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This study has developed a new ensemble model and tested another ensemble model for
flood susceptibility mapping in the Middle Ganga Plain (MGP). The results of these two
models have been quantitatively compared for performance analysis in zoning flood
susceptible areas of low altitudinal range, humid subtropical fluvial floodplain environment
of the Middle Ganga Plain (MGP). This part of the MGP, which is in the central Ganga River
Basin (GRB), is experiencing worse floods in the changing climatic scenario causing an
increased level of loss of life and property. The MGP experiencing monsoonal subtropical
humid climate, active tectonics induced ground subsidence, increasing population, and
shifting landuse/landcover trends and pattern, is the best natural laboratory to test all the
susceptibility prediction genre of models to achieve the choice of best performing model with
the constant number of input parameters for this type of topoclimatic environmental setting.
This will help in achieving the goal of model universality, i.e., finding out the best performing
susceptibility predictionmodel for this type of topoclimatic setting with the similar number and
type of input variables. Based on the highly accurate flood inventory and using 12 flood
predictors (FPs) (selected using field experience of the study area and literature survey), two
machine learning (ML) ensemble models developed by bagging frequency ratio (FR) and
evidential belief function (EBF) with classification and regression tree (CART), CART-FR and
CART-EBF, were applied for flood susceptibility zonation mapping. Flood and non-flood
points randomly generated using flood inventory have been apportioned in 70:30 ratio for
training and validation of the ensembles. Based on the evaluation performance using
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threshold-independent evaluation statistic, area under receiver operating characteristic
(AUROC) curve, 14 threshold-dependent evaluation metrices, and seed cell area index
(SCAI) meant for assessing different aspects of ensembles, the study suggests that CART-
EBF (AUCSR � 0.843; AUCPR � 0.819) was a better performant than CART-FR (AUCSR �
0.828; AUCPR � 0.802). The variability in performances of these novel-advanced ensembles
and their comparison with results of other published models espouse the need of testing
these aswell as other genres of susceptibility models in other topoclimatic environments also.
Results of this study are important for natural hazard managers and can be used to compute
the damages through risk analysis.

Keywords: CART, FR, EBF, ensembles, Middle Ganga Plain, Ganga Foreland Basin

1 INTRODUCTION

Floods in the changing climatic and anthropogenic scenario over
the Holocene period have been impacting the living conditions of
humans (Macklin and Lewin, 2003). Owing to the recurring floods
and their devastating worldwide societal implications, the United
Nations Sustainable Development Goals (UNSDGs) incorporate
flood risk management and mitigation as one of its principal aims
(UNSDG, 2013). Depending upon the geological, hydrological,
climatic, and societal factors, floods have been variously classified
(Sikorska et al., 2015). However, the widely accepted definition of
flood encompasses the views of hydrologists, hazard managers, and
sociologists, i.e., floods occur when the rise of water levels, caused by
meteorological, hydrological, geomorphic, anthropological, and
societal factors, can result in inundated areas which otherwise
remain dry thereby causing loss of life, agriculture (including
livestock), and property (Hubbart and Jones, 2009). The state of
Bihar in India faces annual flooding incurring a loss of life, property,
and agriculture (livestock included), in the tune of approximately
₹146,301.71 million (CWC, 2018). Previous studies have suggested
that the Ganga River Basin (GRB) in the Himalayan Foreland Basin
(HFB) is currently under active tectonic regime (Kumar, 2020). It is
experiencing subsidence due to subsurface structural activities
accentuating floods occurring due to various reasons (Shukla et al.,
2012; Gupta et al., 2014). Apart from tectonically induced ground
subsidence, landuse/landcover (LULC) induced (Kumar et al., 2018),
climate change-induced (Arora et al., 2021a), river embankment
breach induced (Bhatt et al., 2010), etc., factors cause frequent
flooding in the GRB. Advancement in remote sensing technology
has proved to be helpful in monitoring and prediction of the flooding
(Jiménez-Jiménez et al., 2020). Many aspects of floods are quantifiable
using continuously growing remote sensing satellite technology and
their output products (Plaza et al., 2009).

The recent developments in remote sensing satellite
technologies and sensors (Toth and Jóźków, 2016; Zhang X.
et al., 2019; Han et al., 2019; Weiss et al., 2020; Yang et al.,
2021), rise in number of available platforms for the satellite data
access (Boerner, 2007; Rizzato et al., 2020), and improvements in
other low altitude geospatial technologies like lightweight
unmanned aerial vehicles (UAVs) (Rizzato et al., 2020) have
aided to ease the monitoring and analysis of natural hazards and
disasters (Gillespie et al., 2007) at various spatial and temporal
scales. Since monitoring floods in urban settings is difficult due to

narrow open space among the concrete jungles, use of UAVs
immensely helps to monitor and quantify the flooded and flood-
induced damages (Yalcin, 2018). Challenges, advantages, and
disadvantages of using UAVs for such purposes in urban settings
are discussed in detailed fashion in the literature (Feng et al., 2015).
Freely available remote sensing products such as optical, radar, and
hyperspectral datasets are more popular in studies quantifying
different aspects of natural hazards (Lin and Yan, 2016; Yao et al.,
2019). These remote sensing datasets are used to monitoring of
current flood events (Ban et al., 2017) and to compute different set
of variables that are entered as input in flood predictionmodels (Arora
et al., 2021a).

In recent years, modeling development has attracted the
attention of many researchers in various scientific disciplines
(Cheng and Han, 2016; He et al., 2018; Chen et al., 2021). Multi-
criteria decision-making (MCDM) (Opricovic and Tzeng, 2004;
Abdullahi et al., 2015; De Brito and Evers, 2016; Turskis et al.,
2019) and artificial intelligence (Suman et al., 2016; Guikema,
2020; Sun et al., 2020; Tan et al., 2021) models are very popular
among researchers. There are a wide variety of flood inundation
prediction models, e.g., statistical models including bivariate and
multivariate (Tehrany et al., 2014), machine learning models,
multi-criteria decision-making (MCDM) (Nachappa et al., 2020),
and an ensemble of two or more models (Arabameri et al., 2020c).
Guerriero et al. (2018) have discussed a more exhaustive
discussion of existing methods on the flood inundation models
prediction with their pros and cons. Also, new models are being
devised and tested regularly (Razavi Termeh et al., 2018).
However, different flood susceptibility models perform with
different levels of accuracy and sensitivity (Bui et al., 2018)
giving rise to inconsistency in model performances in different
environmental settings. Currently, there appears to be a
challenging task to find a model with a high level of
predictability in diverse topographic and climatic settings. This
task requires rigorous testing of various flood susceptibility
prediction index (FSPI) models in different topoclimatic
settings like low-relief floodplain environment with humid
subtropical monsoon climate (Hong et al., 2018b) and
mountainous high-relief rugged terrain with the semiarid
climatic regime (Ahmadlou et al., 2018).

As pointed out in the previous paragraph, different types of
susceptibility models accrue differences in accuracy and sensitivity
in a similar or same topoclimatic setting. Furthermore, new models
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are constantly being developed and tested to achieve a better level of
accuracy and sensitivity and to overcome disadvantages arising out
of different factors discussed by researchers (Reichenbach et al.,
2018). Additionally, the need to develop new models and test the
previously developed ones in different settings is clearly visible in
the hazard modeling community in the present decade (Panahi
et al., 2021). To further this current practice among the hazard
modeling community, we, in this study, present two new ensemble
models and test their performance for a typical topoclimatic setting.
We test the performance of one recently developed novel-advanced
ensemble model viz. CART-FR and one new ensemble model
(CART-EBF) developed for the first time by us to predict flood
occurrences and delineate flood susceptibility zones in a region of
the Middle Ganga Plain environment. We apply 12 widely used
flood predictors namely geomorphology, altitude, slope, aspect, plan
curvature, topographic wetness index (TWI), drainage density,
distance to the river, distance from the road, soil type, annual
rainfall, and landuse/landcover (LULC). This study also attempts to

assess the contribution significance and efficiency of different flood
predictors by using information gain (IG) method, through analysis
of weightage rankings assigned by various ensemble models. This
flood predictor ranking may assist flood hazard managers during
the policy formulation and mitigation measures implementation.

2 MATERIALS AND METHODS

2.1 Study Area
The part of the Middle Ganga Plain (MGP) investigated for flood
susceptibility prediction, covering an area of ∼10,138.5 km2, in this
study is located in between the Upper and the Lower Ganga Plains
(Figure 1). It lies between latitude 25°14′48.00″N–26°14′24.60″N
and longitude 83°51′46.19″E–85°45′3.25″E. About 55.4% of the
GRB (Singh et al., 2007) is covered with a thick layer of alluvium
brought and deposited by a dense network of streams. There are a
number of tectonic structures, both in the deep basement and at the
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surface which produce surface geomorphic markers revealing
continuous active tectonic activity in MGP (Singh, 1996). The
Ganga plain is also undergoing subsidence as a result of tectonics as
well as excess groundwater depletion (Sahu et al., 2010). The study
area is drained by several tributaries including Gomti River,
Ghaghara River, Gandaki river, and Kosi river (these tributaries
join the Ganga from the left bank); and Yamuna River, Son River,
and Punpun river (these join the right bank of the Ganga). This
densely populated area has been on the constant radar of national
disaster management agencies for very long.

GRB experiences a humid subtropical climate featuring four
seasons—the winter season (January–March), summers
(April–May), monsoon (June–September), and post-monsoon
(OctoberDecember) (Dimri, 2019). According to the Indian
Meteorological Department (IMD), the average annual mean,
maximum, and minimum temperature experienced in GRB in
35 years (1969–2004) are 24.82°C, 31.22°C, and 18.44°C, respectively.

The MGP records average annual rainfall on the order of
100–120 cm, three-quarters of which is downpoured within
4months long monsoon season (Trivedi et al., 2019). The
influence of western disturbances (WDs) on Indian monsoonal
rainfall is well-documented in the form of sporadic rains and
hailstorms during the southward migration of intertropical
convergence in winter months (Dimri and Chevuturi, 2016). The

seasonal variability in the Ganga River discharge has led hydrologists
to term river discharge of Indian River Network systems associated
withmonsoon systems such asmonsoonal discharge, post-monsoonal
discharge, summer or winter monsoon discharge (Gupta, 1984). The
monsoon season river discharge in the Ganga River increases by
50–100 times due to heavy rainfall downpour.

2.2 Data and Methodology
Data preparation is the first step in scientific works (Feng et al.,
2020). Table 1 provides the datasets used for preparing the flood
predictors derived from Shuttle Radar TopographyMission (SRTM)
digital elevation model (DEM) (30m resolution), and other data
sources, and flood inventory computed from Landsat-5 thematic
mapper (TM) satellite imagery. The flood occurrence susceptibility
modeling flow diagram shown in Figure 2 suggests that this research
work has been accomplished in the follwing six steps: 1) obtain least
cloudy Landsat 5 TM images of the study area from National
Aeronautical Space Agency’s (NASA’s) earth explorer portal
(https://earthexplorer.usgs.gov/) and generate the flood polygon
for the “2008 Bihar Flood” event using normalized difference
water index (NDWI) thresholding. The input datasets used in
this study have been discussed in detail in Section 2 and its
subsections in the study by Arora et al. (2021b), 2) create the
flood inventory and the flood predictors, 3) generate flood and

FIGURE 1 | Location of the study area. (A): Location of the studied area marked on the map of India. It also shows Tibet and Pakistan in the northeastern and
northwestern sides respectively. (B): Elevation of the study area classified using Natural Break (NB) method with input from SRTM 30m digital elevation model. (C): broad
beological profile of the study area and its surroundings. This section also shows major drainages of the Ganga River Basin of which our study area is a part. (D) Loss of
lives due to 2008 Bihar floods in 15 districts is shown here. (E,F) are photographs of the flood situation in the study area. (E,F): field photographs captured in the
study area caused by 2008-Bihar flood.
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non-flood points for model training and validation, 4) test
the conditioning factors of flood and non-flood points for
multicollinearity, and also, apply the feature selection
methods on all the flood predictors for a proper
understanding of the suitability and contribution
potential of all the factors involved. Here, we have applied
information gain, 5) calculate the weightage of all the flood
predictors using bivariate frequency ratio and evidential belief
function models; also, devise the ensemble models with MLP,
and CART machine learning models; and 6) perform model
evaluations using various statistical parameters (discussed in the
respective sections).

2.2.1 Flood Inventorying
As suggested by Arora et al. (2021b), this step involves the
computation of NDWI from the selected satellite scenes. The
details of NDWI computation method, based on Gao (1996), are
presented in Arora et al. (2021b). Flood pixels are separated from

non-flooded pixels by applying a threshold ≥0.20 to the NDWI
raster.

2.2.2 Flood Predictors
We have selected 12 flood predictors (Table 2) based on an
extensive literature survey and our knowledge of the geomorphic,
hydrologic, and climatic conditions of the study area. The slope
angle is defined as the rate of change of elevation with Euclidean
distance. Slope is one of the factors that determine and influence
soil type, moisture content, and vegetation and, therefore, affects
the surface runoff (Yang et al., 2020) and infiltration rates (Nassif
and Wilson, 1975; Liu and Singh, 2004). Thus, the slope has both
indirect and direct effects on flood inundation (Al-Rawas and
Valeo, 2010). We computed the slope degree using ArcGIS 10.3
and DEM data and classified the slope range of 0–42.80° into five
categories using the natural break method (Figure 3A).

Slope direction is one of the variables that bear a relationship
with the availability of soil moisture, geomorphic stability,

TABLE 1 | Satellite and DEM data characteristic details used in the study.

SN Image scene ID CC Event time Acquisition date Processing level Spatial reference

1 LT05_L1TP_141042_20080528_20161031_01_T1 SCC 0% Preflood 28-05-2008 L1TP Projection: UTM
LCC 0%

2 LT05_L1TP_141042_20081019_20161029_01_T1 SCC 1% Post Flood 19-10-2008 L1TP Datum & Spheroid: WGS84
LCC 1%

3 LT05_L1TP_141042_20080901_20161029_01_T1 SCC 9% During Flood 01-09-2008 L1TP —

LCC 9%
4 SRTM v4 DEM — — 11–22 Feb 2000 — Zone: 44N

CC, cloud cover; SCC, scene cloud cover; LCC, land cloud cover.

FIGURE 2 | Flow diagram showing step-by-step methodology employed in this study.
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exposure to radiation at the surface, wind (dry or wet), and
rainfall intensity. Hence, it has an established relationship with
flooding (Siahkamari et al., 2018). We used 3-D Analyst of SRTM
DEM in ArcGIS 10.3 to calculate slope direction and categorized
it into ten classes (Figure 3B).

Altitude affects the flood level in two ways: 1) elevation from the
channel bed level decides how far from the rivers will inundation
occur and 2) height from sea level controls atmospheric

phenomena and hence type and magnitude of precipitation. In
this study, SRTM v.4 30m digital elevation model (DEM) derived
low altitude range (13–96m) surface of the area is classified into
seven categories using the natural break method (Figure 3C).

Plan curvature or planform curvature is the directionality
parallel to the maximum slope and decides the flow direction
(Kimerling et al., 2016). We have used SRTM DEM to compute
and reclassify three categories of planform curvature namely

TABLE 2 | Multicollinearity test results of all the conditioning factors; information gain (IG) attribute evaluation method for selection of flood conditioning factors using 300
flood and 300 non-flood points in Weka Software.

Multicollinearity analysis Information gain analysis

Conditioning factor VIF TOL Weight Rank Conditioning factor

TWI 1.96 0.51 0.3195 1 Geomorphology
Distance from river 1.39 0.72 0.1549 2 Soil
River density 1.39 0.72 0.0618 3 LULC
Altitude 1.77 0.56 0.0332 4 Distance to road
Aspect 1.28 0.78 0.031 5 Altitude
Curvature 1.05 0.95 0.0277 6 TWI
Rainfall 1.05 0.95 0.0256 7 Aspect
Distance from road 1.12 0.89 0.0256 8 Slope
Slope 1.53 0.65 0.0246 9 Stream density
Soil 1.15 0.87 0.0123 10 Distance to River
Geomorphology 1.34 0.75 0.0000023 11 Curvature
LULC 1.42 0.70 0.0000014 12 Rainfall

FIGURE 3 | Flood conditioning factors used for modeling of flood susceptibility. From (A–L) the maps indicate Altitude, Slope; Aspect; TWI; River Density; Distance
to Road; Annual Rainfall (mm); Soils; Curvature, Distance to River; LULC; and Geomorphology.
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negative, zero, and positive indicating concave, flat, and convex
surfaces, respectively (Figure 3D).

TWI is a quantitative measure indicating topographic control
on hydrological processes. It is computed using the formula:
TWI � ln(As

β ) where As denotes the specific catchment area (m2/
m), and β equals slope angle in degrees. TWI values determine the
surface saturation condition which is one of the governing factors
in surface runoff and hence becomes one of the determinants of
potential flooding in a watershed. Here, we categorized the TWI
map of the study into six classes (Figure 3E).

River density also known as drainage density (Dd) represents
the stream channel length per unit area. It is calculated using the
formula suggested by Horton (1932): Dd � LT

A , where LT is the
total stream length serving an area, and A is the contributing area.
Thus, Dd bears a directly proportional relationship with potential
flood prediction. The higher the drainage density (Dd), the higher
is the probability of flooding in a watershed. We have reclassified
the Dd range of 0–15.35 into six categories using the natural break
method in ArcGIS 10.3 (Figure 3F). The drainage density is also
established to be an indirect indicative of active tectonic activities
(Han et al., 2003). Since the area is tectonically active, this
parameter has been included to incorporate the effects of
active tectonic activities to the flood potential.

Euclidean distance from the river channel is an important
factor determining the extent of the inundated area by a flood
(Khosravi et al., 2018). The areas far away from the river channel
in a watershed are less probable to flooding than the ones nearer
to the channel. Relationship of flood susceptibility to the distance
to the river channel is subjective as the relationship varies from
place to place depending on various factors (Choubin et al., 2019).
We calculated the Euclidean distance to river channels in the
Spatial Analyst Toolbox of the ArcGIS 10.3 and later interpolated
and reclassified it into 10 categories to produce the map of
“distance to the river” (Figure 3G).

Distance from the road is one of the important independent
variables used in flood susceptibility modeling. The road
networks in modern-day urban agglomerations increase
impervious surfaces which contribute to changing the surface
hydrological properties. Road network data used in this study
have been obtained from Open Street Map Portal which is a
collaborative mapping project (CMP). The data quality and its
usability are described in Fan et al. (2014). After producing the
map using interpolation, the data have been reclassified into
seven categories (Figure 3H).

Geomorphology is closely connected to flood susceptibility
(Mokarram and Sathyamoorthy, 2016). Floods sculpture
landforms by the processes of erosion and deposition.
Sometimes, extreme flood events destroy the landforms
formed by different geomorphic agents. Thus, the
interrelationship between floods and landforms of different
scales (spatial and temporal) is established since the dawn of
geomorphology as a discipline. In this study, geomorphological
units were extracted from Google Earth Pro© through onscreen
digitization method at 1:500/1,000 scale. Seventeen microscale
geomorphic units have been identified through the classification
of the study area (Figure 3I). Fine-scale geomorphology being
another proxy that connotes the effects of active tectonic activities

and seismological perturbances in the surface has also been taken
as one of the exploratory variables of flood susceptibility, but it
has previously been ignored in flood susceptibility modeling
community. Some of the geomorphic markers mapped in this
area which represent effects of active tectonic activity include 1)
asymmetrical meander belts (Leeder and Alexander, 1987), 2)
abrupt scarp faces, 3) highly sinuous mountain fronts (Taloor
et al., 2019), 4) unpaired terraces (Joshi et al., 2016), 5) unilateral
migration (Latrubesse, 2015), 6) shifted fan lobes and terraces
(Jolley et al., 1990), etc.

Climate change affects hydrological processes (Tian et al.,
2020; He, 2021). Rainfall variations have an impact on flash
flooding (Mahtab et al., 2018). Prolonged rainfall events or a set of
short-interval events of different intensities and magnitudes often
prompt floods. In this study, we have used the global CFSR
annual rainfall dataset to extract rainfall conditions in the study
area (Trivedi et al., 2019). The dataset is provided on a 1000 m
spatial resolution which has been resampled to 30 m resolution
data by using the nearest neighbor (NN) method (Figure 3J). The
data range of 1,001–1,081 mm is reclassified into six classes using
the natural break method.

Different characteristics of soil affect various hydrologic
properties of the surface (Zhang et al., 2019b). Soil types with
high permeability and high infiltration ratio show less
susceptibility to flooding and vice versa (Krogh and Greve,
2006; FAO and ISRIC, 2012). Soil map produced by FAO and
ITPS (2015) used in this study is resampled at 30 m resolution
and classified into six categories (Figure 3K).

LULC can alter and control factors such as moisture
retention capacity of the surface, infiltration rate, surface
runoff, heat albedo and hence bears a well-known
relationship with flood possibility in an area. For example,
if an area has been converted to built-up land from forested
land, the probability of flooding increases owing to the
increased imperviousness caused by altered surface cover
type (Rogger et al., 2017). The LULC data produced by
climate change initiative (CCI) program of the European
Space Agency (ESA) have been used in this study. The
subset of LULC data obtained from ESA archived 300 m
spatial resolution, annual worldwide dataset generated for
the period 1992–2015 (Li et al., 2018), has been reprocessed
using nearest neighbor resampling procedure at 30 m
resolution (Figure 3L). The manual provided by the agency
gives a full description of the dataset which readers can access
to gain better knowledge (ESA, 2017).

2.2.3 Multicollinearity Assessment Through the
Variance Inflation and Tolerance Analysis
Multicollinearity analysis (Alin, 2010) (also known as
collinearity) is the foremost important step in the regression
analyses. The concept of multicollinearity refers to the property of
predictor variables not showing dependency on one another
which Dormann et al. (2013) phrase as “non-independence of
the predictor variables.” The noncollinear relationship among
flood predictors (or independent variables/predictor variables) is
warranted to get unbiased model results. Collinearity among the
predictor variables is determined through “variance of inflation
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(VIF)” and “tolerance (TOL)” for a case
X � {X1,X2,X3, . . . . . . ,XN}with the formula for which
mathematical expressions are given as:

TOL � 1 − R2
j , (1)

VIF � 1
TOL

, (2)

where R2
j � coefficient of determination of an explanatory variable’s

regression on all the other explanatory variables. For the above case
X, jth explanatory variable Xj’s regression on all the other
explanatory variables like X1, X2, X3, . . . ..XN yields the input
variable R2

j needed for computation of VIF and TOL. The value
of VIF>10 and TOL <0.1 is indicative of severe multicollinearity
among the explanatory variables. VIF was calculated by “exploratory
regression” which is an embedded tool in Spatial Statistics Toolbox
of ArcGIS 10.3. The VIF and TOL values are presented in Table 2.

2.2.4 Feature Selection Method for Flood Predictors
For determination of the significance of controlling factors and
ranking flood predictors as per their contribution in the prediction
of flood phenomena, the information gain (IG) method (Section
2.2.4.1) was applied using the Weka software v3.9.4, developed by
the University of Waikato, Hamilton, New Zealand.

2.2.4.1 Information Gain
IG is one of the most widely used methods of feature selection in
various machine learning (ML) applications including landslide
modeling (Đurić et al., 2019) and flood modeling (Costache and
Tien Bui, 2019). This method is found to be one of the fastest and
simplest methods used for ranking the features (Hall and Holmes,
2003).

The concept of entropy is one of the main tenets of the
“information theory” and serves as the basis of IG:

IG(t) � −∑|C|
i�1 P(Ci)logP(Ci) + P(t)∑|C|

i�1 P(Ci|t) logP(Ci|t)
+ P(�t) ×∑|C|

i�1 P(Ci

∣∣∣∣∣∣�t)logP(Ci

∣∣∣∣∣∣�t),
(3)

where Ci� the ith category; P(Ci)� the probability of ith category;
P(t) and P(�t) represent the probabilities of occurrence and no-
occurrence of phenomena “t”, respectively. The entropy value of
Ci, for discrete variables, can be defined as:

H(C) � −∑
i�1
k P(Ci)log2(P(Ci)) (4)

This equation assumes that Ci picks its values from
{C1, C2,C3, . . . . . . ,Ck} and P(Ci) is the probability such
that C � Ci

The decision of flood predictor selection using the IG based on
entropy values of variables computed from D training dataset
comprising n number of flood predictors can be expressed as
follows (Chapi et al., 2017):

IG(D, F) � Entropy (D) − Entropy (D, F)
SplitEntropy (D, F) , (5)

Entropy (D) � −∑2

i�1
(Yi, F)
|D| log2

n(Yi, F)
|D| , (6)

Entropy(D, F) � −∑m

j�1
Dj

|D|Entropy(D), (7)

SplitEntropy(D, F) � −∑m

j�1

∣∣∣∣Dj

∣∣∣∣
|D| log2

∣∣∣∣Dj

∣∣∣∣
|D| . (8)

3 MODELS EMPLOYED FOR FLOOD
SUSCEPTIBILITY PREDICTION INDEX
MAPPING
For the present work, two base bivariate statistical models, viz. FR
and EBF, have been used to computeweightage for each of the twelve
flood predictors. Subsequently, those flood predictors’ weight values
have been used to train the ensemble advanced ML models namely
CART, FR, and EBFmodels. In the subsequent subsections, the brief
functionality of each of the individual models is described, and later,
how the two bivariate model-based weights are used for ensembling
the other three machine learning models is presented.

3.1 Models Applied for Data Preparation
3.1.1 Evidential Belief Function
This algorithm is based on Dempster-Shafer’s theory of evidence
(Dempster, 1967; Smith and Shafer, 1976). Four important functions
form the EBF: 1) belief function (Bel), 2) plausibility function (PLs),
3) disbelief function (Dis), 4) uncertainty function (Unc).

m: 2Θ � {θ,TP, TP, Θ} where Θ � {TP, TP}, (10)

where TP represents spring generated class pixels, TP

represents class pixels not influenced by spring, and θ is an
empty set.

The above equation yields the Bel (belief function) calculated
with the help of the following equation (Park, 2011):

[λ(TP)Aij
] � ⎡⎣N(S ∩ Aij)

N(S) ⎤⎦/[{N(Aij − N(S ∩ Aij))}/[N(P)
−N(S)]],

(11)

Belief function (Bel) � ⎛⎝ [λ(TP)Aij
]

∑[λ(TP)Aij
]⎞⎠ (12)

where N(S ∩ Aij) � density of flood pixels occurring in Aij; N(S)
� total density of whole flood occurring in the study area;
N(Aij) � the density of pixels in Aij; N(P) � the density of
pixels in the whole study area P.

The disbelief function (Dis) can be derived as:

[λ(�TP)Aij
] � ⎡⎣N(S) − N(S ∩ Aij)

N(S) ⎤⎦/[(N(P) −N(S) −N(Aij)
+N(S ∩ Aij)/N(P) − N(S))],

(13)
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Disbelief (Dis) � ([λ(�TP)Aij
])/∑[λ(�TP)

Aij

] (14)

And the following equations are used to compute uncertainty
(Unc) and plausibility (PLs):

Uncertainty (Unc) � [(1 − (Belief ) − (Disbelief ))] (15)

Plausibility (Pls) � [1 − (Disbelief)] (16)

3.1.2 Frequency Ratio
Frequency ratio is a frequently used bivariate statistical model. It
represents the probability of event occurrence; in our case, the
event is the flood pixel (Arabameri et al., 2019b).

The frequency ratio (FR) computation uses the following
mathematical expression:

FR �

Npix(SXi)∑m

i�1SXi

(flood occurance ratio)

Npix(Xj)∑n

j�1Npix(Xj) (area ratio)
, (17)

where Npix(SXi) � the number of pixels with flood events within
class i of factor variable X; Npix(Xj) � the number of pixels within
the factor variable Xj; m � the number of classes in the parameter
variable Xi; and n � the number of factors in the study area
(Regmi et al., 2014).

3.1.3 Classification and Regression Tree
CART is a powerful data mining machine learning
nonparametric algorithm proposed by Breiman et al. (1984).
As the name suggests, it can perform both the classification
and regression of number, binary, and categorical type of
variables (Haughton and Oulabi, 1993). After performing the
classification of variables in either number, binary, or categorical
format, the average response values are computed using the
mathematical expression:

I(Split) �
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣0.25⎧⎨⎩q(1 − q)u∑

k

∣∣∣∣PL(k) − PR(k)∣∣∣∣⌋2, (18)

where k � index of the target classes; PL(k) and PR(k) �
distribution of the probability of the target classes associated
with the left and right child nodes, respectively; u� penalty
trolled by the user when unequal sized child nodes are
generated.

The resulting outcome of the CART model comes in a very
complex form of a decision tree which needs pruning to extract
only relevant and most important info out of it.

3.2 Ensemble Models Applied for Flood
Susceptibility Prediction Index
Computation
Due to the limitations of stand-alone models (Hapuarachchi and
Wang, 2008; Hapuarachchi et al., 2011) and the advantages of
ensemble models (Fernández et al., 2018; Zounemat-Kermani
et al., 2020), in recent years, the use of ensemble models has

expanded among researchers (Fernández et al., 2018; Zounemat-
Kermani et al., 2020; Costache et al., 2021). Two ensemble models
are used to derive the Flood Susceptibility Prediction Index and
corresponding zonation maps. These ensembles are generated
through the combination of CART and bivariate statistics
models—FR and EBF. The factor class/category coefficients
derived with the help of FR and EBF models are used as input
in the CART.

3.3 Database Establishment
For the present research work, a database consisting of 12 flood
predictors for a total number of 300 flood points was prepared
using ArcGIS. Since the flood-prone area identification was
performed following a binary classification of pixels, it was
necessary to create another data sample, having the same
number of points (300), consisting of non-flood locations
(Ali et al., 2020). To ensure the objectivity of the results, the
non-flood locations were randomly distributed across the entire
study area.

3.4 Feature Selection With IG
The involvement ofmultiple predictors to estimate the susceptibility
to a specific natural hazard can lead to issues related to the
prediction (Costache, 2019). To overcome this shortcoming and
to eliminate the noisy data from the workflow, the predictive ability
of the 12 flood predictors was tested using information gain (IG). To
determine the flood predictors’ significance, all the three models
were applied using Weka 3.9 software.

3.5 EBF and FR Coefficient Normalization
EBF and FR coefficients were used to code the predictor class/
category. These two types of coefficients were calculated using the
procedure described in Sections 3.1.2, 3.1.3. Furthermore, to
bring the EBF and FR values to the same range of values, the
normalization procedure was applied using Equation 23
proposed by Costache et al. (2020):

y � (x −min(d)) × (max(n) −min(n))
maz(d) −min(d) +min(n), (23)

where y � standardized value of x, x � variable’s current value, d �
range limit of the variable values, and n � standardized
range limit.

3.6 Preparation of the Training and
Validating Datasets
After obtaining the normalized EBF- and FR-derived weightage
database, we need to set up the training and validation samples
using this newly generated dataset. Previous studies (Arabameri
et al., 2019a; Bui et al., 2019a) suggest that the training sample is
established to represent 70% of the total dataset, while the other
30% is apportioned for validating the dataset. Thus, we used 210
flood and 210 non-flood pixels as the training dataset, while 90
flood and 90 non-flood locations were used in the validation
process. The Subset Features tool from ArcGIS was used to
randomly split the dataset.
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3.7 Setting the Configuration for Hybrid
Ensemble Models
3.7.1 CART-EBF and CART-FR Ensembles
The two CART-based ensembles were trained with the help of
Salford Predictive Modeler v8.2 (Costache et al., 2020). The trial
process was used to optimize the CART ensembles’ parameters
(minimum cases of parent nodes and terminal nodes) whose
values were established in accordance with the highest AUC.
Finally, the weights of the flood predictors for CART-EBF and
CART-FR ensembles were also determined.

3.8 Model Performance Evaluation and
Comparison
Performance evaluation is the most important step in scientific
works (Zhang et al., 2019a). Because no single or a set of
universally valid model evaluation measurement matrices
related guidelines could be found such as AUROC, TSS,
RMSE (Zhou et al., 2018; Alam et al., 2020), and others, we
have chosen two types of matrices to evaluate the performance of
models used in this study: 1) threshold-independent and 2)
threshold-dependent. Under the first category, area under the
receiver operating characteristic (AUROC) curve has been used.
In the case of the threshold-dependent performance evaluation
matrix, we have used true skill statistics (TSS) and others (see
Table 6). It should be noted that many of the threshold-
dependent matrices (West et al., 2016) listed in Table 6 are
derived from AUROC curve (the abbreviations used in this
section are given in Table 6 and its appended note given just
below the table).

The AUROC graph plot is a biaxial plot with “sensitivity”
(y-axis parameter) versus “1-specificity” (x-axis parameter)
(Jiménez-Valverde, 2012). The AUROC value ranges from 0.5
(inaccurate) to 1 (highly accurate).

The matrices plotted on the two axes of the ROC curve,
sensitivity (also called true positive rate), and specificity (or
true negative rate) are expressed in mathematical form as:

TPR � Sensitivity � FP
FP + TN

, (26)

FPR � 1 − Specificity � TP
TP + FN

, (27)

where FP� number of false-positive cases, TN� number of
true-negative cases, TP � number of true-positive cases, and
FN � number of false-negative cases. The TPR, also termed as
sensitivity, is the representative of the probability of a test
predicting true events to be true. And the FPR, which is also
known by the names “1-specificity,” indicates the probability of a
test predicting a non-event to be a true event. The AUROC value
range of 0.5–1.00 has different implications in terms of the
accuracy of model performance.

The specificity and sensitivity values using different cutoff
thresholds for both models CART-EBF & CART-FR are provided
in Table 4.

The threshold-dependent statistic metric used in this work,
the “true skill statistics (TSS)” (Flueck, 1987), is one of the

popularly used skill score measures for categorical datasets in
forecast-related studies. This matrix’s discovery traces back to
its first proposal by Peirce (1884) and is also widely called by the
name “HanssenKuipers” discriminant (Wilks, 1995)/or
Kuipers’ performance index/or the true skill statistic
(Allouche et al., 2006). Cohen’s Kappa is dependent on the
prevalence of sample points affecting the sensitivity and
specificity of the model performance, and the TSS overcomes
this disadvantage (Allouche et al., 2006). Besides, the accuracy,
F-score, Cohen’s kappa (Cohen, 1960), Matthew’s correlation
coefficient (MCC), TPR (sensitivity), TNR (specificity), FPR
(fall out), informedness (bookmaker informedness; BMI), etc.
(see Table 6 and the appended notes for details of the list of
matrices and their expansions and calculation formulas) are also
dependent on independent variables that control AUROC, such
as TP, TN, FP, and FN have also been calculated for the
performance evaluation of the models. All the performance
evaluators (statistic matrices) listed in Table 6 are used for
assessing different facets of model performances viz. accuracy,
precision, robustness, sensitivity, consistency, the goodness of
fit between observed and estimated values of natural
phenomena, most of which are derived from the 2Χ2
contingency confusion matrix generated from binary
classification scheme. There is a long list of classifier
performance evaluation matrices. However, their suitability
for a particular type of modeling exercise has not been put
forward by the ML community yet (Seliya et al., 2009). Seliya
et al. (2009) studied twenty-two of such evaluators with their
meanings, what their higher or lower values imply as well as the
relationship among them.

The Kappa statistic assesses the agreement between two
distinguished sets of classification while catering to the
randomness in the classification (Baattrup-Pedersen et al., 2012).
The Kappa statistics can be calculated using the following equation:

K � Pobs − Pexp

1 − Pexp
, (28)

where Pobs � observed agreements � (TP + TN), and it is
representative of the correctly classified inundated and non-
inundated pixels; Pexp � expected agreements � [{(TP + FN) x
(TP + FP)} + {(FP + TN) x (FN + TN)}]; it equates to the
proportion of inundated and non-inundated pixels which were
expected to show agreement, on the basis of chance (Hoehler,
2000).

The value of k-index varies between 0 and 1; the value
moving towards 0 indicates less agreement, whereas those
moving towards higher values, i.e., towards 1 indicate the
model’s prediction accuracy heading towards or near to
perfection. Cohen (1960) presented fivefold classification of
k-index such that: K ≤ 0 (no agreement); 0.01–0.20 (slight
agreement); 0.21–0.40 (fair agreement); 0.41–0.60 (moderate
agreement); 0.61–0.80 (substantial agreement), and 0.81–1.00
near to perfect agreement.

We have also employed the seed cell area index (SCAI), and
frequency ratio plots (FRP) for classification accuracy assessment
of the models as the second round of validating the modeled
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classification results. The SCAI index computation takes into
account the mathematical expression equating the ratio of each
classified class and the susceptible seed cell percent values (Süzen
and Doyuran, 2004):

SCAI(%) �

Npix(Xj)∑n

j�1Npix(Xj) (area ratio) × 100

Npix(SXi)∑m

i�1SXi

(flood susceptible occurance ratio) × 100
,

(29)

whereNpix(SXi) � number of flood pixels within class i of flood
predictor X; Npix(Xj) � number of pixels within the flood
predictor variable Xj; m � number of classes in the parameter
Xi and n � number of total factors selected for the study area. In
our study, there is an inverse relationship between SCAI and the
accuracy of prediction of susceptible classes (Arabameri et al.,
2020b). In other words, low SCAI value for “high” and “very
high” FSPI sensitivity classes and high SCAI value for “low” and
“very low” FSPI sensitivity classes validate that the classification
results of FSPI zones are correctly demarcated in the resultant
flood susceptibility maps (Dragićević et al., 2015). The FRP
method of classification validation behaves inverse to the SCAI
values methods (Aghdam et al., 2017). Therefore, these two
additional second rounds of validation will add an extra level
of confidence in the results of the modeled susceptibility
prediction index.

4 RESULTS

4.1 Selecting the Flood Predictors
We selected a list of flood predictors based on an extensive literature
survey and familiarity with the topographic, hydrologic, climatic,
and anthropic settings of the study area. Afterward, we selected the
most significant and least redundant features or flood predictors by
applying three statistical measures meant for checking

multicollinearity, retrieving weights, and ranking of the variable
features. We also analyzed interdependence among the flood
predictors by applying the test of multicollinearity; furthermore,
the application of IG (Figure 4) test methods has helped in ranking
the flood predictors in order of their contribution to the flood
occurrence probability.

4.1.1 Multicollinearity and IG Analyses of Feature
Selection
Interdependency of flood predictors has been assessed by
applying multicollinearity analysis. This analysis shows that all
the flood predictors listed in Table 2 have variance inflation
factor (VIF) and tolerance (TOL) > 10 and <0.1, respectively,
which do not show sign of collinearity and hence can be included
in the models applied for flood susceptibility zonation exercise.

The IG method applied to retrieve weightage and ranking
shown in Figure 4 helps to assign rank to the flood predictors and
is given in Table 2. The calculated IG ranks and weightages have
ascertained the significance of the role of predictors in flood
occurrence prediction. Geomorphology has been found to be the
first ranker signifying its most important contribution in the
flood susceptibility prediction process. IG method suggests that
the first four most important flood predictors (descending order)
are non-DEM-derived factors viz. geomorphology, soil, LULC,
and “distance-to-road.” And the least significant predictors
(increasing order of significance) are rainfall, curvature,
“distance-to-river,” and stream density. As per IG, almost all
the DEM-derived topography-related parameters, except
curvature, are middle-level performants in their significance to
flood contribution.

4.1.2 EBF and FR Coefficients
The FR and EBF model results for each class of every flood
predictor have provided base weight values for training and
validating data points for CART model ensembles. At first, we
classified all the flood predictors’ values using the methods listed in
Table 3. Subsequently, the EBF and FR weights corresponding to
the original class values for each of the flood predictors at the

FIGURE 4 | Importance of flood predictors derived through the use of IG arranged in order of their contribution to flood occurrence prediction.
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TABLE 3 | FR and EBF values of factor class/categories (FR values taken from Arora et al., 2019b).

Factors Class Class percentage
(%)

Flood locations
percentage (%)

FR EBF

Altitude 0–45.0 2.34 7.71 3.29 0.39
45.1–49.9 14.42 30.43 2.11 0.25
50.0–53.5 19.92 24.43 1.23 0.15
53.6–57.9 25.36 23.29 0.92 0.11
58.0–61.8 19.61 11.29 0.58 0.07
61.9–65.7 12.98 2.71 0.21 0.03
65.8–96.0 5.38 0.14 0.03 0.01

Aspect Flat 27.83 42.86 1.54 0.17
North 9.34 8.71 0.93 0.10
Northeast 9.13 7.57 0.83 0.09
East 8.34 7.43 0.89 0.10
Southeast 9.45 7.43 0.79 0.09
South 9.43 7.00 0.74 0.08
Southwest 9.09 6.71 0.74 0.08
West 8.16 6.00 0.74 0.08
Northwest 9.21 6.29 0.68 0.08

Curvature Concave 14.10 13.86 0.98 0.33
Flat 46.23 51.14 1.11 0.37
Convex 39.66 35.00 0.88 0.30

Distance from river (m) 0–600 38.93 56.71 1.46 0.40
600–1,200 28.46 27.86 0.98 0.27
1,201–1800 19.22 12.00 0.62 0.17
1801–2,400 9.22 2.86 0.31 0.08
2,401–3,000 2.86 0.43 0.15 0.04
3,001–3,600 0.90 0.14 0.16 0.04
3,601–4,200 0.31 0.00 0.00 0.00
4,201–5,383 0.09 0.00 0.00 0.00

Geomorphology New Floodplain 23.45 27.57 1.18 0.07
Old Floodplain 49.12 21.14 0.43 0.03
Palaeochannel 3.07 1.29 0.42 0.02
Point bar 2.95 10.43 3.53 0.21
River/Stream/Waterbody 8.22 3.71 0.45 0.03
Sand Island 6.88 2.86 0.42 0.02
Waterlogged Area 3.70 18.29 4.95 0.29
Levee 2.61 14.71 5.65 0.33

Landuse Cropland 86.27 61.46 0.71 0.12
Vegetation 1.36 2.58 1.90 0.31
Settlement 1.57 0.29 0.18 0.03
Water 10.80 35.67 3.30 0.54

Rainfall (mm/year) 1,001–1,073 7.09 8.71 1.23 0.22
1,074–1,123 21.88 25.71 1.18 0.22
1,124–1,165 37.08 31.29 0.84 0.15
1,166–1,212 25.09 22.57 0.90 0.16
1,213–1,281 8.86 11.71 1.32 0.24

River density (km/km2) 0–2.55 66.69 49.29 0.74 0.08
2.56–5.12 25.10 36.43 1.45 0.16
5.13–7.68 6.08 11.00 1.81 0.20
7.69–10.20 1.55 2.00 1.29 0.15
10.21–12.79 0.44 1.14 2.62 0.29
12.80–15.35 0.15 0.14 0.98 0.11

Road to distance (m) 0–500 43.80 26.14 0.60 0.07
501–1,000 14.68 15.29 1.04 0.12
1,001–2000 21.81 29.29 1.34 0.16
2001–3,000 10.51 13.86 1.32 0.16
3,001–4,000 5.52 11.14 2.02 0.25
4,001–5,000 2.80 3.71 1.33 0.16
5,001–7,045 0.88 0.57 0.65 0.08

Slope angle (°) 0.0–1.0 29.39 37.14 1.26 0.18
1.1–3.0 58.46 50.29 0.86 0.12
3.1–5.0 9.95 8.57 0.86 0.12
5.1–7.0 1.85 3.14 1.70 0.24
7.1–42.8 0.35 0.86 2.46 0.34

Soil 1 1.23 0.57 0.46 0.11
(Continued on following page)

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 65929612

Pandey et al. Machine Learning Based Flood Susceptibility

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


subclass level were computed using methods discussed in
Sections 4.1.1, 4.1.2, respectively. The elevation class ranges
“0–45.0” and “65.8–96.0” show maximum (FR � 3.29; EBF �
0.39) and minimum (FR � 0.03; EBF � 0.01) weights for both FR
and EBF, respectively. The slope aspect classes that provide
maximum (FR � 1.54; EBF � 0.17) and minimum (FR � 0.68;
EBF � 0.08) FR and EBF weights are flat (−10–00) and northwest
(292.50–337.50). Out of the three curvature classes, class range
assigned as flat gives the maximum FR (1.11) and EBF (0.37)
weights whereas “convex” class renders the minimum weight for
both FR (0.88) and EBF (0.30) models. The flood predictor
“distance from river” class ranges which produced maximum
(FR � 1.46; EBF � 0.40) and minimum (FR � 0; EBF � 0) weights
by FR and EBF models are “0–600” and “3,601–4,200” as well as
“4,201–5,383.” The FR and EBF models have assigned maximum
(FR � 5.65; EBF � 0.33) and minimum (FR � 4.95; EBF � 0.29)
weights to levee and waterlogged areas, two geomorphological
classes, respectively. It can be noted that the maximum (FR �
3.30; EBF � 0.54) and minimum (FR � 0.18; EBF � 0.03) FR and
EBF weight, respectively, have been assigned to “water” and
“settlement” classes. The FR maximum and minimum weights
for “rainfall” classes are 1.32 and 0.84, and as per EBF for the same
“rainfall” classes, the value ranges from 0.24 to 0.15, respectively.
As per FR and EBF, the maximum (2.62) and minimum (0.74)
weights for river density have fallen in the same classes as 0.29
(max) and 0.08 (min), respectively. In the case of “distance to
road” flood predictor classes “3,001–4,000” and “0–500,”
maximum and minimum weights computed using FR are 2.02
(max) and 0.60 (min); and that by EBF are 0.25 (max) and 0.07
(min), respectively. The maximum (FR � 2.46; EBF � 0.34) and
minimum (FR � 0.86; EBF � 0.12) FR and EBF weights delivered
to account for the “slope angle” classes viz. “7.1–42.8” and
“1.1–3.0” and “3.1–5.0”, respectively. Fifth soil class (FL-
Fluvisol-3743) and third soil class (CL-Calcisol-3694) were
recognized as maximum (1.78) and minimum (0.16),
respectively, by FR; and that by EBF model, weightage values
are 0.44 as maximum and 0.04 as a minimum. TWI class
(22.33–31.84) has been the one with maximum weight value
for both FR as well as EBF (FR � 4.41; EBF � 0.35); and the TWI
class “7.33–10.89” is representative of minimum (FR � 0.80; EBF
� 0.06) weight as per FR and EBF both. Classwise weights of each

class of every flood predictor for FR and WBF are tabulated in
Table 3.

4.1.3 Flood Susceptibility Prediction Index Zonation
Results
All the hybrid models were trained and validated using
normalized flood predictor values for each class representing
the controls of flood susceptibility in the MGP (see Section 3.6).
After estimating the FR- and EBF-based flood predictor weights
of the entire 600 flood and non-flood points, the trial-and-error
method using backward and forward propagation was applied
to obtain the CART ensemble weights for those points. Four
categories of results were obtained by the use of EBF- and FR-
based ensembles: 1) the ensembles have arranged the flood
predictors in the sequence of their significance (ascending
order of weight assigned to the flood predictors); 2) by using
these weights for each subclass of every flood predictor, the flood
susceptibility prediction index (FSPI) of the entire study area
was obtained and classified into “very low,” “low,” “medium,”
“high,” and “very high” flood susceptible zones using natural
break (NB) method (Figures 5A,B); 3) corresponding to each
class of FSPI, the entire study area was delineated into 5
zonation units (with the percentage of area appendages to
each class) (the areal share of each FSPI zone using four
different segmentation methods is presented in Figures
6A–C); and 4) the accuracy, sensitivity, precision, robustness,
etc. of all the models indicating how well the models performed
in this low-relief, subhumid monsoon-dominated topoclimatic
setting have been computed. For both of the ensembles, these
different levels of results are presented in the subsections below.
Since the natural break (NB) method is most widely used and
quantile (QNTL) accrued the highest areal percentage shares in
the “high” and “very high” classes, FSPI % shares were
separately computed for all the methods using these two
methods and are presented in Figures 7A,B.

4.1.3.1 CART-EBF and CART-FR
Following the training procedure keeping in mind different cut-
off thresholds corresponding to specificity and sensitivity values
of both the models (Table 4), the minimum cases of parent
nodes for the CART-EBF ensemble were established at 24, while

TABLE 3 | (Continued) FR and EBF values of factor class/categories (FR values taken from Arora et al., 2019b).

Factors Class Class percentage
(%)

Flood locations
percentage (%)

FR EBF

2 11.25 4.71 0.42 0.10
3 5.38 0.86 0.16 0.04
4 27.57 15.86 0.58 0.13
5 34.28 61.00 1.78 0.44
6 20.29 17.00 0.84 0.19

TWI 7.33–10.89 33.94 27.00 0.80 0.06
10.90–12.33 28.14 22.86 0.81 0.07
12.34–14.06 19.39 20.14 1.04 0.08
14.07–16.27 9.81 11.14 1.14 0.09
16.28–18.77 4.57 6.29 1.37 0.11
18.78–22.32 3.74 10.71 2.87 0.23
22.33–31.84 0.42 1.86 4.41 0.35
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FIGURE 5 | Flood susceptibility map using six ensemble models computed using methods discussed in Section 5.1; (A, B) show FSPI classified results according
to CART-EBF and CART-FR results. Boxed areas A and B are zoomed windows in each of the model output maps to show detailed FSPI conditions nearby
confluence zones.
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the minimum cases of terminal nodes were kept equal to 10.
Instead, in terms of the CART-FR model, the optimal minimum
cases of parent nodes resulted to be 27, while the optimal
minimum cases of terminal nodes were 12. Based on these
details, the models, in the next step, have computed the weights
for each of the flood predictors which are arrayed in Table 5.
According to this Table 5, the CART-EBF and CART-FR have,
computationally, annexed the “land use” (0.115) and the
“geomorphology” (0.125) as highest weight scorers,
respectively, followed by soil (0.114), geomorphology (0.111),
altitude (0.073), TWI (0.021), aspect (0.020), river density
(0.019), distance from river (0.015), road distance (0.015),
rainfall (0.01), curvature (0.002), and slope angle (0.001) as
per CART-EBF, and altitude (0.121), land use (0.054), soil
(0.046), rainfall (0.039), distance from river (0.024), TWI
(0.014), aspect (0.008), river density (0.007), curvature
(0.005), road distance (0.004), and slope angle (0.002)
according to CART-FR.

By applying these flood predictors’ weights, the FSPI values
were computed in raster calculator embedded in Spatial Analyst
of ArcMap version 10.3 and categorized into 5 classes for carrying

out flood zonation using four classification methods QNTL, NB,
GI, and EI. The highest percentage share of flood pixels in the
“very high” class category has been noted by QNTL (19.43%), and
the second, third, and fourth rankers stood out to be GI (9.94%),
NB (8.14%), and EI (3.81%) for CART-EBF. And for CART-FR,
the first rank has been registered by QNTL (19.64%), followed by
the lower rank holders in descending order as GI (5.11%), NB
(3.92%), and EI (0.89%) respectively.

4.2 Model Performance Validation Through
AUROC and Other Statistical Measures
In Table 6, model performance evaluation statistic matrices
belonging to two categories of evaluators viz. cutoff-
dependent, cutoff-independent, most of which are derived
from confusion matrix related parameters, such as TP, TN,
FP, and FN, are presented. These are used to assess different
aspects of model performances, such as model accuracy or
efficiency, precision, robustness, randomness driven
performance, etc. Rahmati et al. (2019) reviewed 21 threshold-
dependent model performance evaluation indices to judge

FIGURE 6 | FSPI histogram classification of both models’ outputs. In parts (A) and (B), Percentage share of areal coverage in “very low,” “low,” “medium,” “high,”
and “very high” categories as classified by Natural Break (NB) and Quantile (QNTL) methods, respectively, is visualized, whereas, in part (C), areal coverage (%) by using
four methods (EI-Equal Interval; GI-Geometric Interval; NB-Natural break; and QNTL-quantile) for only “high” and “very high” classes is demonstrated.
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different aspects of the functioning of susceptibility models used
in the field of natural hazard studies. We have used only 14 of
those evaluators (given in Table 6) to refrain from making model
evaluation sections of the paper lengthy. As suggested by Rahmati
et al. (2019), the threshold-independent and threshold-dependent
evaluators used in this work are discussed in the following
Sections 4.2.1, 4.2.2, respectively.

4.2.1 Threshold-independent Matrices
Area under receiver operating characteristic (AUROC) curve,
success rate curve (SRC: ROC computed using training
dataset), and prediction rate curve (PRC: ROC computed
using validation dataset) for all the modeled results are given
in Figures 7A,B and Table 4. For the training dataset,
CART-EBF (84.3%) has performed better than CART-FR
(82.8%), whereas AUROC concept applied to the dataset
used for validation of models results in a higher prediction
rate for CART-EBF (81.9%) and slightly lower for CART-
FR (80.2%).

4.2.2 Threshold-dependent Matrices
All 14 threshold-dependent evaluation matrices are
presented in Table 4. The detailed definition, formulae,
and their interpretation are given by Frattini et al. (2010)
and Rahmati et al. (2019). In terms of the overall accuracy of
ensembles (for both training and validation datasets), the
CART-EBF (AccSR � 81.40%; AccPR�79.60%) outsmarts the
CART-FR (AccSR � 75.9%; AccPR�74.0%). In this study, both
ensembles have exhibited sensitivity (TPR: true positive rate
or the ability of models to correctly predict positives or flood
points) in the range of 78.5–82.4% for the training dataset and
76.0–80.9% for validation dataset. The models’ ability to
correctly predict the negatives, i.e., non-flood points, is
adjudged by the specificity or true negative rate (TNR) was
found to be 0.738 for CART-FR for training dataset and for
validation phases, and the TNR value is 0.723. The PPV
(positive predictive value), also called as confidence or
precision of predictive capacity of models, and its

FIGURE 7 | Area under receiver operating characteristics (AUROC)
curve for the model was constructed in a single graph in order to compare the
model’s performance. Validation of the models was performed using 30% of
the randomly generated flood points specifically segregated from the
points kept for the purpose of validation using AUROC statistical method.
Panel (A) is computed using training dataset (represents model success rate)
and Panel (B) with validation datasets (shows model prediction rate).

TABLE 4 | Specificity and sensitivity values using different cut-off thresholds.

Model Cut-off threshold Specificity Sensitivity Sum

CART-EBF 0.01 35.2 98.4 133.6
0.1 56.1 96.4 152.5
0.2 63.8 94.8 158.6
0.3 75.3 90.1 165.4
0.4 84.9 88.3 173.2
0.5 86.5 86.4 172.9
0.6 90.6 85.8 176.4
0.7 92.1 81.2 173.3
0.8 93.5 77.9 171.4
0.9 96.2 67 163.2
0.99 98.8 56.5 155.3

CART-FR 0.01 44.6 97.1 141.7
0.1 58.9 96.5 155.4
0.2 71.8 94.5 166.3
0.3 77.5 92.7 170.2
0.4 82.8 91.3 174.1
0.5 90.3 90.2 180.5
0.6 92 82.7 174.7
0.7 96.7 79.5 176.2
0.8 97.2 75.2 172.4
0.9 98.5 68.9 167.4
0.99 98.9 55 153.9

TABLE 5 | Weights of conditioning factors within the applied models.

Factors CART-EBF CART-FR

Altitude 0.073 0.121
Aspect 0.020 0.008
Curvature 0.002 0.005
Distance from river 0.015 0.024
Geomorphology 0.111 0.125
Land use 0.115 0.054
Rainfall 0.010 0.039
River density 0.019 0.007
Road distance 0.015 0.004
Slope angle 0.001 0.002
Soil 0.114 0.046
TWI 0.021 0.014
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complementary metric FDR [false discovery rate, which deals
with conceptualization of Type I error. See Frattini et al. (2010) for
the definition of Type I and II errors] are used here to see how
precisely the ensembles used here can predict flood pixels and non-
flood pixels, respectively. The higher values of PPV and lower value
of FDR are indicative of the high precision of prediction capability
of ensembles. CART-FR with PPV: 0.714; FDR: 0.286 (for training
data) and PPV: 0.783; FDR: 0.298 (for validation dataset) has been
found to perform a little imprecisely than CART-EBF (Table 6). It
should be noted that the lower the value of FNR, the better the
model performance. Though accuracy and F1-score have been
widely used to assess model performances, they sometimes lead to
misleading implications. The F1-score does not take into account
all the four primary matrices of the confusion matrix and that is
where MCC (Mathew’s Correlation Coefficient) plays a decisive
role as it overcomes this shortcoming by incorporating all the four
matrices (Chicco and Jurman, 2020). A look at the F1-Score and
MCC values of the ensembles in Table 6 reveals that when
adjudged based on overall accuracy as well as F1 and MCC, the
same sequence of performance levels emerges for bothmodels. The
k-index or kappa index, one of the most widely used statistic for
model performance accuracy assessment, suffers from a lacuna
involving its overdependence on prevalence or pervasiveness of
samples (Allouche et al., 2006). Hence, to overcome this issue, an
alternative measure, true skill statistic (TSS) has been computed
and is presented in Table 6. According to k-index and TSS as well,
when considered concomitantly, the CART-EBF model is the
better accurately performing model during the training and
validation phases than the CART-FR. Table 6 lists the
“informedness” or “bookmaker informedness; BMI,” statistic
referred to be the “only unbiased indicator” of model accuracy
which helps with an informed selection of models.

4.2.3 SCAI- and FRP-Based Performance Evaluation
The second round of validation matrices, SCAI-, and FRP-
based performance of both ensembles’ accuracy was performed
to gain an extra level of confidence in model results. The
computation of SCAI & FRP at the classwise level was
performed as per methods discussed in Sections 3.8, 4.1.2,

respectively. In this study, as visible in Figure 8B, CART-EBF
(SCAI � 5.209 for “very low” class) performs more accurately
than CART-FR (SCAI � 83.263 for “very low” class). The FRP-
based performance in Figure 8A shows that the FR values of
the lower class of both ensembles are lower, just opposite to the
behavior of SCAI, and that of “high” and “very high”
susceptibility classes are higher. This pattern of FPR
classwise values conforms to the result implications
provided by SCAI values; and that have presented a better
confidence level about the models’ performance accuracy for
both models.

4.3 Flood Pixel Distribution Vis-à-Vis FSPI
Classes
Figures 6A–C and Table 7 represent the final zonation of flood
susceptible areas modeled by both the ensembles (classified
using the natural break method). It shows areas highly
susceptible (covering “high” and “very high” classes
collectively) to flood menace and the safer zones. The FSPI
values in the “high” and “very high” classes were used to
compute the distribution of areas falling under these two
classes (Figure 6). Since the QNTL has been found to
delineate the highest percentage of areas under “very high”

TABLE 6 | Minimum and maximum FSPI values for all the flood susceptibility
classes as per CART- EBF and CART-RF models.

FSPI_ CART- EBF

Class Minimum Maximum
Very low 0.000 0.235
Low 0.235 0.408
Medium 0.408 0.573
High 0.573 0.757
Very high 0.757 1.000

FSPI_ CART- FR

Class Minimum Maximum
Very low 0.000 0.153
Low 0.153 0.282
Medium 0.282 0.459
High 0.459 0.667
Very high 0.667 1.000

FIGURE 8 | Ensemble model result validation using: (A) Frequency Ratio
Plot (FRP); and (B) Seed Cell Area Index (SCAI) methods.
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class, as discussed in Section 4.1.3, and in most of the published
results, the final zonal classifications are performed by using
NB, and the QNTL-based areal shares (in %) corresponding to
the NB-based areal shares of “high” and “very high” classes are
also shown and discussed here in this section using Figures

6A,B. The CART-EBF covers 27.24% areal coverage (as per
NB classification method), whereas, as per the QNTL
methods, CART-EBF encompasses 49.49% area under high
and very high classes [see Table 7 (for FSPI) and
Supplementary Table S1A for % areal coverage by each

TABLE 7 | Statistical metrices used for model performance evaluation (Note: All the abbreviations used in this table are expanded and defined below this table itself).

Measures Training Validation

CART-FR CART-EBF CART-FR CART-EBF

TP 347 388 146 161
TN 391 403 162 170
FP 139 98 62 47
FN 95 83 46 38
ACC 0.759 0.814 0.74 0.796
TPR 0.785 0.824 0.76 0.809
TNR 0.738 0.804 0.723 0.783
PPV 0.714 0.798 0.702 0.774
FDR 0.286 0.202 0.298 0.226
NPV 0.805 0.829 0.779 0.817
FPR 0.262 0.196 0.277 0.217
FNR 0.215 0.176 0.24 0.191
k-index 0.519 0.628 0.481 0.591
TSS 0.523 0.628 0.483 0.592
F1 0.748 0.811 0.73 0.791
MCC 0.521 0.628 0.482 0.592
BMI 0.523 0.628 0.484 0.592
TS 0.597 0.682 0.575 0.654
AUROC 0.828 0.843 0.802 0.819

Abbreviation Expansion/meaning Formulae

TP True positive/correctly predicting a label (model
predicts “yes,” and it’s “yes”)

—

TN True negative/correctly predicting the other label
(model predicts “no,” and it’s “no”)

—

FP False positive/falsely predicting a label (model
predicts “yes,” but it’s “no”)

—

FN False negative/missing and incoming label (model
predicts “no,” but it’s “yes”)

—

TPR True positive rate/sensitivity —

TNR True negative rate/or specificity (SPC) —

PPV Positive predictive value/or precision PPV � TP/(TP + FP)
NPV Negative predictive value NPV � TN/(TN + FN)
FPR False positive rate/or fall-out FPR � FP/(FP + TN)
FDR False discovery rate FDR � FP/(FP + TP)
FNR False negative rate/or miss rate FNR � FN/(FN + TP)
ACC Accuracy ACC�(TP + TN)/((TP + TN + FN + FP))
F1 F1 Score F − Score (Fβ) � (1 + β2) (Precision × Sensitivity) / (β2)

(Precision + Sensitivity); β � default parameter,
commonly taken to be between 0.5 and 2, but here
in this study, it is taken to be 1

MCC Matthew’s correlation coefficient MCC � (TP*TN − FP*FN)/$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$${(TP + FP)*(TP + FN)*(TN + FP)*(TN + FN)}2
√

TSS True skill statistic Allouche et al. (2006) TSS � TPR + TNR − 1
k-index Kappa statistic or kappa coefficient Formulae of Kappa index is given in main body text
AUROC Area under receiver operating characteristic curve/

it assesses the model’s capability to predict
correctly

AUROC � (∑ TP +∑ TN)/(P + N); P � number of
flood pixels; N � number of non-flood pixels

BMI Bookmaker Informedness or simply Informedness
or BM

BMI � TPR + NPR − 1

TS Threat score/used to measure the ability to correct
or observe events; it penalizes FNs, FPs

TS � TP/(TP + FN + FP)

The abbreviations used in the above table are here to avoid any inconvenience for readers to have a quick lookout on the table values.
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class]. The lower areal percentage coverage was produced by
CART-FR (21.94% as per NB) and 29.49% as per QNTL.

5 DISCUSSION

5.1 Flood Predictor Significance
Predictor selection for the natural hazard susceptibility prediction
aiming at determining the significance levels of contributing factors/
control factors is done at three stages (Janizadeh et al., 2019). 1)
First, multicollinearity analysis (VIF and TOL) is performed before
training the models. This helps to root out all the interdependent
control factors. 2) Then, orderly levels of contribution of control
factors in computation of natural hazard susceptibility prediction
indices (NHSPIs) are analyzed using the factor selection techniques
such as IG, relief-F, RF. Control factors with weights higher than
zero only are included in the model training and validation
processes. 3) Finally, by application of all the models, weights
are retrieved to all the conditioning factors. The second-stage
results using IG were useful for winnowing out the flood
predictors with zero weightage values to be included in the
analysis even when their multicollinearity results of the first
stage allowed them to be included for further step of the model
training. The output from the third stage of the control factor is
helpful at the policy formulation level in hazard management. The
exact knowledge of the area-specific flood-predicting control factors
will help hazard-related policy formulators to allocate funds that
manage those respective flood predictors on a priority basis as
compared to others. There are numerous techniques used for
assessing the significance of contributing factors at aforesaid
second and third stages. The type and number of conditioning
factors (for floods) depend upon several variables including type
topographic and climatic settings (Benson, 1963; Merz et al., 2014)
as well as the type of flood, e.g., flash flood, precipitation-induced
riverine flood, coastal storm flood, tsunami induced flooding
(Pignatelli et al., 2009), or glacial lake outburst flood (GLOF)
(Aggarwal et al., 2017)/landslide lake outburst flood (LLOF)
(Srivastava et al., 2017). The quality of topographic data (Cook
andMerwade, 2009) can also affect the predictor significance. High-
resolution LiDAR-derived DEMs (Laks et al., 2017) and their
derivatives behave differently than those which are derived using
freely available DEMs, such as SRTM 30m, ASTER 30 m, AW3D
30m. For fluvial or riverine floods in mountainous areas, terrain
parameters perform better when derived from ALOS World 3D
30m (AW3D 30m) (Boulton and Stokes, 2018), but the situation
gets reversed for flat floodplain environmental setting like MGP
(Tanaka et al., 2019). Since there is no specific guideline set for
choosing the predictor significance assessment method and several
previous studies use the medium resolution DEM dataset for
deriving topography-based predictors (Santos et al., 2019),
SRTM 30m version 4 DEM-derived topographic variables were
computed (see Section 2), and their significance was analyzed using
IG. The results of this analysis show that detailed geomorphological
mapping derived geomorphic units have played a very important
role in flood susceptibility prediction using IG method. The second
rank assigned to “distance to river” by this method appears to be
true as the “2008 Bihar” flood, which is the source of flood inventory

in this work, was a riverine flood due to overbank flooding caused
by levee breach in the upstream Kosi megafan area leading to the
sudden supply of water discharged for the lower reaches (UNDP
Emergency Analyst, 2008). There was a time lag of around 10 days
between the excessive rainfall in upper catchments, Kosi levee
breach, and 2008 Bihar flooding (for which we have created our
flood inventory), that’s why “rainfall” has scored least significance as
a flood predictor. The reason for geomorphology bearing the first
place on the significance score scale is that in the fluvial
environments, most of the geomorphic forms evolve through
processes governed by rivers’ hydrological, hydraulic, erosive,
depositional, etc., characteristics. In a study conducted in the
mountainous catchment of the northeast region, Lao Cai, of
Vietnam, the DEM-derived predictor “slope angle” has received
the highest predictive value whereas another DEM-derived
parameter “curvature” was reported to be the least predictive
factor (Bui et al., 2019a). The same study highlights that four
other predictors, out of 12 used in that study, which have scored
high significance scores, were DEM-derived parameters. In this
study, four DEM-derived parameters: aspect, TWI, altitude, and
slope have scored significant weights as per IG, equivalent to
second, third, fourth, and fifth ranks, respectively. Irrespective of
their apparent image of being dominant control factors of floods,
rainfall could not stand among first five contributing factors in this
study which conforms to the findings by other studies conducted in
different parts of the globe (Tien Bui et al., 2020). Khosravi et al.
(2019) conducted a study in a hilly moderate relief topographic
setting (altitude range: 29–1,410 m) located in China and found that
rainfall doesn’t have significant predictive significance. In their
study, altitude scored the highest predictive significance followed
by distance from river, NDVI, soil, slope, lithology, LULC, STI,
rainfall, SPI, and curvature. There are variations in the significance
scores of DEM-derived contributing factors such as slope, aspect,
curvature, stream power index (SPI), terrain surface texture (TST),
topographic position index (TPI), etc. and that may be because of a
number of factors related to DEM resolution, algorithms used (IG,
relief-F, RF, SWARA, etc.), type of topographic setting (plain or
mountainous), number of factors used in the modeling exercise, etc.
We could not find a study that has sorted out this issue of variability
in the significance scores of conditioning factors due to the
variability in data quality, use of different techniques/algorithms,
number of conditioning factors, to name a few among others.
Hence, there is a need for future research on this theme.

5.2 Nature of Flood, Predictor Selection,
Topoclimatic Setting
The literature is replete with studies conducted with the aims of
applying a new model for susceptibility prediction of different
types of natural phenomena like floods (Ngo et al., 2018).
Looking at the number and type of conditioning factors used
by these studies, it appears that there is no clear guideline as to
how many conditioning factors and which conditioning factors
should be applied for, say, floods susceptibility, or landslide
susceptibility, or ground subsistence susceptibility, or
groundwater potential mapping exercises that can accrue to
most optimal model performance. One common practice seen
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in the flood susceptibility modeling studies is that most of the
researchers use “geology” or lithology as one of the control
factors for flash floods, riverine floods, and storm surge related
floods irrespective of whether they occur in mountainous
regions, floodplain zones of low-relief settings, high
mountain plateau provinces (Ngo et al., 2018), or coastal
zones (Dodangeh et al., 2020), and in all these studies, the
significance level of “lithology” stood out to (Di et al., 2019) be at
sixth or later ranks. But there has been no study which employed
detailed microlevel “geomorphology” as a control factor in low-
relief topographic zone’s riverine flooding events. Selection of
geomorphology as a proxy for flood susceptibility has been
essentially chosen here because the area is affected by active
tectonic perturbances, and continuous and fast groundwater
depletion is causing ground subsidence. And geomorphology
directly reveals those effects. Vegetation in different types of
topographic and climatic settings shows the variance in their
type (Kumar, 2016), and hence, vegetation diversity in different
terrain types will alter the characteristics of NDVI and its
threshold (Davenport and Nicholson, 1993). Keeping these
associations between vegetation diversity changes and
topoclimatic environmental variability, application of NDVI
threshold may change its significance score, and hence,
model performance too can follow suit.

5.3 Comparative Assessment of Ensemble
Models’ Performance Vis-à-Vis
Topoclimatic Setting
The EBF- and FR-based two ensembles with CART used in this
work have yielded accuracy levels, as adjudged in terms of the
threshold-independent statistics like AUROC, in the range of
widely acceptable limits as per the classification scheme of
AUROC values followed by Fressard et al. (2014). Both the
ensemble models’ AUROC has been found to be within the
range of 0.828–0.8432 (for training dataset) and 0.802–0.819
(for validation dataset). The higher AUROC, for both the
training and validation datasets (also known as success rate
or SR and prediction rate or PR of the model), has been scored
by CART-EBF (SR � 0.843; PR � 0.819) and slightly lower by
CART-FR (SR � 0.828; PR � 0.802) (Figures 7A,B). It is worth
noting that this study has been performed in a low altitude
(altitude range: <45.0–96.0 m AMSL) humid monsoonal
climatic region undergoing constant active tectonic
perturbances (Valdiya, 1976; Brown and Nicholls, 2015)
and hence frequent and more severe flooding in the low-
lying subsiding areas. In such a topographic environment,
the use of moderate spatial resolution digital elevation data
lends more levels of uncertainty errors which further
propagate in other derivatives computed using this data
(Oksanen and Sarjakoski, 2005). In such topographic
settings, augmentation of topographic data quality has the
potential to enhance the accuracy of DEM-derived input
parameters (Sanders, 2007) and hence the models’
performances (van Westen et al., 2008). By applying the
LR-, MLP-, and CART-based ensemble with a different
bivariate model viz. statistical index (SI) for an area located

in the mountainous and hilly part of Romania (altitudinal
range: 242–1,463 m AMSL, characterized by temperate
continental climate), Costache et al. (2020) have achieved
both success rate and prediction rate accuracies of 0.94
(MLP-SI), 0.939 (CART-SI), 0.925 (LR-SI) and 0.927 (MLP-
SI), 0.922 (CART-SI), 0.901 (LR-SI), respectively. There are 10
flood control factors selected by Costache et al. (2020), for flash
flood occurrence prediction in his study area, and four out of
them viz. L-S factor, hydrological soil group (HSG), stream
power index (SPI), and topographic position index (TPI) are
different from our study. In another study, Costache and Tien
Bui (2019) investigated flash flood susceptibility prediction in
different parts of Romania in similar topoclimatic setting for
flash flood susceptibility prediction but with 14 flood
predictors, five of which are different from ours, and
achieved almost same levels of accuracy of success and
prediction rates, as their previous study discussed just above
in this section, but better than ours, ranging from MLP-FR
(0.94), CART-FR (0.937) and MLP-FR (0.981), CART-FR
(0.929), respectively. MLP-EBF trained and validated with
10 flash flood conditioning factors in hilly and mountainous
catchment dominated by temperate climate has accrued 0.912
AUROC success rate accuracy and 0.806 prediction rate
accuracy in identifying torrential valleys vulnerable to flash
floods (Costache et al., 2019). In almost similar (similar to
ours) flat terrain setting and climate, Hong et al. (2018a) have
conducted a study wherein the altitude range was between
<40–720 m AMSL in the southeastern part of China to
investigate the fuzzy weight of evidence (fuzzy-WofE)-based
ensembles with logistic regression (LR), random forest (RF),
and support vector machine (SVM) using 11 conditioning
factors, three of which differed from ours, but their
reported success rate accuracy and prediction rate accuracy
levels were in the range of 0.9519 (fWofE-LR)–0.9882 (fWofE-
SVM) and 0.9652 (fWofE-LR)–0.9865 (fWofE-SVM),
respectively. This study reveals that SVM- and fuzzy-WofE-
based ensemble has the capability to perform much better,
accuracy-wise, in like MGP topoclimatic setting, with freely
available moderate quality DEM-like ASTER 30 m.

Other reasons that affect model performance levels include
quality of flood inventory generated using different
methodologies, like some use NDWI (Jain et al., 2005),
mNDWI (Mohammadi et al., 2017) with different threshold
values, or some other methods using various sensors of
satellite datasets such as optical Landsat 7 ETM+ and Landsat
8 OLI imageries (Kumar, 2016), or radar data (Ward et al., 2014),
and water surface DEM and bare-earth LiDAR DEM differencing
(Guerriero et al., 2018). Variations in the number of flood and
non-flood points meant for training and validation of models,
resolution of DEM to derive topography-based flood predictors,
and other related parameters also affect the flood inventory
accuracy and hence alter the model performance. Regarding
DEM data quality, Podhorányi et al. (2013) who have used
LiDAR derived DEM data, have asserted that the DEM data
quality has an inverse relationship with the level of uncertainties
involved, i.e. better the data quality, lesser is the level of
uncertainty in DEM derived parameters. And hence, for better
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performance of susceptibility models, higher quality DEM is
warranted. On the other hand, Chen et al. (2020) have used
freely available different DEMs in the spatial resolution range of
30–90 m (all derived by resampling of 30 m ASTER DEM), and
they reported that DEM spatial resolution does not necessarily
affect the susceptibility model results. It should be noted that the
difference between Chen’s results and that of Podhorányi’s maybe
because Chen has derived all the seven variants of DEMs from the
same ASTER 30 m data whereas the latter created their DEM
from point clouds collected using LiDAR which has proven
excellent in several aspects over freely available moderate
resolution DEMs (Goulden et al., 2014). Different statistic
matrices presented here in this work indicate different aspects
of model performances like how good the prediction accuracy is
or how sensitive the model behaves and what is the overall
performance of the individual ensembles or how badly the
model fails to predict flood or non-flood pixels, and other
such aspects.

6 CONCLUSION AND
RECOMMENDATIONS FOR FUTURE
RESEARCH
To achieve the goal of flood susceptible area zonation of MGP
based on FSPI produced by applying different ensembles of
models, this study is the next in the series of models’ testing
after Arora et al. (2021b). This study, based on AUROC, has
shown that the CART-based ensembles with bivariates EBF
and FR perform reasonably well with both success and
prediction. When it comes to utilizing moderate resolution-
based conditioning factors, by using as less as 12 conditioning
factors only, the decision of selecting ensembles for flood
zonation mapping, which is an essential requirement for
achieving sustainable development goals (SDGs) set by
United Nations related to flooding, it is recommended that
CART-EBF should be given priority over CART-FR. Different
threshold-dependent statistic indices connote different aspects
of model performances (detailed in references cited in Section
3.8), and based on user’s requirements, the researchers and
agencies are recommended to make their choices. Another
point that emerges out of the models’ output used herein is that
both the models have their performance accuracies in the
range of “good” as per the traditional AUROC classification
scheme.

Detailed microscale geomorphic mapping is based on
“geomorphology” as playing the best contributor in the
susceptibility prediction mapping. The rank of
geomorphology as number one in tectonically active areas
and in fluvial floodplain areas affected by regular riverine
flooding appears to be because this factor incorporates effects
of active tectonic activity and ground subsidence related to
excessive and fast groundwater depletion. Looking at its
significance, it is advised that the government of concerned
areas having similar topoclimatic setting first gets the areas
geomorphologically mapped by using high-resolution satellite
to be used as input in the flood susceptible zonation exercises.

The research by Arora et al. (2021a) also vindicates this
observation.

Some of the limitations faced in this work are: 1) instead of
ground truth points collected using GPS in the field, we have
used Google Earth Pro® for validation of non-flood points; 2)
moderate resolution DEM used for computation of input
flood predictions. Use of DEMs prepared using point cloud
obtained with unmanned aerial vehicles (UAVs) or pulsed
laser light-based LiDAR DEMs, or terrestrial laser scanning
(TLS) device-based DEMs would have affected the model
performance accuracy that affects the susceptibility zone
percentage shares. The testing of all kinds of models, both
standalone and ensembles, of all family of models, for
instance, machine learning, statistical, multicriteria
decision-making models highlighting their advantages and
disadvantages as well as new model development is
recommended to have a better understanding of optimality
in the behavior of models. Since in the forthcoming future,
the age is going to be of machines, space-based monitoring,
and quantification of all natural and man-made phenomena
with the best possible accuracy and precision will be the
prime information that will be needed. In the coming future,
the missions like surface water and oceans topography
(SWOT) (Morrow et al., 2019) will be the need of the time
to monitor all the phenomena including floods from space,
and instantaneous susceptibility prediction zonation of areas
will be instantly planned to be done in such missions at the
control rooms of such missions. Model universalization by
the selection of the best model through rigorous testing and
validation of the available models of different genres
performing with higher accuracy in a particular type of
topoclimatic environmental setting will help guide such
future missions.
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