with no contact. To
eliminate suspended particles for the accuracy of measurements,
the sample is compacted prior to the start of measurements. In a
compact system without suspended particles, the mean
coordination number can be calculated as (Itasca, 2014)

Cn � ∑
N
i�1 Mi

N
(2)

whereMi (i � 1, 2, · · ·,N) is the contact number of the ith particle.

Measurement Window Generation and
Coordination Number Estimation
Mauldon et al. (2001) propose a method of characterizing the crack
geometry with circular scanlines and circular windows. Here, we
generate a measurement window by specifying a radius at the
coordinate center in a similar way. Then, we use a control
variable to quantify the relationship between window radii and
particle sizes. For a given particle size, we change the window radius
and extract crack properties to investigate the effect of window radii.
In this way, we can achieve an optimal measurement window.

Aparicio and Cocks (1995) demonstrate that the
coordination value of a single particle system under the
quasi-static state is 6. That is, when the time step is small
enough, the whole movement process under a quasi-static
loading is regarded as the static calculation with a constant
acceleration and speed. The contact number between each
particle and its surrounding particles is approximatively six for
a system with the same particle radius according to Eq. 2.

FIGURE 5 |Contact patterns for two different types of DEs away from and near the crack, respectively. (A)Normal contacts for Type Ⅰ. (B) Joint (removed) contacts
for Type Ⅱ.
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Figure 4A shows a measurement layout covered uniformly
with a number of circular measuring windows for a sample
(Length × Height in size). We aim to use fewer measuring

windows to monitor more particles, achieving the optimal size
of measurement windows, as shown in Figure 4B for an
enlarged view of a circular window.

FIGURE 6 | Loading path and single crack diagram. (A) Uniaxial tensile test. (B) Single-crack design.

FIGURE 7 | Errors of estimated and realistic crack lengths vs. dimensionless parameter for four different dip angles in the single crack DEM-DFN model. (A) 0°

single-crack measurement error. (B) 15° single-crack measurement error. (C) 30° single-crack measurement error. (D) 45° single-crack measurement error.
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In Figure 4B, we see a crack across the DE link of red particles.
Two different types of DEs are defined in this measuring window.
Type I away from the crack denotes the regular DEs with a
normal contact to the surrounding DEs. Type II near the crack
represents the DF-DEs with a joint (removed) contact to the
surrounding DEs. Figure 5 shows the contact pattern for these
two types of DEs, respectively. We see that these two types of
contact patterns have different contact numbers that cause the
difference in estimating coordination numbers because the
measuring window does not count these joint (removed)
contacts. Therefore, we can judge whether there are cracks in
the measuring area according to the decrease of coordination
numbers. Theoretically, the methodology is suitable for any case
where the background medium shares the same or almost the
same coordination numbers, even if DEs are in hexagonal,
orthogonal, or polydisperse packings with a minimal size ratio
that represents different material types, such as rocks (Liu and Fu,
2020b), concrete (Nitka and Tejchman, 2015), or even Martian
regolith (Lai and Chen, 2017). In other words, the modeled
matrix could be isotropic or anisotropic in 2D or 3D, as long
as the measurement window placement is optimized. Specifically,

FIGURE 8 | Crossplot of two dimensionless parameters (Rw/2R and L/
2R) for the determination of optimal measuring windows in the single-crack
DEM-DFN model.

FIGURE 9 | Three types of spatial arrangements of double cracks with different lengths (20, 30,40, and 50 mm) and dip angles (0°, 15°, 30°, and 45°). (A) Distant
double cracks. (B) Collinear double cracks. (C) Stacked double cracks.
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this coordination-number-based crack inversion method is also
suitable for the case in that the rock matrix with approximately
the same coordination numbers is not isotropic and homogenous
media as mentioned in the references (e.g., Liu et al., 2017; Liu
and Fu, 2020b).

GUIDELINES FOR OPTIMAL
MEASUREMENT WINDOW SELECTION

This section provides clear guidelines for selecting optimal
windows in the modeling of fractured media based on the
single and double crack DEM-DFN models. We use measuring
windows with different radii for a sample to produce groups of
coordination data. For each measurement, crack characteristics
could be identified by the estimated coordination number image
and then extracted using digital image processing techniques.
Comparisons between the extracted and the realistic crack
properties allow us to select a reasonable measuring window
radius.

Single-Crack DEM-DFN Model
We conduct a series of uniaxial tensile tests (see Figure 6A) for a
sample of L � 10 mm in length using equal-radius (R � 0.5 mm)
particles set in a regular hexagonal grid. In the DFN model, we
couple a single crack into the DEM model. As shown in
Figure 6B, the single crack is designed with four different
lengths of 20, 30, 40, and 50 mm (denoted by I, II, III, and IV
in the figure, respectively) and four different dip angles of 0°, 15°,
30°, and 45°. Noted that, the crack length in the DEM-DFN
simulation is generally suggested to be more than ten times the
particle radius and less than half the length of the sample
(Harthong et al., 2012). It ensures that the pre-existing
fractures modeled do not cross the whole sample with enough
resolution. We have 16 parameter models in total for uniaxial
tensile tests.

For each parameter model, we use 12 different-radius
measuring windows to monitor its coordination numbers,
respectively. A dimensionless parameter, the size ratio of the
measurement window to particles, is introduced to measure the
optimization of results. For each simulation, the coordination
number is retrieved from the resulting coordination cloud chart
and processed by image binarization. Figure 7 shows the error of
estimated and realistic crack lengths vs. dimensionless parameter
for four different dip angles, respectively. We see that the different
radius measuring windows lead to different deviations in
measuring the crack length, implying a metric match between
measuring windows and inversion errors for a given crack length.
We aim to use fewer measuring windows to monitor more
particles. Larger windows cause more significant errors but
with fewer computational costs. The errors become quite small
for the dimensionless parameter less than 1, with their
distribution concentrated around 0.05, as displayed in Figure 7.

The simulated data in Figure 7 are used for first-order
differentiation analyses to determine the optimal radius of

FIGURE 10 | Errors of estimated and realistic crack lengths vs.
dimensionless parameter for these three double-crack DEM-DFN models as
shown in Figure 9. (A) Distant double cracks. (B)Collinear double cracks. (C)
Stacked double cracks.
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measuring windows. We take the initial value at the starting point
of Rw/2R as the basis for differentiation calculations. The results
for different dip angles are shown in Figure 8, where two
dimensionless parameters are correlated each other. We see
that for the regular orthogonal window with the compression
direction along the vertical axis, the optimal radius of measuring
windows is related to the projection length of a crack in the
horizontal direction. Among these cracks with the same length,
the 0°crack presents a relatively small radius for the optimization
window. The optimal radius is also affected by the size and
proportion of cracks. We note that L/2R � 40 corresponds to an
inflection point, with the corresponding crack length up to 40% of
the sample length. Compared to the model size used in this paper,
the crack size for L/2R > 40 is relatively large. We can choose a
larger window radius with fewer windows for a rough estimation
of coordination numbers that can capture approximately the
position of cracks in the sample. This facilitates the estimation of
local mechanical properties.

The optimal Rw/2R ranges from 0.7 to 1.5 for given crack
lengths. In conclusion, we can select the optimal radius of
measuring windows for different-length cracks based on the
crossplot of two dimensionless parameters (Rw/2R and L/2R),
as shown in Figure 8.

Double-Crack DEM-DFN Model
The single-crack numerical experiments addressed previously are
extended to a double-crack DEM-DFN model using the same
mechanical and testing parameters. Two cracks are coupled into
the DEM model by three types of spatial arrangements (Zhao
et al., 2016) to characterize different stress interactions, where the
distant, collinear, and stacked double cracks represent non
interaction, stress amplification, and stress shielding,
respectively. Figure 9 shows different spatial arrangements for
double cracks with different lengths and dip angles, with each
having 16 parameter models in total for uniaxial tensile tests.

Similarly, for each parameter model, twelve different-radius
measuring windows are used to monitor its coordination
numbers, respectively. The coordination number for each model
is retrieved from the resulting coordination cloud chart, and in turn,
is used to estimate the crack length. Errors of the estimated and
realistic crack lengths are related to the dimensionless parameter

FIGURE 11 | Crossplots of dimensionless parameters (Rw/2R and L/2R) for the determination of optimal measuring windows in these three double-crack DEM-
DFN models as shown in Figure 9. (A) Distant double cracks. (B) Collinear double cracks. (C) Stacked double cracks.

FIGURE 12 | Rock sample with microcracks (A) with estimated
coordination number (CN) maps for four different-radius measuring windows.
(B) Rw

2R � 1.5. (C) Rw
2R � 1.0. (D) Rw

2R � 0.9. (E) Rw
2R � 0.8.
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(Rw/2R), as shown in Figure 10 for the three spatial arrangements of
double cracks. We see that the deviations of crack lengths by
different-radius measuring windows become more complex than
those of the single-crack model (see Figure 7), though both the
models share similar features. Different spatial arrangements of
double cracks show a similar trend of error variations. Smaller
measuring windows for longer cracks produce smaller measurement
errors. However, the interaction between different arrangements of
double fractures leads to a worse consistency of error variations than
the single-crack model. As shown in Zhao et al. (2016), the double
cracks with different spatial arrangements represent different types
of stress interactions. Unlike distant double cracks and collinear
double cracks, the stacked double cracks show larger errors possibly
because of the stress shielding. The change in angles seems to have

no obvious effect on the measurement error. The cracks with four
different angles share similar trends in error variations. Shorter
cracks have a larger measurement error, whereas longer cracks have
a smaller measurement error. For the dimensionless parameter less
than 1, however, the errors become small with their distribution
concentrated around 0–0.1.

The simulated data in Figure 10 are used for first-order
differentiation analysis in terms of the dimensionless parameters
Rw/2R and L/2R to determine the optimal radius of measuring
windows. The results are shown in Figure 11 for the threemodes of
double cracks. We see that unlike Figure 8 for the single-crack
model the optimal window radius for double cracks doesn’t change
much across different crack lengths and dip angles. Particularly, the
effect of dip angles is rather small perhaps because of the

FIGURE 13 | (A) Rock sample with cracks (unit: m). (B) Crack length histogram.
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interaction between cracks. Themeasurement error changes slowly
with increasing window radii. The optimal Rw/2R ranges from 0.6
to 1.1 for given crack lengths.

METHOD VERIFICATION AND
APPLICATION

Direct tension tests are believed to be reliable, but it is difficult to
prepare samples and configurate tests (Patel and Martin, 2017).
Uniaxial compression and Brazilian split tests have been widely
used as a simple and effective way to determine rock tensile
strengths (Bieniawski and Hawkes, 1978; ASTM D3967-08,
2008). In this section, we conduct these tests of realistic rock
samples to estimate coordination numbers with different-radius
measuring windows based on the guidelines in Guidelines for
Optimal Measurement Window Selection.

Case 1: Uniaxial Compression Test
A rock sample with natural cracks (including crossed fractures)
from a real outcrop is imaged by high-resolution SEM techniques.
The resulting digital section, as shown in Figure 12A is used for
uniaxial compression tests. We see groups of complex cracks that
distribute over the rock matrix in white. Based on the crossplot
(see Figures 8, 11) of dimensionless parameters (Rw/2R and L/
2R) for the determination of optimal measuring windows, we
select four different-radius measuring windows for tests.

The estimated distribution of coordination numbers is shown
in Figures 12B–E for different values of Rw/2R, respectively. We
see that the most area of sample image can be modeled by
normal-contact particles without cracks crossing, leading to
the maximum coordination number (in red), whereas the
fractured areas by joint particles with cracks crossing cause the
decrease of coordination numbers, which becomes more evident
for the crossed fracture areas. Compared to Figure 12A, we also
see that Figure 12B at Rw/2R � 1.5 underestimates the
effect of cracks because of the distribution of overvalued
coordination numbers in the fractured areas, whereas
Figure 12E at Rw/2R � 0.8 seems to overestimate the effect of
cracks because of toomany blue particles even in non-crack areas.
The optimal measuring window is probably located around Rw/
2R � 0.9, as shown in Figure 12D.

Case 2: Brazilian Split Test
The Brazilian splitting test is known as the diametrical
compressive test or splitting tension test (Bieniawski and
Hawkes, 1978), which could be used to calculate the effective
elasticity of an object under different loading orientations, with
an attempt to minimize the anisotropy caused by cubic specimens
(Liu and Fu, 2020a). Figure 13 shows a real outcrop of
Ordovician carbonates in the northwest of the Shuntuoguole
low uplift of Tarim Basin. We choose a circle zone as the target to
conduct the Brazilian splitting test with a compressive strain rate
of 0.015/s. Figure 13A shows the extracted fractures from the real

FIGURE 14 | Estimated coordination number (CN) maps for four different-radius measuring windows. (A) Rw
2R � 0.9. (B) Rw

2R � 0.8. (C) Rw
2R � 0.7. (D) Rw

2R � 0.6.
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outcrop and the corresponding DEM-DFNmodel with the length
statistics of fracture segments displayed in Figure 13B.

Figure 14 shows four groups of coordination-number
distributions with different dimensionless parameters with the
measurement window (Rw/2R and L/2R). We see that most of the
red areas show normal-contact particles without cracks crossing,
and the coordination number is approximately 6. In the fractured
areas, the coordination number decreases to less than six due to
the effect of joint (removed) contacts. Therefore, the inversion
result becomes better for smaller dimensionless parameters of
Rw/2R, like 0.7, or even 0.6.

CONCLUSION

Coordination number is a crucial microstructural index of jointed
rocks. We apply a coupled DEM-DFN model to simulate multi-
scale fractured rocks with a high calculation efficiency. The
objective is to optimize the size of measurement windows to
determine the coordination number distribution that captures the
structural characteristics of cracks. The main conclusions can be
summarized as follows.

The measurement window is arranged in a regular orthogonal
way with its compression direction along the vertical axis. Thus,
the optimal window radius can be determined in terms of the
projection length of a crack in the horizontal direction. Numerical
experiments with various single-crack models show that the
optimal radius is affected by the size, dip angle, and
proportion of cracks. It can be estimated based on the
crossplot of two dimensionless parameters (Rw/2R and L/2R)
for different-length cracks. For cracks of the same length, the
0°crack has a relatively small radius for the optimization window.
In general, we can choose a larger window radius with fewer
windows for the rough estimation of coordination numbers that
can capture approximately the position of cracks in the sample.

Unlike single-crack models, double-crack models (distant,
collinear, and stacked arrangements) show complex error
variations of the estimated and realistic crack lengths against
the dimensionless parameter (Rw/2R) because of the interaction
(no interaction, stress amplification, and stress shielding)
between cracks. Numerical experiments with various double-
crack models of different lengths and dip angles are performed
to monitor the optimal coordination number for different-radius
measuring windows. Although these models share similar error
features, the crack interaction increases the deviation of error
changes for different-radius measuring windows. Unlike distant
double cracks and collinear double cracks, the stacked double
cracks show larger errors possibly because of the stress shielding.
The change in dip angles has no obvious effect on the
measurement error. Shorter cracks have a larger measurement
error whereas longer cracks have a smaller measurement error.

Uniaxial compression and Brazilian split tests for a rock
sample from a real outcrop with natural cracks are used to
validate the inversion of crack properties by the coupled
DEM-DFN model through optimizing measurement windows

for the estimation of coordination numbers. The estimated
distribution of coordination numbers for different values of
Rw/2R demonstrates that the optimal measuring window is
probably located around Rw/2R � 0.6–0.9. The area without
cracks crossing in the image can be modeled by normal contact
particles with the maximum coordination number, whereas the
area with cracks crossing is modeled by joint particles with less
coordination numbers.

This work proposes a coordination-number-based crack
inversion method for isotropic homogenous media in 2D.
According to the quantitative evaluation and the characteristic
comparison, it is reasonable to confirm that the methodology is
efficient. Moreover, we may extend the conclusion to any case
where the matrix DEs share the same coordination number,
regardless of the types of materials, or packings in 2D or 3D.
For more complex cases, the measurement window placement
needs further optimization. Meanwhile, as we all know, even a
few cracks can significantly impact the mechanical behavior of
rock masses, so this kind of crack inversion method might have
the potential for numerical upscaling from the microstructural
responses to the macroscopic properties of fractured rocks. We
would investigate the issues in the subsequent work.
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