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Under the global warming, as the typical arid region of Central Asia, the Xinjiang Uygur
Autonomous Region (Xinjiang) has been experienced the remarkable warming and
increased precipitation based on large previous studies. The arid and semiarid
ecosystem of Xinjiang is very sensitive and vulnerable to climate change and water
resource variations. However, the sparse and highly unevenly distributed in-situ
stations in this region provide limited data for understanding of the soil moisture
variations. In this study, the spatial and temporal changes and variations of soil
moisture were explored at annual and seasonal time scales during the period of
2000–2017. The soil moisture data are from the Global Land Data Assimilation System
(GLDAS) models, including four GLDAS 1 models: CLM, Mosaic, VIC and Noah 2.7 and
one GLDAS 2.1 model: Noah 3.3. Major results show that 1) Noah 3.3 and VIC have the
significant positive trends of annual soil moisture with the values of 2.64°mm/a and
0.98°mm/a. The trend of CLM is significant negative. The other two models Mosaic
and Noah 2.7 have the weak positive trends. The temporal variations of seasonal soil
moisutre are similar the annual soil moisture for each of the model. 2) For the spatial
characteristics of the soil mositure variations, CLM displays the negative trends over large
part of Xinjiang. Mosaic and VIC have the similar spatial characteristics of the linear trends.
Noah 3.3 has the significant positive trends over almost Xinjiang which is different with
Noah 2.7. All the five models have the positive trends over KLM. Our results have a better
understanding of the soil moisture variations across Xinjiang, and they also enhance the
reconginzing of the complex hydrological circulation in the arid regions.
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INTRODUCTION

As one of the key hydrological variables, soil moisture plays a fundamental role in the complex
physical processes, such as infiltration, rainfall-evapotranspiration-runoff circulation,
photosynthesis, and groundwater recharge (Ford et al., 2015; Amani et al., 2017; Orth and
Seneviratne, 2017; Dari et al., 2019; Gu et al., 2019a). It is known that soil moisture has
remarkable impacts on the exchanges of water, energy and carbon fluxes between land surface,
vegetation, and atmosphere (Western et al., 2004; Fischer et al., 2007; Trenberth et al., 2007; Qiu et al.,
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2016; Gu et al., 2019a; Hu et al., 2021). Moreover, it is used to
quantify the irrigation water consumption (Jalilvand et al., 2019)
and to monitor the drounght variation (Dai et al., 2004; Li et al.,
2017; Hu et al., 2019a; Xu et al., 2020). Therefore, the accurate
representation and estimation of soil moisture in hydrological
models will control the performances of simulations and
predications of the hydrological cycle, such as the estimation
of groundwater (Scanlon et al., 2018). It is very important to
understand the soil moisture changes and variations which is
essential to improve the scientific recognizing of regional and
global hydrological processes, especially over the arid and
semiarid regions.

Because of the importance of soil moisture on the mass and
energy balance between the land surface and the atmosphere, lots
of techniques have been developed to measure and to monitor its
changes and variations. The in-situ measurement stations can
describe the true changes of soil moisture in the successive years
with high temporal resolution (e.g. in second or minute time
scale), although some system errors and measurement errors are
resulted from the instruments and the surrounding environments
(Holgate et al., 2016). But it is difficult to install the instruments in
high-density observation net-works for the poor regions over the
world, such as Africa and northwest of China, because of the
expensive measurements (Gu et al., 2019a). Satellite soil moisture
products and model-based soil moisture products are sourced as
the soil moisture data which are widely used to detect the
temporal variaitons and spatial patterns of the soil moisture
(Fan and Dool, 2004; Yao et al., 2004; Zhou et al., 2010; Beck
et al., 2020). Compared with the in-situ measurements, model
output of soil moisture has the advantages with the high spatial
and temporal resolutions which have been widely employed in
regional and global researches to explore different climate and
hydrological processes, such as analyzing the historical and future
variations of moisture (Cheng et al., 2015; Chen et al., 2016),
monitoring the dry and wet changes (Robinson et al., 2016; Hu
et al., 2019a), improving the hydrological model simulations (He
et al., 2017), and explaining the dynamics of land-atmosphere
interactions (Gerken et al., 2015; May et al., 2015).

Several types of soil moisture datasets as the model output are
used in previous studies (Qin et al., 2009; Chen et al., 2016), such
as Global Land Data Assimilation System (GLDAS; Rodell et al.,
2004), Coupled Model Intercomparison Project phase 5 (CMIP5;
Berg et al., 2017; Feng et al., 2017), and various reanalysis data sets
(e.g. ERA-Interim and MERRA V2) (Modanesi et al., 2020;
Spennemann et al., 2020; Zhou et al., 2020). In GLDAS, Land
Surface Models (LSMs) and hydrological models were driven by
meteorological forcing to simulate soil moisture of multilayers
with different depths (Bi et al., 2016; Yuan and Quiring, 2017).
Recent study (Gu et al., 2019b) pointed that the soil moisture data
of GLDAS 2.1 is better than CMIP 5 when are compared with the
satellite datasets.

Xinjiang is the typical arid and semiarid regions over Central
Asia. The soil mositure plays a key role for the complex
hydrological process, especially in the desert regions. However,
there are only few in-situ measurements and they are very
difficult employed. Therefore, four GLDAS 1 models: CLM,
Mosaic, VIC and Noah 2.7 and one GLDAS 2.1: Noah 3.3 are

employed to explore the soil moisture variations. In this study, we
aim to 1) detect the temporal changes of soil moisture at different
time scales since the 21st century: during the period of
2000–2017; 2) to analyze the spatial patterns of the soil
moisture varaitions. The paper is organized as follows. In
Study Area, Dataset and Methodology, the study area, dataset
and methodology are introduced. In Result and Discussion, the
major results and discussion are displayed. In the last section, a
conclusion is provided.

STUDY AREA, DATASET AND
METHODOLOGY

Study Area
The study area is located in Northwest China covering more than
1.6 million km2 of 73°40´∼96°23′E and 34°25´∼49°10′N
(Figure 1). Its complex topography characterizes with
mountainous, plain and basin areas. There are three mountain
ranges in Xinjiang, namely, the Altai Mountains (ATM) in the
north, Tianshan Mountains (TSM; the “Water Tower” of Central
Asia) in the middle, and the Kunlun Mountains (KLM) in the
south. The Junggar Basin (JGB) and Tarim Basin (TRB) are
situated between the three mountain ranges from north to south.
Most of the irrigated areas are distributed in the piedmont plains
and the edges of basins (Figure 1).

Xinjiang is dominated by an arid and semi-arid climate with
very low precipitation and strong evaporation. The average of
annual precipitation is 157 mm which only accounts for 24.2% of
averaged precipitation (i.e. 650 mm) across China (Chen et al.,
2012). In addition, precipitation in this region varies with high
spatial difference and large inner-annual variation (e.g. more

FIGURE 1 | Study area: Xinjiang (XJ) and the locations of the five sub-
regions, i.e. Altain Mountainous (ATM), Junggar Basin (JGB), Tianshan
Mountainous (TSM), Tarim Basin (TRB) and Kunlun Mountainous (KLM). The
black line denotes the boundary of the sub-regions. The blue represents
the area of irrigation from groundwater which are extracted from the Global
Map of Irrigation Areas (GMIA) V5.0 of the Food and Agriculture Organization
of the United Nations, AEIGW: area equipped for irrigation with groundwater.
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precipitation in mountainous areas than in plain areas; more
precipitation in spring and summer than in autumn and winter)
(Hu et al., 2016a; Chen et al., 2018). In the past three decades,
Xinjiang experienced a significant warm-wet trend (Hu et al.,
2014; Hu et al., 2017; Hu et al., 2018). Although the Xinjiang’s
climate transited from warm-dry to a warm-wet in the 1980s (Shi,
et al., 2007; Hu et al., 2016b), water resources are still limited and
hardly meet the increasing water demand for economy
development and population growth in Xinjiang. As an
important and irreplaceable water source for Xinjiang,
groundwater plays a key role for domestic water supplies and
agricultural irrigation in oasis (Hu et al., 2019b).

Dataset and Methodology
Global Land Data Assimilation System (GLDAS) aims to
consolidate satellite- and ground based observational data
products to generate optimal fields of land surface states and
fluxes by using advanced land surface modeling and data
assimilation techniques (Rodell et al., 2004). At present,
GLDAS consists of simulations of four Land Surface Models
(LSMs): Noah, Catchment, the Community Land Model (CLM),
and the Variable Infiltration Capacity (VIC). At present, GLDAS
drives six land surface models (LSMs): Noah, Catchment, Mosaic,
the Common Land Model (CLM), the Community Land Surface
Model (CLSM), and the Variable Infiltration Capacity (VIC). The
GLDAS datasets [GLDAS Version 1 (GLDAA-1), GLDAS
Version 2.0 (GLDAS-2.0) and GLDAS Version 2.1 (GLDAA-
2.1)] have the five temporal resolutions from 1 h to 1 month
and the eight spatial resolutions from 0.1 ×0.1 –1.25 ×1.25
(https://disc.sci.gsfc.nasa.gov/datasets?keywords�GLDAS). GLDAS-
1 forcing datasets include: bias-corrected European Center for
Medium-Range Weather Forecasts (ECMWF) Reanalysis data
for 1979–1993, bias-corrected National Center for Atmospheric
Research (NCAR) Reanalysis data for 1994–1999 (Berg et al.,
2003); National Oceanic and Atmospheric Administration (NOAA)/
Global Data Assimilation System (GDAS) atmospheric analysis
fields for 2000 (Derber et al., 1991), and a combination of
NOAA/GDAS atmospheric analysis fields, spatially and
temporally disaggregated NOAA Climate Prediction Center
Merged Analysis of Precipitation (CMAP) (Xie and Arkin,
1996) fields, and observation-based downward shortwave and
longwave radiation fields from the Air Force Weather Agency
(AFWA) for 2001-present. GLDAS-2.1 forcing datasets (2001-
present) include a combination of NOAA/GDAS atmospheric
analysis fields (Derber et al., 1991), temporally disaggregated
Global Precipitation Climatology Project (GPCP) precipitation
fields (Adler et al., 2003), and the Air Force Weather Agency’s
Agricultural Meteorological modeling system (AGRMET)
radiation fields (March 2001 onwards) (https://disc.gsfc.nasa.
gov/information/documents/5a70903bca6d24bac24118eb/gldas-
lsm-description).

Because GLDAS datasets provide high spatiotemporal
resolutions variables which makes it is an effective resource to
study the water cycle based on these datasets, they have been
widely used in many previous studies (Scanlon, et al., 2012;
Mukheriee and Ramachandran, 2018; Kong et al., 2019; Chen
and Yuan, 2020; Hoffmann et al., 2020; Niu, et al., 2020; Solander

et al., 2020; Hu et al., 2021). To match the temporal (monthly)
and spatial resolution (1.0 × 1.0) of the GRACE datasets, the
GLDAS LSMs datasets examined in this study are those included
in GLDAS V1 VIC and Mosaic with the period of 1979-present,
and GLDAS V2.1 Noah V3.3 with the period of 2000-present.

The soil moisture from the GLDAS V1 (i.e. CLM, Mosaic, VIC
and Noah 2.7) with the period of 1979-present and the spatial
resolution of 1.0 × 1.0 and the GLDAS V2.1 (Noah 3.3) with the
period of 2000-present and the spatial resolution of 1.0 × 1.0 are
used in this study to estimate the changes in soil moisture. The
soil moisture in this study is the summation of all the layers for
each model, such as three layers for VIC, and four layers for Noah
and Mosaic.

VIC was originally developed by Liang et al. (1994), Liang et al.
(1996) at the University of Washington in early 90’s. The model
focuses on runoff processes that are represented by the variable
infiltration curve, a parameterization of sub-grid variability in soil
moisture holding capacity, and nonlinear baseflow. VIC is a
stand-alone, 1-D column model that is run uncoupled. Various
simulation models are available including water balance, energy
balance, frozen soil, and other special cases. As a macroscale
hydrological model, VIC models sub-grid variability in the soil
moisture storage capacity and bas flow as a nonlinear recession. In
GLDAS-1, VICmodel includes three soil layers (0–10, 10–160, and
160–190 cm) and was simulated in water balance mode with
computing energy fluxes (Cherkauer and Lettenmaier, 2003).
Therefore, the VIC data includes water budget components and
forcing fields but without energy budget components.

Noah is a National Centers for Environmental Prediction/
Oregon State University/Air Force/Hydrologic Research Lab
(Noah) Model. The community Noah LSM was developed in
1993 through a collaboration of investigators from public and
private institutions, spearheaded by the National Centers for
Environmental Prediction. Current development efforts are
consistent with the land surface scheme in Weather Research
Forecast (WRF) system, under the Unified Noah LSM (Chen
et al., 1996; Chen et al., 1997; Koren et al., 1999; Chen and
Dudhia, 2001; Ek et al., 2003). Noah is a stand-alone, 1-D column
model which can be executed in either coupled or uncoupled
mode. The model applies finite-difference spatial discretization
methods and a Crank-Nicholson time-integration scheme to
numerically integrate the governing equations of the physical
processes of the soil-vegetation-snowpack medium. It includes
four soil layers (0–10, 10–40, 40–100, and 100–200 cm), single
layer snowpack, and frozen soil physics. Canopy, snow, and soil
moisture storage are included in Noah.

Mosaic (Koster and Suarez, 1996) is a well-established and
theoretically sound LSM, as demonstrated by its performance in
the Project for Intercomparison of Land-surface Parameterization
Schemes (PILPS) and Global Soil Wetness Project (GSWP)
experiments. Mosaic’s physics and surface flux calculations are
similar to the SiB (simple biosphere model) LSM (Sellers et al.,
1986). It is a stand-alone, 1-D column model that can be run both
uncoupled and coupled to the atmospheric column.Mosaic divides
each model grid cell into a Mosaic of tiles based on the distribution
of vegetation types within the cell. It has four soil layers: 0–2,
2–150, and 150–350 cm.
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Because GLDAS datasets provide hydrological variables in
high spatial and temporal resolutions, they have been widely used
in many previous studies in the field of hydrology (Kong et al.,
2019; Chen and Yuan, 2020; Hoffmann et al., 2020; Niu, et al.,
2020; Solander et al., 2020). The soil moisture from the GLDAS
V1 (i.e. CLM, Mosaic, VIC and Noah 2.7) and the latest GLDAS
dataset (Noah 3.3) with the spatial resolution of 1.0 × 1.0 are used
in this study to estimate the changes in soil moisture. The soil
moisture in this study is the summation of the different layers for
each model.

The soil moisture analysis is carried out at multiple time scales
from monthly, seasonal to annual. The four seasons are spring
[March-May (MAM)], summer [June-August (JJA)], autumn
[September–November (SON)] and winter [December-
February (DJF)]. The changes of the soil moisture is quantified
by the linear trend which is computed by the linear least square
method, and the significant of the linear trend is detected by the
Student’s test at the 95% or 99% confidence level (p < 0.05 or
p < 0.01).

RESULT AND DISCUSSION

Temporal Variations of Soil Moisture During
2000–2017
The temporal variations and changes of soil moisture of the five
GLDAS models: CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over

TABLE 1 | Linear trends (mm/a) of the soil moisture of the five models at annual
and seasonal scales during the period of 2000–2017.

model Annual MAM JJA SON DJF

CLM −0.42** −0.37** −0.46** −0.47** −0.46**
Mosaic 0.67 0.98 0.76 0.26 0.10
VIC 0.98** 1.21** 0.93** 0.78** 0.6*
Noah 2.7 0.05 0.10 0.07 -0.01 −0.13
Noah 3.3 2.64** 2.51** 2.85** 2.78** 2.22**

** denotes the trend is significant at the 95% or 99% significance level.

FIGURE 2 | Anomaly of annual soil moisture of the five different models:
CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over Xinjiang during the period of
2000–2017.

FIGURE 3 | Anomaly of seasonal soil moisture of the five different
models: CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 over Xinjiang during the
period of 2000–2017, (A) MAM, (B) JJA, (C) SON and (D) DJF.
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Xinjiang are explored using the linear trends at annual and seasonal
time scales (Table 1; Figures 2, 3). For annual soil moisture, CLM
displays the significant negative linear trend with the rate of
−0.42 mm/a at a 99% confidence level (p < 0.01) which indicates
the decreasing soil moisture in Xinjiang (Table 1 and Figure 2). For
the other four models, Noah 3.3 has the largest positive trend
(2.64 mm/a), and followed by VIC with the rate of 0.98mm/a.
Moreover, the trends of Noah 3.3 and VIC are significant at 99%
confidence level (p < 0.01). The positive trends of Mosaic and Noah
2.7 are not significant at 95% confidence level. Furthermore, all the
five models show an obvious increasing during the period of
2000–2011 except CLM from Figure 2.

For the seasonal soil moisture, these models display the
different variations. For the changes of the MAM soil
moisture, CLM also has the negative trend with the value of

−0.37 mm/a which is significant at the 99% confidence level (p <
0.01) (Table 1, Figure 3A). Noah 3.3 has the largest positive trend
of MAM soil moisture among the five models with the value of
2.51 mm/a (p < 0.01) (Table 1) which displays the obvious
variations in Figure 3A. VIC has the second largest positive
trend (1.21 mm/a) which is also significant at the 99% confidence
level (p < 0.01) (Table 1 and Figure 3A). The trends of MAM soil
moisture of Mosaic and Noah 2.7 are 0.98 mm/a and 0.1 mm/a,
respectively (Table 1).

For JJA, Noah 3.3, VIC, Mosaic and Noah 2.7 have the positive
trends with the values of 2.85, 0.93, 0.76, and 0.07 mm/a,
respectively (Table 1). The trends of Noah 3.3 and VIC are
also significant at the 99% confidence level. The significant
negative trend of soil moisture is still obtained in CLM with
the value of −0.46 mm/a (p < 0.01) (Table 1, Figure 3B).

FIGURE 4 | Spatial distributions of the linear trends (mm/month) of the annual soil moisture for five models during 2000–2017, (A) CLM, (B) Mosaic, (C) VIC, (D)
Noah 2.7 and (E) Noah 3.3. The cross signs denote the trends are significant at the 95% significance level.
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As the other seasons, CLM still has the significant negative
trends in both SON and DJF with the values −0.47 and
−0.46 mm/a (p < 0.01) (Table 1). The weak negative trends
are obtained for SON and DJF soil moisture in Noah 2.7
which are different from annual, MAM and JJA. Significant
positive trends of VIC and Noah 3.3 are observed for SON
and DJF soil moisture with the values of 0.78 and 0.6 mm/a
for VIC, and 2.78 and 2.22 mm/a for Noah 3.3 (p < 0.01) (Table 1,
Figures 3C,D). The positive trends of Mosaic are 0.26 and
0.1 mm/a for SON and DJF over Xinjiang during the period of
2000–2017.

On the whole, CLM has the significant negative trends of soil
moisture at annual and seasonal scales. Mosaic, VIC and Noah
3.3 have the positive trends for annual and seasonal soil moisture.
The annual and seasonal soil moisture trends of Noah 2.7 are
weak which indicate the weak variations of soil moisture.
Moreover, Noah 3.3 has the largest positive trends among the
five models.

Spatial Distributions of Linear Trends of
Annual Soil Moisture
For the spatial distributions of linear trends of annual soil
moisture, the five models display the different spatial patterns
(Figure 4). Specifically, for CLM, 18% areas have the significant
positive trends with the distribution over mountainous areas,
such as TSM and KLM (Figures 4A, 5A). More than half areas
have the significant negative trends mainly over JGB and TRB
(63%, Figures 4A, 5B). ForMosaic, 27% areas have the significant
positive trends over part of ATM, TSM, TRB and KLM (Figures
4B, 5A). For the areas with negative trends, they account for 34%
over Xinjiang (Figures 4B, 5B). VIC has the similar spatial
patterns as Mosaic with the 29% significant positive areas and
36% significant negative areas (Figures 4C, 5). The significant
positive trends are distributed over 22% areas (e.g. eastern of
KLM) and 51% areas have the significant negative trends for
Noah 2.7 (Figures 4D, 5). For Noah 3.3, largely areas show the
positive trends with the significant positive trends over more than

FIGURE 5 | Percentage of areas with significant positive (A) and negative (B) trends of the five different models at annual and seasonal scales.
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60% areas, and the significant negative trends only account for
less than 8% areas (Figure 4E).

Overall, all the models show the positive trends over KLM.
Mosaic and VIC has the similar distributions. Noah 2.7 and Noah
3.3 have the opposite linear trends. These differences among the
five models may be caused by their different input datasets and
different model structures.

Spatial Distributions of Linear Trends of
MAM and JJA Soil Moisture
For the spring soil moisture (i.e. MAM soil moisture), the five
models have the similar spatial distributions of the linear trends
as the ANN soil moisture (Figure 6). In small areas (16%), CLM
has the significant positive trends, and less than 60% areas have
the significant negative trends (Figures 5, 6A). For Mosaic, the
significant positive areas account for 20% and the 29% areas have
the significant negative linear trends (Figure 5). Moreover, the
center of the positive trend areas is mainly in KLM (Figure 6B).
In terms of VIC model, the areas with significant positive trends

and significant negative trends are 26% and 32%, respectively
(Figure 5). The large positive trends are distributed over south of
TRB and KLM (Figure 6C). For Noah 2.7 and Noah 3.3, the
spatial patterns are similar as the annual soil mositure (Figures
6D,E). the areas with the significant negative trends of Noah 2.7
are 51% and the significant positive areas of Noah 3.3 are 63%
(Figure 5).

For JJA soil moisture, each of the five models have the similar
distributions as annual and MAM (Figure 7). The significant
positive areas of CLM, Mosaic, VIC, Noah 2.7 and Noah 3.3 are
14, 25, 31, 23, and 62%, respectively (Figure 5A). For the
significant positive trends, CLM still has the largest areas
(62%) among the five models, and followed by Noah 2.7 and
VIC (Figure 5B).

Spatial Distributions of Linear Trends of
SON and DJF Soil Moisture
For SON, CLM has the large significant negative trends over 61%
areas, and 14% areas have the significant positive trends

FIGURE 6 | Same as Figure 4, but for MAM soil moisture.
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distributed over eastern KLM (Figures 5, 8A). For Mosaic, large
parts of areas have the positive trends of annual with 26% areas
significant at 95% confidence level, and these areas are distributed
over part of ATM, most of TRB and KLM (Figures 5, 8B). The
significant negative trends of soil moisture are fragmentally
distributed over Xinjiang with the percentage of 29%. For VIC
model, the significant negative trends account for 35% areas over
Xinjiang, and are mainly distributed over ATM, JGB and part of
TRB (Figures 5, 8C). The areas with significant positive trends of
soil moisture account for 30% which are also distributed over
most of TRB and KLM. For the model of Noah 2.7, most of the
negative trends have the values smaller than −2 mm/a, and the
areas with the significant negative trends account for 49%
(Figures 5B, 8D). Almost all the positive trends have the
values larger than 2 mm/a with the 21% significant areas. In
terms of Noah 3.3, except the negative trends over the small parts
of TRB, the other regions have the significant positive trends
accounting for 62% areas over Xinjiang (Figure 8E).

Figure 9 displays the spatial distributions of DJF soil moisture
linear trends based on the five models. The distributions of the
five models are similar as the annual soil moisture and the other

three seasons. For CLM, the significant increase trends and
significant decrease trends account for 13% and 58% areas,
respectively (Figure 5). Mosaic and VIC also have the same
spatial patterns of the DJF soil moisture linear trends, and the
significant positive trends account for 25 and 26% areas,
respectively (Figures 5A, 9B,C). For Noah 2.7 and Noah 3.3,
the percentages of the positive areas are 21% and 62%
(Figures 5, 9).

DISCUSSION

Due to the lake of the in-situ observations, the accuracy of soil
moisture from the five GLDAS models is not evaluated in this
study.We only explored the temporal and spatial variations of the
soil moisture over Xinjiang using multiple GLDAS datasets. In
recent study (Supplementary Figure S3 in Hu et al., 2019b), it was
proved that Noah, VIC, Mosaic had the positive linear trends of
soil moisture in Xinjiang except the CLMmodel which are similar
with the result of this study. Moreover, Gu et al. (2019a)
concluded that GLDAS Noah soil moisture is in agreement

FIGURE 7 | Same as Figure 4, but for JJA soil moisture.
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with the observation in China. Therefore, the positive linear trend
results from Noah 3.3 and VIC are more credible than CLM in
Xinjiang.

For the spatial distrubutions of the annual soil moisture,
the five different datasets have the spatial heterogeneity. In
particularly, Mosaic, VIC, and Noah 3.3 have the positive
linear trends over the same regions (Figures 4B,C,E), except
the most negative trends of CLM (Figure 4A), which are
agreement with the Supplementary Figure S3 in Hu et al.
(2019b). These spatial differences of the annual soil moisture
trends are mainly caused by the spatial distributions of the
precipitation linear trends (Hu et al., 2019b). The accuracy
and difference between the different GLDAS models are
mainly caused by their different input data and different
model sturctures which are comprehensively discussed in
the Supplementary Text S2 of Hu et al. (2019b). For the
long-term period of 1950–2015, the positive linear trends of
the soil moisture are observed over nearly the whole Xinjiang
which is similar with the spatial patterns of the positive
precipitation in Figures 6B,D in Hu et al. (2019a). Other
climate factors, such as temperature and evapotranspiration

also impact on the soil moisture variations. We will discuss it
in our future study.

The soil moisture also can moinitor the drought variations
(Wang et al., 2011; Li et al., 2017; Hu et al., 2019a). The
1997–2003 drought was also pervasive in terms of both
severity and spatial extent. It was also found that soil moisture
in north central and northeastern China had significant
downward trends, whereas most of Xinjiang (Wang et al.,
2011). For the spatial distributions, most of the mountainous
areas are wet regions and the plain areas are drought region based
on the MODIS soil moisture information in Xinjiang (Li et al.,
2017). For Central Asia, the spatial distributions of the soil
moisture linear trends are same as the distributions of the
PDSI linear trends in 1950–2015 (Hu et al., 2019a). The
climate transformation (from a warm-dry to a warm-wet) in
Bayanbuluk grassland of Xinjiang appears in the 1980s (Hu et al.,
2016b) which agreed with the warm-dry to warm-wet shift over
the northwest of China (Shi et al., 2007). While a recent work
(Yao et al., 2021) proposed that a wet-to-dry shift over Xinjiang
was detected in 1997 based on the temperature and precipitation.
Therefore, the warming and wetting signal in soil moisture

FIGURE 8 | Same as Figure 4, but for SON soil moisture.
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changes should be explored in different time period by different
climate factors.

CONCLUSION

In this study, the distrubutions and dynamics of the soil moisture
over Xinjiang have been explored using four GLDAS 1 models:
CLM, Mosaic, VIC and Noah 2.7 and one GLDAS 2.1 model:
Noah 3.3 during the period of 2000–2017. The annual soil
moisture and seasonal soil moisture (i.e. MAM, JJA, SON, and
DJF) are analyzed from the linear trend perspective. The
conclusions are obtained as follows:

1) Noah 3.3 andVIChave the significant positive trends of annual
soilmoisturewith the values of 2.64mm/a and 0.98mm/a. The
trend of CLM is significant negative. The other two models
Mosaic and Noah 2.7 have the weak positive trends.

2) For the seasonal soil moisture changes, Noah 3.3 and VIC
also have the significant positive trends which indicates
that the seasonal soil moisture is increased over Xinjiang

during the period of 2000–2017. The significant negative
trends are observed based on the CLM dataset.

3) Annual and seasonal soil moisture have the similar spatial
distributions of the linear trends for each of the five
models. CLM displays the negative trends over large
part of Xinjiang. Mosaic and VIC have the similar
spatial characteristics of the linear trends. Noah 3.3 has
the significant positive trends over almost Xinjiang which
is different with Noah 2.7. All the five models have the
positive trends over KLM.

More in situmeasurements, satellite remote-sensingmissions, and
reanalysis datasets will be essential for the continued assessment of the
variations of soil moisture. Relationships between climate factors (e.g.
temperature, precipitation and potential evapotranspiration) and soil
moisture can help us to have a better understanding of the complex
hydrological process in the arid regions. The impacts of soil moisture
on the ecological system, such as vegetation and argriculture will
provide important information for reaching a balance between the
SDG (sustainable development goal) water resource and environment
and human society over Xinjiang.

FIGURE 9 | Same as Figure 4, but for DJF soil moisture.
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