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The optimal prediction of land subsidence (LS) is very much difficult because of
limitations in proper monitoring techniques, field-base surveys and knowledge related
to functioning and behavior of LS. Thus, due to the lack of LS susceptibility maps
it is almost impossible to identify LS prone areas and as a result it influences severe
economic and human losses. Hence, preparation of LS susceptibility mapping (LSSM)
can help to prevent natural and human catastrophes and reduce the economic damages
significantly. Machine learning (ML) techniques are becoming increasingly proficient in
modeling purpose of such kinds of occurrences and they are increasing used for LSSM.
This study compares the performances of single and hybrid ML models to preparation
of LSSM for future prediction of performance analysis. In this study, the spatial prediction
of LS was assessed using four ML models of maximum entropy (MaxEnt), general
linear model (GLM), artificial neural network (ANN) and support vector machine (SVM).
Alongside, the possible numbers of novel ensemble models were integrated through
the aforementioned four ML models for optimal analysis of LSSM. An inventory LS map
was prepared based on the previous occurrences of LS points and the dataset were
divvied into 70:30 ratios for training and validating of the modeling process. To identify
the robust and best LSSMs, receiver operating characteristic-area under curve (ROC-
AUC) curve was employed. The ROC-AUC result indicated that ANN model gives the
highest ROC-AUC (0.924) in training accuracy. The highest AUC (0.823) of the LSSMs
was determined based on validation datasets identified by SVM followed by ANN-SVM
(0.812).

Keywords: Geohazards, land subsidence, remote sensing, Kashan plain, machine learning

Frontiers in Earth Science | www.frontiersin.org 1 May 2021 | Volume 9 | Article 663678

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.663678
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2021.663678
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.663678&domain=pdf&date_stamp=2021-05-13
https://www.frontiersin.org/articles/10.3389/feart.2021.663678/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-663678 May 25, 2021 Time: 9:26 # 2

Arabameri et al. Performance Evaluation of GIS-Based Novel

INTRODUCTION

Land subsidence (LS) is a natural geo-hazard phenomenon that
occurs around the globe and causes extensive deformation of the
earth’s surface. More specifically, subsidence may causes lowering
of the earth’s land surface by natural or human induced activities,
most importantly mobilization of solid or fluid underground
materials are the main causes (Herrera-García et al., 2021). In
general, there is a downward motion of the rock and soil surface
in an almost vertical direction or sometimes with a slight angle
that is known as LS (Cigna and Tapete, 2021). This phenomenon
occurs suddenly or sometimes gradually due to a number of
natural as well as anthropogenic factors. The main factors for
their occurrences are earthquakes, volcanic activity, floods, over-
exploitation of groundwater and its decline, mining activities,
tunnel construction, and so on (Erkens and Stouthamer, 2020;
Lyu et al., 2020). Among all these possible factors, groundwater
exploitation and structural weakness are the most important
issues in this concern (Yu et al., 2020). Groundwater depletion
is most responsible for LS and it is a slow and gradual process
(Galloway and Burbey, 2011). The overdraft aquifer systems
particularly in the agricultural and residential area are the most
susceptible zone for the occurrences of LS (Shirzadi et al., 2018;
Orhan et al., 2021). Like other natural geo-hazard phenomena,
this incident also causes life loss and huge economic losses.
Essentially, land loss causes devastating damage to property
and infrastructure, such as construction, communication with
transport networks, drainage systems, underground pipelines,
and many more (Cigna and Tapete, 2021). LS not only affected
environmental changes but also impacts on social and economic
activities. Apart from all these direct effects, several indirect
results such as minimizing groundwater storage capacity, water
contamination, increases flood hazards (Wang et al., 2018; Nhu
et al., 2020), dissolution of calcareous rocks and stem faulting and
mining. The phenomenon of LS is not a recent activities rather it
has a long history. A body of literature studies has been shown
that during the past century LS occurred due to the depletion
of groundwater over 200 places in 34 countries across the globe
(Herrera-García et al., 2021). Land subsidence on a spatial and
temporal scale is therefore causing significant environmental,
socio-economic and financial damage across the globe.

Iran, its geographical location and associated conditions have
favored a semi-arid and arid climatic region with frequency of
drought in recent decades (Arabameri et al., 2021). Therefore,
in order to overcome the drought, this country is faced
with an increasing demand for water supply through over-
extraction of groundwater due to the expansion of urban and
agricultural uses (Babaee et al., 2020; Pourghasemi et al., 2020).
In the upcoming decades, population growth and associated
economic activities will continue to increase the demand of
groundwater and groundwater depletion, and severe LS activities
are found in different regions of the world (Famiglietti, 2014).
Thus, the most important natural resources, i.e., water levels,
are gradually declining due to over-extraction for agricultural,
domestic and industrial uses (Abdollahi et al., 2019; Guzy and
Malinowska, 2020). Apart from this, climate change and its
associated phenomena have a major impact on LS in this region.

The Phenomenon of climate change significantly increases the
atmospheric temperature, as a result drought condition have
been occurred and a large number of people greatly depends
on groundwater, and gradually destruction of aquifers causes
LS, particularly in the central and north-eastern parts of Iran
(Rateb and Abotalib, 2020). Land use change is one of the
most important factors for LS in arid and semi-arid climates
(Tian et al., 2015; Pourghasemi et al., 2017). The pattern of
land use land cover also impacted on groundwater availability
and recharge capacity. Land use changes have been directly
supported by land subsidence, particularly in the extreme semi-
arid and arid climatic condition. As a result, the recovery of
deformation surface after LS is costly and time consuming, it
is therefore essential to predict land subsidence susceptibility
mapping (LSSM) for proper management and optimal uses of
land resources. The occurrences of LS subsequently causes land
degradation and it is destroy infrastructure, agricultural land and
other natural resources. Therefore, to control and manage the
fertile agricultural land, infrastructure from LS it is necessary to
optimal mapping of LS by which land use planners management
the land resources in sustainable way (Ghorbanzadeh et al., 2018;
Arabameri et al., 2021).

As a result, several geo-environmental conditioning factors,
along with different prediction models, have been used to
predict LSS. A number of hazard susceptibility maps have been
developed worldwide, based on qualitative and quantitative
methods (Oh et al., 2019; Mohammady et al., 2019). Advances
in Remote Sensing and Geographic Information System (RS-
GIS) technology, along with artificial intelligence, greatly help
in the mapping of a number of natural hazards with proper
management of environmental issues through land use planning.
Recently, Interferometric Synthetic Aperture Radar (InSAR)
observations satellite data have been used to monitor and
detected LS areas (Karimzadeh and Matsuoka, 2020). The spatial
and temporal land deformation is measured through InSAR
observations and it is a microwave remote sensing system (Orhan
et al., 2021). Several machine learning algorithm (MLA) has
been used over time to predict LSSM, such as logistic regression
(LR) (Tien Bui et al., 2018), artificial neural network (ANN)
(Mohebbi Tafreshi et al., 2020), support vector machine (SVM)
(Arabameri et al., 2021), logistic tree model (LTM) (Arabameri
et al., 2021), decision tree (DT) (Lee and Park, 2013) and so on.
However, the most recent ensemble model, i.e. a combination of
several MLAs, has been widely used for better and meaningful
results for this purpose. In another way, we can say that the
Ensemble Model was used for the accurate presentation of single
classifiers along with its higher accuracy (Pham et al., 2017).
Beside this, the ensemble model also has the capacity to deal
with the difficult relationship between different scales of influence
and spatial data (Kanevski et al., 2004). Several research studies
on LSS mapping using MLA and their ensemble by various
researchers, such as Tien Bui et al. (2018); Abdollahi et al.
(2019); and many more.

Thus, current research work on LSSM has been carried
out in the arid and hyper-arid climate zone of the Kashan
plain in the north of Esfahan Province to mitigate surface
deformation and the proper management of surface structures.
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A body of literature survey (Arabameri et al., 2020d, 2021;
Babaee et al., 2020; Rezaei et al., 2020) and based on
the local topographical, hydrological, climatological, geological
and environmental condition, here we have selected twelve
appropriate LS conditioning factors. Therefore, we used twelve
geo-environmental conditioning factors namely elevation, aspect,
distance to road (DtR), groundwater drawdown, distance to
fault (DtF), topographic wetness index (TWI), distance from
stream (DtS), normalized differentiate vegetation index (NDVI),
curvature, slope, land use and lithology to meet our objective.
In this study, four popular MLAs namely the Maximum
Entropy (MaxEnt), general linear model (GLM), artificial neural
network (ANN) and support vector machine (SVM) were
used for modeling and mapping of LS, based on the state-
of-the-art skillful characteristics and literature study (Abdollahi
et al., 2019). The selection behind these MLAs are based on
their earlier involvement in different research work on natural
hazard susceptibility studies and respective optimal prediction
performance (Zamanirad et al., 2019; Mohebbi Tafreshi et al.,
2020; Najafi et al., 2020). In the case of MaxEnt, it has the ability
to choose the correct estimation of the uncertain probability
distribution and to select the highest entropy of the given
probabilistic constraints. The GLM algorithm is based on a
logistic regression model and used for a fractional response
to handle a binary value dataset. Structured code input and
output nodes were determined by trial and error in ANN,
and events and non-event phenomena were determined. SVM
is mainly used for classification, error analysis; generalize the
overall function and find out about the two-class hyperplane in
the dataset. Finally, a total of 11 ensembles, in which six are
two models ensemble and five are three-four models ensemble,
have been developed for better predictive analysis of LSSM
in this region. A body of literature survey and best of our
knowledge it has been found that no research study on the
11 possible ensembles of aforementioned four ML algorithms
were used in LS studies. The maximum ensemble methods were
created using the aforementioned four popular ML algorithms
to optimal estimation of LS prediction performance and this is
the novelty in this research study. Thereafter, all of these output
results were validated by area under curve (AUC) analysis. As
a result, the LS susceptibility zones have been classified into
five zones, i.e., very low, low, medium, high, and very high.
Depending on the LS susceptibility zones, appropriate prevention
strategies should be taken to control future occurrences and
proper management strategies.

MATERIALS AND METHODS

Description of the Study Area
The Kashan plain is located in the North of the Esfahan Province
in the Kashan city (between 33◦40′00′′ to 34◦35′00′′ N, and
51◦05′00′ to 51◦55′00′′ E) and covers about 2,231 km2 area
(Figure 1). Elevation in the study area ranges between 803 m
and 1,671 m above mean sea level. The average annual rainfall
ranges between 75 and 185 mm and there is more rainfall
in the west (Ghazifard et al., 2016). The climate of the study

area has two classes of arid and hyper-arid. The minimum and
maximum temperature in this area is 16 and 22◦C, respectively,
and also the minimum and maximum slopes in area are 0
and 129%, respectively (Ghazifard et al., 2016; Goorabi et al.,
2020). Kashan plain is located in the foothills of the Karkas
Mountains and on the margin of the central desert of Iran. Based
on the land use map, poor rangeland the largest area (53.26%),
and then by agricultural (21.5%), barren land (16.19%) and the
remaining area is shared between afforest, sand dune, salt land
and residential areas (Table 1). Based on the lithology map,
diverse lithological have covered the area in which the largest
area pertains to the low level piedmont fan and valley terrace
deposits (68.33%), followed by unconsolidated windblown sand
deposits including sand dunes (18.83%) and the remaining area
is shared between other formations presented in detail in Table 1.
Based on the land type (geomorphology) map, plates the largest
area (32.09%), and then by flood plain (26.98%), low land
(18.36%) and the remaining area is shared between mountains,
scree and hill areas.

Methodology
The research work of the LSSM has been carried out in four
steps (Figure 2).

• Preparing an LS inventory map using 239 LS points.
Historical LS data were collected through field survey
along with the help of Coppernnicus aerial view output
and high resolution satellite images. A total of 12 geo-
environmental control factors have been used to meet our
research objective.
• Multi-collinearity testing was conducted among the

conditioning factors used in this study using inflation
factor variance (VIF) and tolerance (TOL) techniques
(Band et al., 2020; Arabameri et al., 2021).
• To map the LS susceptibility of a number of MLAs, i.e.,

MaxEnt, GLM, ANN, and SVM have been used in this study
together with a total of eleven ensemble methods.
• The performance of each model was validated by area under

curve (AUC) analysis.

LS Inventory Map
The LS Inventory Map (LSIM) is the primary mapping tool
for LSSM. LSIM shows the spatial distribution of a number of
LS regions (Figure 1). It is well known that LS zones can be
predicted on the basis of both the historical and the current
spatial distribution of LS. The current inventory map in this area
has been prepared using RS-GIS technology. As a result, LS areas
have been identified from Coppernnicus aerial view output and
extensive field surveys with the Global Positioning System (GPS)
to locate the exact position in the field. In general, any type of
inventory map can be used to assess the relationship between
the distribution of a particular hazard location and the associated
conditioning factors responsible for that hazard. A total of 239 LS
points were used in this study, in which 70% (167) was used as
a training dataset and 30% (72) was used for dataset validation.
In this study, we have followed the influence of data Splitting
performance (Nguyen et al., 2021) to divided the entire dataset
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FIGURE 1 | Location map of the study area.

TABLE 1 | Lithology of the study area.

Geo unit Description Age Area (ha) Area (%)

Qft2 Low level piedmont fan and valley terrace deposits Quaternary 152464.36 68.34

OMq Limestone, marl, gypsiferous marl, sandy marl and sandstone (QOM FM) Oligocene-Miocene 2337.61 1.05

Mur Red marl, gypsiferous marl, sandstone and conglomerate (Upper red Fm.) Miocene 14054.89 6.3

Qft1 High level piedmont fan and valley terrace deposits Quaternary 4826.55 2.16

Plc Polymictic conglomerate and sandstone Pliocene 3655.56 1.64

Qs,d Unconsolidated windblown sand deposit including sand dunes Quaternary 42023.55 18.84

Qcf Clay flat Quaternary 3739.47 1.68

was splitting into 70:30 ratio. Some of the field photographs in
this study area are shown in Figure 3.

Land Subsidence Conditioning Factors
(LSCFs)
The quality of the predictive outcome of the LSSMs depends
to a large extent on the selection of control factors. The
evaluation of the relationship between the LS and their associated
conditioning factors is therefore very necessary as it influences
the modeling process. Twelve LSCFs have therefore been chosen
to prepare the LSSM for this area. There is no universal
criterion for the selection of these variables, although several
literature studies have been conducted (Sahu et al., 2017).
The types of LS and the availability of data are also taken

into account for LSSM along with the geo-environmental
conditions in this area. As already mentioned that in this
study we have selected a total of 12 suitable LSCFs based
on the literature survey and keeping in view the local geo-
environmental conditions like topography, hydro-climatology
and geological conditions. The 12 LSCFs used for this study
are elevation, aspect, distance to road (DtR), groundwater
drawdown, distance to fault (DtF), topographic wetness index
(TWI), distance from stream (DtS), normalized differentiate
vegetation index (NDVI), curvature, slope, land use and lithology
(Figures 4A–L).

Therefore, several data sources were used to prepare
these twelve conditioning factors. Different topographic and
hydrological factors have been prepared from Advanced Land
Observation satellite Phased Array type L-band Synthetic
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FIGURE 2 | Flowchart of research in this study area.

FIGURE 3 | Some of mapped land subsidence in the study area.

Aperture Radar digital elevation model (ALOSPALSAR DEM)
with a 12.5 m resolution which is freely available on the Alaska
Satellite Facility (ASF) website1. Sentinel 2A satellite data with a

1https://asf.alaska.edu/

resolution of 10 m was used to prepare land use and NDVI map.
Beside this, the topographic map was collected from National
Geographic Organization of Iran2 at a scale of 1:1:50,000 to verify

2www.ngo-org.ir
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FIGURE 4 | Land subsidence conditioning factors: (A) Elevation, (B) Aspect, (C) Distance to road, (D) Groundwater drawdown, (E) Distance from fault, (F) TWI,
(G) Distance from stream, (H) NDVI, (I) Curvature, (J) Slope, (K) Lithology, and (L) Land use.

the land use map. The lithology map in this area was taken from
the Geological Maps of Iran collected from the Geological Society
of Iran (GSI)3 at a scale of 1:100,000.

As a result, the elevation map was derived from the DEM
analysis of the ArcGIS 10.5 platform, with values ranging from

3http://www.gsi.ir/

803 to 1671 m (Figure 4A). The second side of the slope is
the derivative. Aspect is the altitude calculator and the slope
direction of its eight neighbors. The aspect map of the present
study area (Figure 4B) has been shown. DtR is an important
factor in the occurrence of LS due to surface pressure and may
cause LS in its surrounding area. The DtR range in this study
ranges from 0 to 16,776 m (Figure 4C). Studies indicates that
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several types of factors such as climate-hydrological and physical
factors significantly control soil moisture (Zhang et al., 2019).

Among the various factors, groundwater depletion is the
most responsible conditioning factor for LS. The groundwater
map shows values from 1.8 to 21.1 m (Figure 4D). DtF is also
responsible for the deformation of the soil surface through the
use of LS. The value of a DtF map is between 0 and 16,679
m (Figure 4E). The degree of water accumulation in the area
depends on the TWI, which is a secondary topographic variable.
The TWI map in this area was prepared using DEM on the
ArcGIS 10.5 platform and the value ranges from 1.94 to 14.69
(Figure 4F). The following equation has been used to calculate
the TWI.

TWI = loge

(
As

tanβ

)
(1)

Where, As and β denotes cumulative catchment area (m2) and
define slope angle, respectively.

The phenomenon of climate change and several human
induced activities are considered the two major drivers flow
pattern in a basin area and impacted on hydrological factors
(Feng et al., 2020; Tian et al., 2020).

DtS is also a significant factor for LS. The probability of LS
is increasing away from the river, and vice versa. The DtS map
was shown in Figure 4G and ranged from 0 to 2,619 km. NDVI
has the capacity to measure the growth and biomass of the
vegetation (Yilmaz, 2009). This factor also plays an important
role in the LSSM, as land use largely affects the occurrence of LS.
The NDVI value ranged from −0.72 to 0.82, with a lower value
indicating bare surface area and a higher value indicating forest
cover (Figure 4H). The following equation was used to calculate
the NDVI values using Sentinel 2A satellite data.

NDVI =
Band8− Band4
Band8+ Band4

(2)

Where, Band8 is near-infrared and Band4 is red reflectance of
the spectrum. Curvature represents the secondary geomorphic
assets and shows the pattern of flow, sedimentation, erosion,
etc. (Yesilnacar, 2005). The curvature map in this study was
shown in Figure 4I and the values range from −4.77 to 5.66.
The value of the slope map in this study area ranges from 0 to
129% (Figure 4J). LS is highly influenced by the slope of the area.
Lithology is another key factor in the occurrence of LS as it affects
the storage capacity of water. In this study, the lithological map
(Figure 4K) was classified into seven types. Table 1 shows details
of the lithological characteristics, such as their description, age
of formation, percentage area, etc. Finally, the land use map has
been prepared to understand the coverage of the surface area and
its impact on the LS. The land use map (Figure 4L) for this area
was classified into seven categories and their classes, along with
their respective areas, are shown in Table 2.

Multi-Collinearity (MC) Analysis
MC can be defined as the linear relationship between two or more
variables in the dataset (Alin, 2010). Linear dependency is the
top most priority given in this analysis and explained variables
through correlation matrix (Saha et al., 2021b). Preparation of

natural hazard related susceptibility mapping and their optimal
prediction accuracy is based on suitable geo-environmental
conditions (Arabameri et al., 2021). As a result, MC test has
been carried out in this study to analysis the specific relationship
among all of these variables and minimize the bias. Generally,
MC occurs when there is a high correlation among the two
or more variables (Arabameri et al., 2017). In other words,
MC test is required to ensure the independent conditioning
factors in a dataset (Chen et al., 2020). Tolerance (TOL) and
variance inflation factors (VIF) techniques have been used by
several researchers to test MC analyzes (Chowdhuri et al., 2020a).
Therefore, in this study, we also used these two techniques and
their respective equations were calculated as follows:

TOL = 1− R2
j (3)

VIF =
1

TOL
(4)

Where, R2
j is the regression value of j variables in a dataset. The

MC occurred when the TOL value is < 0.10 or 0.20 and VIF value
is > 5 or 10 of a respective variables in a given dataset.

Modeling of LSSMs
Maximum Entropy (MaxEnt)
The MaxEnt algorithm is based on the principle of maximum
entropy and is one of the most popular predictive machine
learning models (Woodbury et al., 1995). In general, MaxEnt
estimates the probability distribution of the target based on the
principle of maximum entropy and the probability distribution
of LS occurrences in this study. MaxEnt has always chosen the
highest entropy in a given probabilistic dataset. Apart from
this, the presence features are used only by the MaxEnt model
and have a significant impact on inaccessible areas with a
reliable outcome (Reddy and Dávalos, 2003; Phillips et al., 2009).
The relative influence of predictive variables (IPV) is estimated
using jackknife re-sampling techniques within this model to
generate response curves. Model performance was calculated by
re-sampling the jackknife, excluding the predictor variables from
the data set (Yang et al., 2013). Basically, this model identifies
the true distribution (π) of LS, i.e. target occurrences over area
X within a specific study area. Here, historical evidences of LS
taken as a training dataset to define the true distribution (π). Let’s
consider, the LS occurrence probability indicates the location of
area X and the target probability distribution is π (X). Location
X indicates the probability of LS occurring by P(y = 1|X) and the

TABLE 2 | Land use classes in the study area.

Land use Area (he) Area (%)

Afforest 10656.35 4.78

Agricultural 47971.23 21.50

Barren land 36117.43 16.19

Sand dune 3277.57 1.47

Poor range 118820.38 53.26

Salt land 613.01 0.27

Urban area 5646.01 2.53
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Bayes rule has been applied to express this algorithm as follows:

P
(
y = 1

∣∣ X
)
=

P
(
y = 1

)
P(X|y = 1)

P(X)
=

P
(
y = 1

)
8(X)

1/|X|
(5)

Where, P
(
y = 1

)
indicates success of LS occurrences and (X)

indicates total number of occurrences over the whole study area.
π(X) is predicted through maximum entropy principle along
with Gibbs probability distribution. Thus, Gibbs probability
distribution may be expressed as follows:

qλ (X) =
1

Zλ(X)
exp

( n∑
i=1

λifi (X)

)
(6)

Zλ (X) =
∑

y
exp

(∑
i

λifi(x, y)

)
(7)

Where, Zλ (X) indicates normalization constant of a vector, λi
indicates weights assigned of a vector. Furthermore, in the study
area if m LS occurrences, variation between the regularization and
log likelihood is expressed as follows (Phillips and Dudík, 2008):

ψ (λ) =
1
m

m∑
i=1

In
(
qλ (Xi)

)
−

n∑
j=1

βj
∣∣λj
∣∣ (8)

Where, βj represent the parameter of regularization for the jth
variables of predictor.

Generalized Linear Model (GLM)
The GLM was originally introduced and used by Nelder and
Wedderburn (1972). In general, it is the probability of statistical
method with a logit function and widely used in the field
of natural hazards analysis (Lucà et al., 2011). The simple
linear regression model was modified to form the GLM model.
One major advantages of this model is that its simplicity,
thus GLM extensively used in the wide fields of statistical
analysis (Vorpahl et al., 2012). The basic function of this model
is to develop multivariate regression between dependent and
independent variables. Basically, the extensive form of a simple
linear regression model is therefore GLM’s ability to build up a
non-normal distribution between datasets (Payne et al., 2012).
It also has the ability to develop binary datasets based on the
presence and absence of data, using the logit link function
for logistic regression. The GLM algorithm can easily handle
the binary data set with the fractional response of the logit
link function (Garosi et al., 2018). The basic function of this
model fitting approaches includes finding out error distribution,
determining the variables within this system and run the logit link
function. According to Bernknopf et al. (1988) the function of
GLM is as follows:

Y = Pr
(
y = 1

)
=

eC0+C1+X1+···+CnXn

1+ eC0+C1X1+···+CnXn
(9)

Where, Y (logit-function) indicates the probability of an incident
happening and it varies from 0 to 1; X1 . . . Xn represent the
values of different controlling factors and C1 . . . Cn is their
respective coefficient.

Artificial Neural Network (ANN)
One of the most popular MLAs, i.e., the ANN, is the most
accurate and widely used forecasting model that has been
effectively applied in various areas of forecasting analysis, such
as social, economic, stock issues, natural hazard susceptibility
mapping, etc. In general, ANN is a flexible statistical structure
capable of identifying a non-linear relationship between input
and output variables of a dataset (Hsu et al., 1995). In modern
times, this model has been used with the utmost precision
for forecasting, process control and pattern recognition in the
broader perspective of science and technology fields (Sudheer
et al., 2002). An ANN model has some unique features, and
the result of this model’s output forecast is more attractive
and accurate. The unique features of this model are based on
data-driven, self-adapted methods, the ability to generalize, and
the ability to manage complex non-linear relationships. Apart
from that, among all non-linear classes, ANN is a universal
approximator capable of approximating complex class functions
with high accuracy (Zhang and Qi, 2005). Among the various
algorithms used in the ANN model, Multilayer Perceptron (MLP)
is the trendiest and widely used by a number of researchers
(Kosko, 1992). Therefore, within this MLP algorithm ANN model
consists of three layers, i.e., input layer, hidden layer and output
layer (Mandal and Mondal, 2019). If the function of the input
layer is not able to involve in a proper way than data structured
of the model is measured by hidden layer nodes (Arabameri
et al., 2020c). The hidden layer is determined through trial and
error method within this model (Gong et al., 1996). Thus, the
model structure systematically predicts by input as well as hidden
layers and evaluates the output results. The output layer has been
defined by Boolean value of 0 and 1. In this research study, 0
indicates no LS and 1 indicates LS. According to Hagan et al.
(1995) the back propagation of an ANN model can be expressed
as follows:

netl
j (t) =

p∑
i=o

(yi−1
i (t) wl

ji(t)) (10)

The net input of jth neuron of layer l and I iteration

yl
j (t) = f (net(l)

j (t) (11)

f (net) =
1

1+ e(−net) (12)

ej (t) = cj (t)− aj (t) (13)

δl
j (t) = el

j (t) aj (t)
[
1− ajx (t)

]
(14)

δ factor for neuron jth in the output layer ith

δl
j (t) = yl

j (t)
[
1− yj (t)

]∑
δl

j (t) w(l+1)
kj (t) (15)

δ factor for neuron jth in the hidden layer ith

wl
ji (t + 1) = wl

ji (t)+ α
[

wl
ji (t)− wl

ji (t − 1)
]

+ nδ
(l)
j (t) y(l−1)

j (t) (16)
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Where, α is the momentum rate and n is the learning rate
within this model.

Support Vector Machine (SVM)
The SVM is a supervised machine learning method and broadly
used in statistical test such as categorization and regression
analysis (Chen et al., 2017). The algorithm of SVM is based
on the principle of structural risk minimization and statistical
learning (Vapnik, 2013). This model is binary classifiers and
was introduced by Vapnik (2013) in 2013. In general, SVM
has the capability of resolving the statistical dataset in the
way of classification and regression analysis. In SVM model
errors are recognized through several classification functions
and finally generalize the overall function (Joachims, 1998).
The main two principles of SVM are the optimal hyper-plane
classification and the use of kernel function (Yao et al., 2008).
Therefore, the principle of hyper-plane is used to differentiate
into two classes, i.e., events and non-events, in this study it is
LS and non-LS. The situation of closeness of optimal hyper-
plane and training dataset is known as support vectors (Lee
et al., 2017). The statistical induced problems in a SVM model
can be employed in two ways: optimal separating hyper-plane
from training dataset and conversion of non-linear data into
linearly separable data through kernel function (Yao et al., 2008).
In a SVM modeling, two classes have been created by hyper-
plane, i.e., one is above the hyper-plane denoted by 1 and
another is below the hyper-plane denoted by 0. The following
equations have been used to calculate the hyper-plane in a SVM
model.

Min
n∑

i=1

ϕi−
1
2

n∑
i=1

n∑
j=1

ϕiϕjyiyj
(
xi, xj

)
(17)

Subject to

Min
n∑

i=1

ϕiyj = 0 and 0 ≤ αi ≤ D (18)

Where, x= xi, i= 1, 2,. . . n represent the input variables of vector,
y = yi, j = 1, 2,. . .n represent the output variables of vector and
ϕi is Lagrange multipliers.

The decision function of SVM can be expressed as follows:

f (x) = sgn

 n∑
i=j

yiϕiK
(
xi, xj

)
+ a

 (19)

Where, a is the bias which indicate linear distance of hyper plane
from the origin, K

(
xi, xj

)
is kernel functions such as polynomial

(POL) and radial basis function (RBF) and, these can be expressed
as follow (Kavzoglu and Colkesen, 2009).

KPOL
(
xi, xj

)
= (

(
x ∗ y

)
+ 1)d (20)

KRBF
(
xi, xj

)
= e−y||x−xi||

2
(21)

Validation and Accuracy Assessment
The Validation and evaluation of MLA and ensemble generated
LSSMs were done by using area under receiver operating curve

analysis (ROC-AUC) as it is a standard toll to do the same. ROC-
AUC is a statistical analysis and has been widely used by a number
of researchers to validate and assess the accuracy of several
natural hazard susceptibility mappings (Moayedi et al., 2019;
Nguyen et al., 2019; Yuan and Moayedi, 2019; Zhang and Wang,
2019). In general, it is a two-dimensional curve and consists of
events and non-event phenomena (Frattini et al., 2010). It is a
graphical construction on X-axis known as sensitivity and Y-axis
known as 1-speficity. The X and Y axis are false positive (FP) and
true positive (TP), respectively. The four indices, i.e., true positive
(TP), true negative (TN), false positive (FP) and false negative
(FN) have been used to assessment the ACC of ROC. In which,
true and false positive indicates LS and non-LS points correctly,
on the other side, true and false negative indicates LS and non-
LS points incorrectly. In the ROC-AUC sensitivity identifies LS
and 1-specificity identifies non-LS accurately. The ROC-AUC
value ranges from 0.5 to 1. The lower value (0.5) indicates poor
performance and higher value (1) indicates good performance by
the model. The following equations were used to calculate the
ROC-AUC value of a model.

Sensitivity =
TP

TP + FN
(22)

Specificity =
TN

FP + TN
(23)

AUC =
(
∑

TP +
∑

TN)

(P + N)
(24)

Where, P indicates presence of LS and N indicates absence of LS.

RESULTS

Multi-Collinearity Analysis
The multi-collinearity analysis is the significant factor selection
method. It is the method where the land subsidence causative
factors (LSCFs) have been filtered from high correlations among
LSCF variables which have resulted in the erroneous output
and uncertain predictions. In this study, the multi-collinearity
analysis has been done through the Tolerance (TOL) and the
Variance inflation factor (VIF) values of the LSCFs. When the
TOL value is below 0.1 and the VIF is above 5, it has a
problem with the multi-collinearity. Stream power index (SPI)
and drainage density followed the above rules and we removed
the variables. Rests of the 12 variables have been considered as
LSCFs which have no multi-collinearity problems. The VIF of the
12 LSCFs ranges from 2.864 to 1.085 and the TOL value ranges
from 0.349 to 0.921 (Table 3).

Land Subsidence Susceptibility Maps
(LSSMs)
The land subsidence susceptibility maps of the Kashan plain have
been created from the different single and ensemble classifier
machine learning (ML) models. Here, four-stage of machine
learning land subsidence susceptibility models were used. First,
the four single or stand-alone ML; second, the two ensemble
models were created by the integrated of two single models;
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FIGURE 5 | Land subsidence hazard mapping using: (A) GLM, (B) MaxEnt, (C) ANN, (D) SVM.

third, again three ensemble models were created by the integrated
of the three single ML models and last four ensemble models
were created by the integrated of the four single ML model.
Each of the models has presented an LSSM (Figures 5–7). The

TABLE 3 | Multi-collinearity analysis of the subsidence factors.

Factors Collinearity

Tolerance VIF

Aspect 0.921 1.085

Elevation 0.492 2.031

Distance to road 0.611 1.621

Groundwater withdraw 0.747 1.339

Distance to fault 0.801 1.248

Distance to stream 0.663 1.508

Land use/land cover 0.617 1.620

Lithology 0.825 1.212

NDVI 0.770 1.299

Curvature 0.871 1.112

Slope 0.349 2.864

TWI 0.416 2.403

LSSMs were classified in five probability zones of very low, low,
medium, high, and very high. There are many classification
approaches to classify the land subsidence probability maps.
These are natural break, quantile, equal interval, manual and
standard deviation. In this study, all the mentioned classification
methods have been applied and the natural break method
gave the best classification result for all the maps. Where
the spatial data have the big jump value, the natural break
classification scheme is suitable for classification probability
map (Ayalew and Yamagishi, 2005). The single ML and two,
three, and four ensembles of LSSM have been analyzed in
the next sections.

LSSMs From Single ML Models
There are four single ML models have been used for the LSSM.
The LSSMs of the GLM, MaxEnt, ANN, and SVM models have
been presented in Figure 5 and indicate the same symbol for
each class. The areas of the very high, high, medium, low, and
very low land subsidence susceptibility area in the GLM model
are 15, 17, 24, 25, and 18% (Figure 8A). The percentage coverage
of the very high, high, medium, low, and very low land subsidence
susceptibility area in the MaxEnt model are 17, 19, 24, 24, and 16.
The percent coverage of the very high, high, medium, low, and
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FIGURE 6 | Land subsidence hazard mapping using: (A) GLM-MaxEnt, (B) GLM-ANN, (C) GLM-SVM, (D) MaxEnt-ANN, (E) MaxEnt-SVM, (F) ANN-SVM.
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FIGURE 7 | Land subsidence hazard mapping using: (A) GLM-MaxEnt-ANN, (B) GLM-MaxEnt-SVM, (C) MaxEnt-ANN-SVM, (D) ANN-SVM-GLM,
(E) ANN-SVM-GLM-MaxEnt.
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FIGURE 8 | Area percent classes in the different modeling: (A) one model, (B)
two model, (C) three and four model.

very low land subsidence susceptibility area in the ANN model
are 25, 13, 6, 6, and 50%. And the areas of very high to very
low land subsidence susceptibility area in the SVM model are
16, 10, 18, 29, and 27%. The areas of probability classes of land
subsidence in the models of GLM, MaxEnt, and SVM are almost
the same and they maintain consistency. The probability classes
of LSSM in ANN model are slide difference from the other three
models (Figure 8A).

LSSMs From First Stage Ensemble Models
After the single ML land subsidence susceptibility model, the
first stage ensemble models were created by the integrated of
two ML models. In this process, six ensemble models have
been created. These are GLM-MaxEnt, GLM-ANN, GLM-SVM,

MaxEnt-ANN, MaxEnt-SVM, and ANN-SVM (Figure 6). The
very high probability of land subsidence areas varies from 9
to 10% in the above six ensemble models (Figure 8B). The
percentage of the high probability of land subsidence areas
ranges from 9 to 11. The percentage of medium probability
of land subsidence areas ranges from 12 to 18. The low and
very low probability area ranges from 13 to 27 and 37 to 54%,
respectively (Figure 8B). So the very high and high probabilities
of land subsidence classes have a good consistency in the six
ensemble models.

LSSMs From Second and Third Stage Ensemble
Models
In this stage, the possible ensemble models have been made by the
integration of three and four single ML models. These ensemble
models are GLM-MaxEnt-ANN, GLM-MaxEnt-SVM, MaxEnt-
ANN-SVM, and ANN-SVM-GLM-MaxEnt. The LSSMs were
prepared from these ensemble models presented in Figure 7.
In this second stage ensemble model, the percentage of very
high land subsidence susceptibility zone ranges from 5 to 6
(Figure 8C). The high land subsidence susceptibility probability
zone varies from 7 to 8%. The percentage of medium land
subsidence susceptibility probability zone ranges from 9 to
11. The low land subsidence probability zone varies from 15
to 21 and the very low land subsidence hazard probability
zone ranges from 56 to 69%. So there are no such differences
among the land subsidence hazard probability zone in second
stage ensemble models. The final ensemble model or the third
stage ensemble model was made through the integration of
all four single models. The final ensemble model has 3, 7,
7, 14, and 69% of land subsidence susceptible areas for the
very high, high, medium, low, and very low zone, respectively
(Figure 8C).

Evaluation of Land Subsidence Model
Validation is an important task for modeling based output
because of the accessibility of the model output determined
by the model output validation. The goodness of fit and
prediction accuracy of all ML ensemble models have been
evaluated using training and validation land subsidence data
applied the technique of area under curve (AUC) of the
receiver operating characteristic (ROC) curve. The evaluation
performance result of single ML and ensemble of two, three,
and four ML models in training and validating stage have been
shown in Figures 9, 10. All the single ML and ensemble two,
three, and four ML methods showed the excellent goodness
of fit and prediction accuracy of the models. The AUC-ROC
of the single four ML model on the training stage showed
in Figure 9A. The ANN model has the highest AUC value
(0.924) followed by SVM and GLM. On the validation stage
(Figure 10A), the SVM model got the highest (0.823) accuracy
among the single ML model and followed by ANN (0.794).
In case of the ensemble of two ML methods (Figures 9B,
10B), the ensemble of the ANN-SVM model has higher AUC-
ROC in training (0.915) and validating (0.812) datasets and
followed by the GLM-ANN (0.808) and ANN-MaxEnt (0.805).
The ensemble of three and four ML algorithms showed the

Frontiers in Earth Science | www.frontiersin.org 13 May 2021 | Volume 9 | Article 663678

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-663678 May 25, 2021 Time: 9:26 # 14

Arabameri et al. Performance Evaluation of GIS-Based Novel

FIGURE 9 | Area under the curves based on training datasets: (A) one model, (B) two model, (C) three and four model.

FIGURE 10 | Area under the curves based on validation datasets: (A) one model, (B) two model, (C) three and four model.

good accuracy of the model in both training and validating
stage (Figures 9C, 10C). In the training stage, the highest AUC
(0.89) value came from the ANN-SVM-GLM model followed
by GLM-MaxEnt-ANN (0.884) and MaxEnt-SVM-ANN (0.884)
model. On the validating stage, the high prediction rate of
AUC has come from GLM-MaxEnt-ANN (0.788) and followed
by MaxEnt-ANN-SVM (0.786). The AUC of the ensemble
GLM-MaxEnt-ANN-SVM in training and validating stage are
0.838 and 0.755.

Table 4 shows the comparison of AUC-ROC for all single
ML and ensemble two, three, and four ML methods using

training and validating datasets. The result of the reliability of
ML algorithms based on training datasets has depicted that the
ANN has the highest AUC (0.924) means this model is the
best fit model for the land subsidence hazard mapping. And
the second and third best fit models are the ANN-SVM (0.915)
and GLM-ANN (0.908). The prediction accuracy of the ML
algorithms based on validating datasets showed the SVM has
the highest AUC (0.823) followed by ANN-SVM (0.812) and
MaxEnt-ANN (0.808). The SVM model is the best model for the
land subsidence susceptibility mapping because it has the finest
prediction accuracy.
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TABLE 4 | Area under the curve values of training and validation data in different models.

AUC Prioritizing

Ro w Models Training Validation Priority based on training Priority based on validation

1 GLM 0.816 0.763 12 14

2 MaxEnt 0.807 0.767 15 12

3 ANN 0.924 0.794 1 6

4 SVM 0.868 0.823 8 1

5 GLM-MaxEnt 0.81 0.766 14 13

6 GLM-ANN 0.908 0.805 3 4

7 GLM-SVM 0.849 0.792 9 7

8 MaxEnt-ANN 0.903 0.808 4 3

9 MaxEnt-SVM 0.843 0.798 10 5

10 ANN-SVM 0.915 0.812 2 2

11 GLM-MaxEnt-ANN 0.884 0.788 6 8

12 GLM-MaxEnt-SVM 0.814 0.781 13 11

13 MaxEnt-ANN- S VM 0.884 0.786 7 9

14 ANN- S VM-GLM 0.89 0.784 5 10

15 GLM-MaxEnt-ANN-SVM 0.838 0.755 11 15

DISCUSSION

Several kinds of natural hazards related environment problems
has been solved by various research groups for sustainable
management and utilization of natural resources (Pradhan and
Kim, 2017; Jiang et al., 2018; Tsai et al., 2019; Wang et al.,
2020; Xu et al., 2021) with the help of remote sensing (RS)
technology (Han et al., 2019; Hu et al., 2020; Zhang et al.,
2020c) and geographical information system (GIS) tool (Zuo
et al., 2015; Xu et al., 2018; Zhu et al., 2019; Yang et al., 2020b)
and widespread progress in the computational facilities (Chao
et al., 2018; Zhang et al., 2018, 2020b; Cao et al., 2020; Xu
et al., 2020; Feng et al., 2020). A noteworthy support from
the combination of RS and GIS technology gives efficiently
solution in the several types of natural hazards related problems
(Yang et al., 2018, 2020a; Zhang et al., 2019; Sun et al., 2021).
Therefore, the geospatial technology, i.e., remote sensing and
GIS has been providing high resolution multispectral satellite
data and their optimal processing which is immensely help to
analysis and solves several types of natural hazards related risk.
The optimal data processing without any kinds of bias is done
through machine learning algorithms and their computation
analysis has been presented through the help of GIS platform
(Pourghasemi and Rossi, 2017; Yang et al., 2015; Chen et al.,
2019a; Zhu et al., 2019). Thus, in the present time, RS-GIS
techniques and machine learning algorithms has been widely
helped for optimal evaluation of many scientific problems (Yang
et al., 2015; Wu et al., 2020).

Preparing of LS hazard susceptibility mapping is an important
and one of the key challenging tasks among the land use planners
(Arabameri et al., 2021). Therefore, several researchers proposed
various kinds of models to address this key challenges and there
has been great interest in improving the prediction performance
of the hazards related susceptibility mapping through ML models
(Oh et al., 2019). It is also be mentioned here that no specific

models can give an optimal result and have controversy among
the researchers in this regards (Arabameri et al., 2020a). The
reliability and accurate result is the most predominate condition
for the LS hazard susceptibility mapping and researchers tried to
form new novel ensemble models to produced good outcomes
(Reichenbach et al., 2018). A lot of ML methods have been
applied in the previous past few years for the spatial probability
map of various kind of environmental hazards (Arabameri et al.,
2020c). The spatial analysis of LS indicates that subsidence
specifically occurred in the flat areas particularly in the alluvial
deposited land and agricultural areas located in arid regions
(Herrera-García et al., 2021). A present time, ML algorithms
and their ensemble methods have been applied in various fields
for the susceptibility mapping and it has been shown to be
effective in terms of predictive performance (Nguyen et al., 2019;
Arabameri et al., 2020c; Feng et al., 2020; Liu et al., 2020; Zhang
et al., 2020a; Saha et al., 2021b). Particularly, ensemble models
always enhanced the output result by integrated the several ML
algorithms (Mojaddadi et al., 2017; Arabameri et al., 2020d;
Saha et al., 2021a).

Thus, based on the literature survey and local geo-
environmental conditions, different LSCFs have primarily
selected to perform the LSSM in this present study area.
After that multi-collinearity assessment studies was carried
out and based on the result of multi-collinearity, a total
of 12 geo-environmental variables were selected for the LS
susceptibility modeling (Chen et al., 2019b; Arabameri et al.,
2020d). Thereafter, ML algorithms of GLM, MaxEnt, SVM, and
ANN were used and 11 possible ensemble models were developed
to mapping LS susceptibility analysis. GLM or the logistic
regression model is the most common statistical technique used
for the prediction of landslide, flood, groundwater, gully erosion
susceptibility. The most advantages of GLM is that assumes a
linear relationship between a link function of the predictors
and response. The presence-only feature can be considered as
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advantages of MaxEnt because the determination of non-land
subsidence may result in uncertainty. SVM is a supervised
based classification model and it is very capable of dealing
with non-linear and high-dimensional grouping problems by
use of the different SVM based function (Huang and Zhao,
2018). The ANN is an effective tool in a neural network, where
the hidden and output layer nodes process their inputs (Lee
et al., 2012) and successfully applied in this study. Ensemble
models rapidly applied for the susceptibility modeling, but some
author reported that ensemble models have better accuracy
than the single models (Pham et al., 2019; Arabameri et al.,
2020b; Chowdhuri et al., 2020b) consequently, some study
reported that stand-alone ML models have better accuracy
(Althuwaynee et al., 2014).

In this study, we used a total of 15 models for land subsidence
modeling, but the ANN model was the best model by the success
rate of accuracy (AUC = 0.924) and the success rate AUC
obtained from the training datasets. On the other hand, the
SVM land subsidence hazard susceptibility model was the best
model by the prediction accuracy rate (AUC = 0.823) and the
predictive accuracy rate obtained from the validating datasets. An
ANN model is based on the non-linear statistical analysis of a
given dataset and evaluation on the basis of observed coherence
network dynamics. Thus, ANN gives the highest accuracy in
the training dataset. On the other side, SVM model try to
relocate the idea based on the kernel function using unsupervised
function (Smits and Jordaan, 2002) and hence, gives the better
performance in validation dataset. The accuracy of the models
in success and prediction rate has been analyzed through the
ROC- AUC curve. The ROC curve is a quantitative model
evaluator successfully used for model performance evaluation in
most of the studies (Su et al., 2017; Arabameri et al., 2020d).
The graphical presentation of the ROC- AUC curve created its
most suitable model evaluator. The ROC- AUC curve result
demonstrated that the 15 models performed well, but the SVM
and ANN-SVM models have made the best prediction of the
gully erosion. Another study of LS in the Kashmar region,
Iran based on MaxEnt models gives the result of ROC-AUC
is 88.9% (Rahmati et al., 2019a,b) which is significantly higher
than the present study. Similarly, LS susceptibility studies in the
Semnan province of Iran using ANN models gives the result
of ROC-AUC is 0.919 (Arabameri et al., 2020d) which is less
than the our study result (AUC = 0.924). Therefore, studies
indicate that the same ML models give different result in accuracy
assessment from region to region, depending upon the local
geo-environmental factors.

Thus, in this study, the combination of remote sensing
and GIS techniques along with ML algorithms has given the
optimal result for land subsidence susceptibility mapping.
Among the four ML algorithms, SVM gives the most
optimal prediction performance outcome than the others.
Therefore, based on the output maps of LS resulting
from hybrid ML algorithms will be very much helpful to
the land use planners and policy makers for sustainable
management and uses of land resources. The land degradation
process through LS is also control through taken proper
management strategies.

CONCLUSION

The phenomenon of LS is one of the economic threats among
the global people through the land degradation processes usually
induced by human misuse. Therefore, proper assessment and
management of this kind of natural hazard is crucial for
sustainable development of any region. Hence, for the purpose
of land management it is necessary to identification, modeling,
assessment and analysis, and in the present research study it has
been carried out in the Kashan plain, Iran. Here, ML algorithms
of GLM, ANN, MaxEnt, SVM and their 11 possible ensemble
classifier models were used for LS susceptibility modeling and
mapping. The final result indicates that the ANN model is the
best in training phase among the 15 models. But in the prediction
accuracy SVM model is the best among all models. Furthermore,
the consistency between the LSSMs was mentioned properly and
there are no such differences between the susceptibility zones.
Additionally, maximum ensemble models from the four ML
models were developed in this study and in near future several
others ML models can be used to compare and evaluate the
optimal result. Not only this, based on the optimal output of this
study, these ensemble models can be used in further research
studies such as several environmental hazards potentiality
mapping and prediction. The best outcomes of the study are
land subsidence susceptibility maps which will help in the local
administrations and decision-makers in land use planning and
proper management of land resources. As we know every research
study have some limitations, therefore this study also carried
some limitation in terms of using limited LS causative factors and
lack of hydrological modeling. Another side, the strength of this
research study is the quality of the ML modeling and their optimal
prediction result.
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