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Magnitude estimation is a vital task within earthquake early warning (EEW) systems
(EEWSs). To improve the magnitude determination accuracy after P-wave arrival, we
introduce an advanced magnitude prediction model that uses a deep convolutional
neural network for earthquake magnitude estimation (DCNN-M). In this paper, we use
the inland strong-motion data obtained from the Japan Kyoshin Network (K-NET) to
calculate the input parameters of the DCNN-M model. The DCNN-M model uses 12
parameters extracted from 3 s of seismic data recorded after P-wave arrival as the
input, four convolutional layers, four pooling layers, four batch normalization layers, three
fully connected layers, the Adam optimizer, and an output. Our results show that the
standard deviation of the magnitude estimation error of the DCNN-M model is 0.31,
which is significantly less than the values of 1.56 and 0.42 for the τc method and
Pd method, respectively. In addition, the magnitude prediction error of the DCNN-M
model is not affected by variations in the epicentral distance. The DCNN-M model has
considerable potential application in EEWSs in Japan.

Keywords: earthquake early warning, magnitude, estimation, P-wave, deep convolutional neural network

INTRODUCTION

Earthquake early warning (EEW) systems (EEWSs) depend on stations located near the earthquake
source area to monitor earthquakes and obtain location, ground shaking, and magnitude
information using data from the first few seconds after P-wave arrival. They then send EEW
information to the target sites before destructive seismic waves arrive (Allen and Kanamori, 2003).
Over the past few decades, EEWSs have been shown to be an effective earthquake hazard mitigation
approach and have been applied in many regions around the world, such as Japan (Hoshiba
et al., 2008), Mexico (Aranda et al., 1995), Taiwan (Wu and Teng, 2002; Chen et al., 2015),
California (Allen et al., 2009a), southern Italy (Zollo et al., 2009; Colombelli et al., 2020), and Iran
(Heidari et al., 2012).

Magnitude estimation is an essential EEW task. Reliable EEW information and estimates
of damage areas both rely on accurate magnitude determination. EEWSs estimate earthquake
magnitudes based on the initial few seconds after P-wave arrival (Allen et al., 2009b). The final
earthquake magnitude may be determined by the initial rupture rather than the overall earthquake
rupture process (Olson and Allen, 2005; Wu and Zhao, 2006). The existing magnitude estimation
methodologies mainly establish the regression functions between the parameter extracted from
the initial several seconds after P-wave arrival and the catalog magnitudes (CMs) to predict the
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earthquake magnitudes. The τc method, which establishes the
empirical relationship between the average period (τc) and
the CMs, was proposed by Kanamori (2005) and has been
demonstrated to have a relationship with the magnitude that is
acceptable for EEWSs (Wu and Kanamori, 2008; Yamada and
Mori, 2009). Wu and Zhao (2006) proposed the Pd method,
which establishes an empirical correlation between the peak
amplitude of displacement during the first 3 s after P-wave
arrival and the CMs and was applied to predict magnitudes in
southern California. The Pd method provides robust magnitude
estimation, and it is feasible to use the peak amplitude of
displacement during the first several seconds after P-wave arrival
to predict magnitudes for EEWSs (Zollo et al., 2006; Tsang et al.,
2007; Lin et al., 2011). The squared velocity integral (IV2), which
was proposed by Festa et al. (2008), is related to the early radiated
energy and can be used to determine earthquake magnitudes.

However, since a single parameter might provide little
magnitude information regardless of whether it is governed
by the frequency, amplitude, or energy, the accuracy of
EEW magnitude estimation still needs to be improved. More
accurate magnitude estimation will lead to more effective
hazard mitigation. With the development of artificial intelligence,
some researchers have combined magnitude estimation and
support vector machines (SVMs) and indicated that artificial
intelligence has excellent potential for use in EEW magnitude
estimation applications (Reddy and Nair, 2013; Ochoa et al.,
2017). In this study, we developed an advanced magnitude
prediction model by using a deep convolutional neural network
for magnitude estimation (DCNN-M). Following the analyses
by Kanamori (2005), Wu and Kanamori (2005), and Wu
and Zhao (2006), we also used the 3-s time window after
P-wave arrival for DCNN-M model estimation. We used 12
magnitude estimation parameters from P-wave arrival for EEW
related to the frequency, amplitude, and energy as input,
which make the DCNN-M model interpretable, and trained
the DCNN-M model using the training dataset. Then, the test
dataset was used to test the DCNN-M model performance,
and DCNN-M model magnitude estimates were compared to
the τc method and Pd method results. Furthermore, as a
test, we used the DCNN-M model to predict 31 additional
earthquake events and obtained reliable magnitude estimates.
We show that the DCNN-M model is robust enough to predict
magnitudes in Japan and that it has considerable potential for
application to EEWSs.

DATA AND PROCESSING

In this study, we used strong-motion data from October 2007
through October 2017, which were obtained from the Kyoshin
Network (K-NET) stations of the National Research Institute for
Earth Science and Disaster Prevention (NIED) in Japan1 (Aoi
et al., 2011). The sampling rate of the strong-motion data was
100 Hz. We selected inland earthquakes from the K-NET catalog
with magnitudes within the 3 ≤ MJMA ≤ 8 range and focal

1http://www.kyoshin.bosai.go.jp/

depths shallower than 10 km. We had no epicentral distance
requirements for the strong-motion data.

There were 1,836 inland earthquakes (Figure 1A)
characterized by 19,263 three-component seismograms recorded
by the K-NET stations (Figure 1B). The data were composed
mainly of events within 3 ≤ MJMA ≤ 6.9 but included three
MJMA7 and MJMA7.4 events (see Supplementary Table 1).
The P-wave arrival was determined automatically using the
short-term averaging/long-term averaging algorithm (Allen,
1978). Acceleration records were integrated once and twice to
obtain velocity and displacement seismograms, respectively.
Then, the displacement seismograms were processed by using
a Butterworth filter with a high-pass frequency of 0.075 Hz to
remove low-frequency drift (Wu and Zhao, 2006). Moreover,
selected seismic records were randomly divided into two
datasets: a training dataset (15,410 three-component seismic
records), which accounted for 80% of the strong-motion data,
was used to train the DCNN-M model, and a test dataset (3,853
three-component seismic records), which accounted for 20% of
the strong-motion data, was used to assess the DCNN-M model
performance after training (Figure 2).

THE INPUT PARAMETERS

The P-wave parameters used to predict magnitude mainly include
three categories for EEW: parameters related to amplitude,
frequency and energy. Since a single parameter provides little
earthquake magnitude information, multiple parameters might
provide more information useful in magnitude prediction; thus,
for EEW, 12 magnitude estimation parameters of the P-wave
arrival related to the frequency, amplitude, and energy are
selected as inputs to the DCNN-M model to make the DCNN-
M model interpretable. It is important that these 12 P-wave
parameters are correlated with magnitude in this paper. In this
study, these P-wave parameters are introduced in the following
paragraphs. Following the analysis of Kanamori (2005), Wu and
Kanamori (2005), Wu and Zhao (2006), we also used the 3-s
time window after P-wave arrival for DCNN-M model magnitude
estimation. Furthermore, we corrected the parameters related
to amplitude, energy and derivative parameters for the distance
effect by normalizing them to a reference distance of 10 km
(Zollo et al., 2006).

First, P-wave parameters related to amplitude include peak
displacement (Pd), peak velocity (Pv), and peak acceleration
(Pa), which provide information on the earthquake size and
these amplitude-related parameters have relationships with the
magnitude (Wu and Kanamori, 2005; Wu and Zhao, 2006). The
single data points for the P-wave parameters related to amplitude
as a function of magnitude are shown in Supplementary
Figure 1. In addition, these parameters are defined as:

Pd = max
0≤t≤T

∣∣dud (t)
∣∣ (1)

Pv = max
0≤t≤T

|vud (t)| (2)

Pa = max
0≤t≤T

|aud (t)| (3)
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FIGURE 1 | (A) The epicenter locations of the 1,836 inland earthquakes used in this paper. Solid red circles of different sizes indicate magnitudes within the range of
3 ≤ MJMA ≤ 7.4. (B) The distribution of the stations (solid blue triangles) that recorded the strong-motion data used in this paper.

where dud(t), vud(t), and aud(t) are the vertical components of
the displacement, velocity, and acceleration time histories of
the strong-motion data, respectively. Zero is the P-wave arrival
time, and T is the length of the P-wave time window. In this
paper, the linear relationship between the amplitude parameters,
the magnitude and the hypocentral distance is shown in
Supplementary Table 3, and the linear relationship between the
amplitude parameters after normalization to a reference distance
of 10 km and magnitude is shown in Supplementary Table 4.

Next, the P-wave parameters related to frequency include the
average period (τc), product parameter (TP), and peak ratio
(Tva). The average period has been proven to have an acceptable
relationship with the magnitude (Kanamori, 2005) and it can be
calculated as:

r =

∫ T
0 v2

ud (t) dt∫ T
0 d2

ud (t) dt
(4)

τc =
2π
√

r
(5)

The correlation of TP and magnitude was proposed by Huang
et al. (2015), which has correlations with τc and Pd, and TP is
defined as:

TP = τc × Pd (6)

where τc is the average period and Pd is the peak displacement.
The peak ratio reflects the frequency components of the ground
motion and has a correlation with magnitude (Böse, 2006; Ma,
2008), which has correlations with Pv and Pa, and it can be
calculated as:

Tva = 2π (Pv/Pa) (7)

where Pv and Pa are the peak velocity and peak acceleration,
respectively. The single data points for the P-wave parameters

related to frequency as a function of magnitude are shown in
Supplementary Figure 2. In this paper, the linear relationship
between the frequency parameters and the magnitude is shown
in Supplementary Table 5.

Finally, P-wave parameters related to the power of earthquakes
include the P-wave index value (PIv) (Nakamura, 2003), velocity
squared integral (IV2) (Festa et al., 2008) and cumulative absolute
velocity (CAV) (Reed and Kassawara, 1988; Böse, 2006). The
single data points for the P-wave parameters related to energy as
a function of magnitude are shown in Supplementary Figure 3.
In addition, these parameters are calculated as:

PIv = max
0≤t≤T

log |aud (t) · vud (t)| (8)

IV2 =
∫ T

0
v2

ud (t) dt (9)

CAV =
∫ T

0
|a3 (t)| dt (10)

a3 (t) =
√

a2
ud (t)+ a2

ew (t)+ a2
ns (t) (11)

where a3(t) is the total acceleration of the three components. In
this paper, the linear relationship between the energy parameters,
the magnitude and the hypocentral distance is shown in
Supplementary Table 6, and the linear relationship between the
energy parameters after normalization to a reference distance
of 10 km and magnitude is shown in Supplementary Table 7.
Because, CAV considers the influence of both the amplitude and
the duration of motion, we proposed three derivative parameters
according to the CAV. They are cumulative vertical absolute
displacement(cvad), cumulative vertical absolute velocity(cvav)
and cumulative vertical absolute acceleration(cvaa). The single
data points for the derivative parameters as a function of
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FIGURE 2 | The distribution of the epicentral distance and magnitude records. A histogram for the number of selected seismic records with the magnitude is shown
at the top. An interval of 0.5 is used for each magnitude bin. A histogram of the number of selected seismic records with the epicentral distance is shown at the
bottom left. An interval of 25 km is used for each epicentral distance bin. The distribution between the magnitude and epicentral distance is shown at the bottom
right. Solid blue circles indicate the training dataset used to train the DCNN-M model. Solid red circles indicate the test dataset used to test the DCNN-M model
performance.

magnitude are shown in Supplementary Figure 4. These
parameters are calculated as:

cvad = sum
0≤t≤T

(∣∣dud (t)
∣∣) (12)

cvav = sum
0≤t≤T

(|vud (t)|) (13)

cvaa = sum
0≤t≤T

(|aud (t)|) (14)

In this paper, the linear relationship between the derivative
parameters, the magnitude and the hypocentral distance is
shown in Supplementary Table 8, and the linear relationship
between the derivative parameters after normalization to a
reference distance of 10 km and magnitude is shown in
Supplementary Table 9.

To prevent numerical problems caused by large variations
between the ranges of the parameters and to improve the training
efficiency of the model, these parameters are linearly scaled to
[−1, 1] as the input of the deep convolutional neural network
(Tezcan and Cheng, 2012). When scaled to [−1, 1], every
parameter becomes:

xnorm =
2x− (xmax + xmin)

xmax − xmin
(15)

where xnorm is the original P-wave parameter and xmax and
xmin are the maximum and minimum values of every P-wave
parameter extracted from the strong-motion data in this
study, respectively.
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THE DCNN-M MODEL

Earthquake early warning magnitudes are usually predicted
via the empirical relationship between a single parameter
extracted from the seismic data collected during the first
few seconds after P-wave arrival and CMs. Since a single
parameter provides little earthquake magnitude information,
multiple parameters might provide more information useful
in magnitude prediction. In addition, to make the model
interpretable, for EEW, we used 12 magnitude estimation
parameters related to the amplitude, frequency, and energy
following the P-wave arrival (see Supplementary Text 1) as the
inputs of the DCNN-M model.

The DCNN-M model was constructed based on a deep
convolutional neural network and was used to predict
magnitudes for EEW. The architecture of the DCNN-M
model comprised 12 parameters extracted from the 3 s period
after P-wave arrival as inputs, four convolutional layers, four
batch normalization layers, four pooling layers, three fully
connected layers, and an output (Figure 3). The output was
the predicted magnitude (PM). The four convolutional layers
had 124, 150, 190, and 250 filters. In each convolutional layer,
the kernel size of the filter was 4, the stride was 2, the padding
type was “same,” and the initialization was “TruncatedNormal.”
A batch normalization layer followed each convolutional
layer. The batch normalization layers made the setting of

the hyperparameters freer, the network convergence speed
faster, and the performance better (Ioffe and Szegedy, 2015).
A pooling layer followed each batch normalization layer;
we used max pooling, each max pooling size was 2, each
stride was 2, and each padding type was “same.” The final
pooling layer was flattened and then fed to the first fully
connected layer. The three fully connected layers had 250,
125, and 60 neurons.

To prevent overfitting and ensure better generalizability,
we applied L2 regularization with a regularization rate of
10−4 to the convolutional layers and dropout with a dropout
rate of 0.5 following the last fully connected layer (Srivastava
et al., 2014; Jozinović et al., 2020). Moreover, the rectified
linear unit (ReLU) activation function (Nair and Hinton, 2010)
followed each pooling layer and fully connected layer. Because
larger batch sizes lead to worse generalization performance
(Keskar et al., 2016), we used 76 batch sizes and 48 epochs
based on a tradeoff between efficiency and generalizability.
We used a training dataset to train the DCNN-M model
based on the Adam optimizer with a learning rate of 0.001
by optimizing a loss function defined as the mean squared
error of the output (Kingma and Ba, 2014). In this study,
the DCNN-M model was programmed using TensorFlow
GPU 2.3 and trained using the training dataset, requiring
approximately 1.5 min on an Nvidia Quadro T1000 GPU
with 12 GB memory.

FIGURE 3 | The architecture of the DCNN-M model. Twelve parameters related to the frequency, amplitude, and energy extracted from the 3-s period after P-wave
arrival are used as the inputs of the DCNN-M model. The hyperparameters of the DCNN-M model include the filter size, stride, padding, initialization, optimizer,
learning rate, regularization, and dropout, etc.
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RESULTS

In this study, the difference between the PM and CM is defined as
the error (ω). The error (ω) and the standard deviation (σ) of the
errors are expressed as:

ω = PM− CM (16)

σ =

√√√√ 1
N

N∑
i=1

(ωi −$)2 (17)

where N is the number of records and $ is the mean of the errors.
Figure 4 depicts magnitude estimation for the training

dataset (Figure 4A) and the test dataset (Figure 4B) based
on the DCNN-M model. The PMs approximate the CMs in
the training and test datasets. The standard deviations of the
magnitude estimation errors are 0.31 for both the training
and test datasets. This finding indicates excellent generalization
performance and an absence of overfitting within the DCNN-
M model.

The τc method and Pd method are widely used in the
study of EEWS magnitude prediction (Kanamori, 2005;
Wu and Kanamori, 2005; Wu and Zhao, 2006; Zollo
et al., 2006; Colombelli et al., 2014). To evaluate the
performance of the DCNN-M model, the τc method and
Pd method were used to predict the magnitudes, and the
results were compared.

For the same test dataset and the 3-s time window after P-wave
arrival, Figures 5A–C show the τc method, Pd method, and
DCNN-M model estimation results, respectively. The magnitude
estimates of the τc method and Pd method are obtained based on
Supplementary Tables 4, 5, respectively. The relationships used

for magnitude estimation by the τc method and Pd method are
given by:

log (τc) = −1.07 (±0.02)+ 0.19(±0.01)M (18)

log
(

P10km
d

)
= −4.84 (±0.02)+ 0.78(±0.01)M (19)

Compared to the DCNN-M model results, the magnitude
estimation results from the τc method and Pd method exhibit
considerable scatter. The standard deviations of the magnitude
estimation error are 1.56, 0.42, and 0.31 for the τc method, Pd
method, and DCNN-M model, respectively. There is obvious
magnitude overestimation (MJMA ≤ 5) from the τc method and
Pd method, but this issue is improved considerably in the DCNN-
M model results. The magnitudes predicted by the DCNN-M
model are closer to the vs. than those from the τc method and
Pd method.

Furthermore, the variation in the magnitude estimation error
with the epicentral distance is presented in Figure 5 for the
τc method (Figure 5D), Pd method (Figure 5E), and DCNN-
M model (Figure 5F). It can be observed from the distribution
of circles that the τc method and Pd method exhibit larger
errors than the DCNN-M model. In addition, the magnitude
estimation errors from the τc method and Pd method have larger
discreteness (black bars) than those from the DCNN-M model,
and the means (red squares) of the magnitude estimation errors
from the τc method and Pd method clearly vary with increasing
epicentral distance. This phenomenon is especially true for the
τc method. The mean (red square) of the DCNN-M model
magnitude estimation errors is nearly zero, and the DCNN-
M model magnitude estimation errors are not affected by the
epicentral distance.

FIGURE 4 | Correlations between the predicted and catalog magnitudes. (A) Magnitude estimation for the training dataset used to train the DCNN-M model. (B) The
magnitude estimation of the test dataset used to test the DCNN-M model performance. When a data point is on the solid black 45◦ line, the predicted magnitude is
equal to the catalog magnitude. The two black dashed lines indicate the range of one standard deviation of error.
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FIGURE 5 | Catalog magnitudes versus predicted magnitudes produced using the test dataset by (A) the τc method, (B) the Pd method, and (C) the DCNN-M
model. On the solid black 45◦ line, the predicted magnitude is equal to the catalog magnitude. The two black dashed lines indicate the locations of one standard
deviation of error. The relationship between the epicentral distance and the error in the predicted magnitude for (D) the τc method, (E) the Pd method, and (F) the
DCNN-M model. The epicentral distance is divided into seven sections: (0 km, 30 km), (30 km, 60 km), (60 km, 100 km), (100 km, 150 km), (125 km, 175 km),
(150 km, 200 km), and (200 km, 200+ km). The position of the solid red square represents the mean of the errors within an epicentral distance. The length of the
black bar shows the standard deviation of the magnitude estimation errors within an epicentral distance, which reflects the discreteness of the errors.

For a given test dataset, Table 1 compares the distribution
of the magnitude estimation absolute errors for the τc method,
Pd method, and DCNN-M model. As shown in Table 1, the
absolute magnitude estimation errors of the DCNN-M model
are concentrated mainly in the range of 0.6 magnitude units of
approximately 2σ, and the results for the DCNN-M model are
nearly 60 and 10% greater than those of the τc method and
Pd method, respectively, in the range of 0.6 magnitude units.
Moreover, for the absolute magnitude estimation errors greater
than 1.2 magnitude units, the percentage of DCNN-M model
results is nearly zero and is much less than those from the τc
method and Pd method. These analyses also indicate that the

DCNN-M model is more accurate than the τc method and Pd
method and has considerable EEW application potential.

OFFLINE APPLICATION OF THE
DCNN-M MODEL

To test the robustness of the DCNN-M model in analyzing new
earthquake events, we tested the magnitude prediction of 31
additional events. These events were not included in the training
and test datasets. These events (see Supplementary Table 2)
occurred mainly between April 2018 and December 2019. Due
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TABLE 1 | The distribution of the magnitude estimation errors for the τc method,
Pd method, and DCNN-M model.

Absolute error range Percentage of records

τ c method
(%)

Pd method
(%)

DCNN-M
model (%)

0 ≤ | error| ≤ 0.6 34.13 86.71 94.78

0.6 < | error| ≤ 1.2 27.82 12.30 4.98

1.2 < | error| 38.05 0.99 0.24

to the small number of large earthquakes with MJMA ≥ 6 in this
time period, we also selected seven earthquakes with MJMA ≥ 6
that occurred before October 2007. The distribution of stations
and epicenters for the 31 events and the magnitude prediction for
these events are shown in Figures 6A,B, respectively. The solid
red circle shows the mean estimated magnitude of the DCNN-
M model for an earthquake event. The PMs of these events are
quite similar to the CMs, and nearly all of the PMs are within the
standard deviation (0.31) of the errors for the DCNN-M model.
In addition, the standard deviation of the errors for these events
is 0.21. Moreover, reliable results without obvious magnitude
overestimation and underestimation are obtained for events with
MJMA ≤ 7.2.

DISCUSSION AND CONCLUSION

For the past several decades, EEW magnitudes have been
determined by establishing regression functions between a single
P-wave parameter and the CMs. The τc method and Pd method
have been widely used in the study of EEW magnitude estimation

(Kanamori, 2005; Wu and Kanamori, 2005; Wu and Zhao, 2006;
Zollo et al., 2006; Colombelli et al., 2014). Since a single parameter
might provide little magnitude information, we introduce an
advanced magnitude prediction model named DCNN-M in this
paper. DCNN-M uses a deep convolutional neural network to
perform magnitude estimation. We used a training dataset to
train the DCNN-M model and 12 parameters extracted from
the initial 3 s of the P-wave record as inputs to the DCNN-M
model. These parameters are related to the frequency, amplitude,
and energy, which make the DCNN-M model interpretable.
Additionally, although many of these input parameters might not
be independent of each other, they are not completely the same,
and more parameters might provide more information about the
magnitude. In addition, a test dataset was used to test the DCNN-
M model performance. The results were compared to those from
the τc method and Pd method. As a further test, we used the
DCNN-M model to predict 31 additional events.

In this study, we used 1,836 inland earthquakes from the
K-NET catalog with magnitudes in the 3≤MJMA ≤ 7.2 range and
focal depths shallower than 10 km. To use more accurate P-wave
arrival information, first, we use the short-term averaging/long-
term averaging algorithm (Allen, 1978) to determine the P-wave
arrival automatically. Then compared with the P-wave arrival
determined manually, the records that have a larger difference
between the P-wave arrival determined automatically and the
P-wave arrival determined manually are discarded. For the
test dataset, DCNN-M magnitude estimation provided smaller
errors and no obvious overall magnitude underestimation or
overestimation relative to the τc method and Pd method. In
principle, the DCNN-M model can be extended to earthquakes
in other regions. We plan to test it with strong-motion data from
China because most earthquakes in China are inland earthquakes

FIGURE 6 | (A) The distribution of the epicenter locations and stations for 31 additional earthquakes. The solid red circles of different sizes represent magnitudes of
3 ≤ MJMA ≤ 7.2. The solid blue triangles represent stations that recorded the 31 events. (B) Magnitudes determined using the DCNN-M model versus the catalog
magnitudes for the 31 additional events. On the solid black 45◦ line, the predicted magnitude is equal to the catalog magnitude. The two black dashed lines indicate
the locations (0.31) of the one standard deviation of errors for the DCNN-M model. The solid red circles show the mean of the estimated magnitudes of the DCNN-M
model for the earthquake events. The length of the black bar shows the standard deviation of the magnitude estimation errors for each event.
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with focal depths shallower than 10 km (Song et al., 2018). In
this study, the problem of the possible underestimation of large
earthquakes did not appear in the dataset of earthquakes with
magnitudes in the 3 ≤ MJMA ≤ 7.2 range. The problem of
underestimation of large earthquakes (MJMA ≥ 7.5) remains to
be studied. Extending the training dataset magnitude range or
the time window after P-wave arrival may solve problems related
to larger (MJMA ≥ 7.5) earthquakes (Colombelli et al., 2012;
Chen et al., 2017).

The DCNN-M model trained using the training dataset could
provide ideal test dataset magnitude estimation results. The
standard deviations of the magnitude estimation errors of the
training and test datasets were both 0.31. This finding indicates
that the DCNN-M model provided good generalizability with
no overfitting. Our results show that the magnitudes predicted
by the DCNN-M model, which provided a standard deviation
of 0.31 based on the 3-s time window after P-wave arrival,
exhibited better agreement with the CMs than the magnitudes
predicted using the τc method and Pd method, which provided
standard deviations of 1.56 and 0.42, respectively. In addition, the
magnitude estimates from the τc method provided considerable
scatter and overestimation at MJMA ≤ 5. These phenomena
are consistent with the results of Carranza et al. (2015). In
contrast, the PMs from the DCNN-M model significantly
approximate the CMs. The τc parameter is used as an input to
the DCNN-M model, but there is no significant overestimation
at MJMA ≤ 5. The reason may be that the DCNN-M model
training reduces the influence of τc on the model magnitude,
and the correlation between the frequency content of the τc
parameter and magnitude is learned. The magnitude estimates
from the DCNN-M model were not affected by the epicentral
distance, unlike those of the τc method and Pd method.
For the same test dataset, the absolute magnitude estimation
errors of the DCNN-M model are mainly concentrated in
the range of 0.6 magnitude units at approximately 2σ, and
the percentage of the magnitude estimation error is 94.78%
greater than those of the τc method and Pd method. This
finding means that the DCNN-M model has better magnitude
determination performance than the τc method and Pd method,
and the probability that the magnitude estimation error is
in the range of 0.6 magnitude units is 94.78%. Furthermore,
we obtained reliable magnitude estimates without obvious
magnitude overestimation and underestimation for 31 additional
events using the DCNN-M model. These results indicate that the
DCNN-M model has considerable EEW magnitude estimation
application potential in Japan.

In Japan, magnitude is measured with the magnitude scale
MJMA; hence, the magnitude scale MJMA is used as the target
predicted by the DCNN-M model for the area of Japan in this
paper. For different magnitude scales and user requirement,
we could use the conversion relationship between different
magnitude scales or use a different magnitude scale (likely Mw) as
the target predicted by the DCNN-M model. Different magnitude
scales might influence our results. We mainly propose a new
magnitude model (DCNN-M) for magnitude determination in
this paper for EEW. In the next step we will deeply study the
influence of different magnitude scales on the DCNN-M model.

Importantly in this study, we corrected the parameters related
to amplitude, energy and derivative parameters for the distance
effect by normalizing them to a reference distance of 10 km
(Zollo et al., 2006). In our application, based on real-time
earthquake locations provided by an EEWS, the magnitude
estimation of the DCNN-M model is determined. The method
used to determine real-time earthquake locations is similar to
that of Zollo et al. (2010), which was developed by Satriano
et al. (2008). Moreover, it also provides the possibility to detect
earthquake locations based on the deep learning method (Perol
et al., 2018; Zhang et al., 2019, 2020) and has potential for future
application in EEW.

However, the DCNN-M model hyperparameters, the size of
the training dataset and the input parameters are also important
in magnitude estimation. The hyperparameters include the
number of layers, number of filters, dropout rate, optimizer,
learning rate, batch size, and stride. In this paper, we tried
several times to debug each hyperparameter of the DCNN-M
model manually to identify those hyperparameters that might not
be optimal. However, the comparison of the DCNN-M model
magnitude estimates with those produced via the τc method and
Pd method indicated that the DCNN-M model has considerable
potential for EEW applications and provides robust magnitude
estimation. In this study, we use 12 parameters extracted from
the initial 3 s of the P-wave record as inputs to the DCNN-M
model, and we may find that more parameters with magnitude
information could be used as the input of the DCNN-M model in
the future. To improve the performance of the DCNN-M model
with regard to the magnitude estimation accuracy, the DCNN-
M model hyperparameters and the input parameters need to be
optimized, and the amount of strong-motion data still needs to be
expanded (Perol et al., 2018). The DCNN-M model will be more
effective at avoiding false EEW alarms than the τc method and
Pd method.
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