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Platinum group elements (PGEs) occur mainly in basic–ultrabasic igneous rocks and
are concentrated by the differentiation and crystallization of magma. Thin polymetallic
layers including Ni, Mo, V, PGEs, and rare-earth elements are widely developed in
lower Cambrian black shales in southern China. The PGE contents in such layers may
not be economically significant but are still unusually enriched. PGE enrichment
mechanisms have not been widely studied, but here the PGE compositions of
polymetallic layers in the Shuidong (Nayong) and Niuchang (Weng’an) sections of
the SE Yangtze block in China were determined, and results compared with
published data for the region. Results indicate that PGEs are enriched in the
polymetallic layers, whereas the surrounding country rocks are barren. The ΣPGE
contents in the Shuidong Ni–Mo deposits are generally lower than in the Niuchang V
deposits. PGE distribution patterns in the polymetallic layers are similar to those in
basic–ultrabasic rocks, indicating that such rocks played a role in the PGE
enrichment. Oceanic hypoxia during the Sinian–Cambrian transition resulted in the
production of large amounts of organic matter and H2S in the ocean. When high-
salinity brine reached the ocean bottom, rapid changes in Eh–pH conditions caused
enrichment of metals at the sediment–seawater interface, and this enrichment was
later enhanced during diagenesis.
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INTRODUCTION

Lower Cambrian black shales contain important ore-bearing strata worldwide, including large and
super-large deposits of Ni–Mo–V–PGE, rare-earth elements (REEs), barite, P, and stone coal (Fan
et al., 1984, Fan et al., 1987; Mao et al., 2002; Xu et al., 2012; Paava et al., 2019). In China, such shales
are distributed mainly on the southeastern margin of the Yangtze Block, in Yunnan, Guizhou,
Sichuan, Shanxi, Hubei, Hunan, Guangdong, Guangxi, Zhejiang, and Jiangxi provinces (Figure 1A).
Large-scale deposits are distributed mainly in Guizhou and Hunan provinces (Figure 1B). Nickel,
REE, and platinum group elements (PGEs) have recently been listed as strategic key minerals in the
“National Mineral Resources Planning (2016–2020) of China” and the “Draft List of Crisis Minerals”
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issued by the United States Department of the Interior (Jiang
et al., 2019). Study of the formation mechanisms and
metallogenic characteristics of polymetallic mineralization in
lower Cambrian black shales is thus important to meet the
strategic needs of various countries.

Several formation mechanisms have been proposed for lower
Cambrian black-shale polymetallic deposits, including
biogenesis (Jewell, 2000; Lu et al., 2004), a Ba-rich cold-
spring origin (Paytan et al., 2002; Griffith and Paytan, 2012;
Zhou et al., 2016), and hydrothermal origins (Wang and Li,
1991; Wu et al., 1999; Clark et al., 2004; Yang et al., 2007; Wu
et al., 2009; Gao et al., 2018). The sources of Mo and Ni are
possibly seawater (Mao et al., 2002; Lehmann et al., 2007; Xu
et al., 2013) submarine hot water (Coveney, 2003; Jiang et al.,
2006, Jiang et al., 2007; Han et al., 2017), and mixed sources of
seawater and terrestrial hot water (Pašava et al., 2008).
Vanadium sources include terrestrial environments, marine
biogenesis, and deep-sea hot water (Fan et al., 1984; Fan

et al., 1987). PGE deposits generally occur in basic–ultrabasic
igneous rocks and are formed by the differentiation and
crystallization of magma (Barnes and Lightfoot, 2005; Qi
et al., 2008; Duan et al., 2016). However, this proposal is
difficult to reconcile with the above mechanisms of PGE
enrichment in black shale, with the PGEs likely being derived
from multiple sources (Jiang et al., 2003). Ni–Mo sulfide ores in
black shale of the Niutitang Formation, South China, have a
submarine hydrothermal origin, and the extreme metal
enrichment is likely to have occurred in an anoxic
environment with abundant organic matter in an ocean basin
(Jiang et al., 2007). PGE enrichment in black shale is similar to
that in marine oil shale, with contributions by terrigenous and
seawater sources (Han et al., 2015). Thus, the enrichment
mechanism of PGE in black shale remains unclear and it can
promote the understanding of the enrichment mechanism of
polymetallic layers, and then guide the regional prospecting.
This study aimed to improve our understanding of the genetic

FIGURE 1 | (A) Simplified paleogeographic map of the Yangtze Platform during the Cambrian (after Mao et al., 2002). (B) Simplified distribution of black shale
polymetallic deposits in Gui Zhou (after Dai et al., 2014).
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types of PGE deposit and to constrain the genesis of black-shale
polymetallic deposits.

GEOLOGICAL SETTING

Lower Cambrian black shales are commonly enriched in
unusual combinations of elements including Mo, Ni, Se, Re,
Os, REE, and PGE (Fan et al., 1984; Steiner et al., 2001; Mao
et al., 2002; Jiang et al., 2007; Xu et al., 2013; Shi et al., 2020).
Such enrichment occurs sporadically along a 1600 km NE-
striking facies belt in South China (Figure 1A). However,
economically mineable ores are exposed only in Guizhou and
Hunan provinces, including the Zunyi, Nayong, and Zhenyuan
districts of Guizhou Province, and the Dayong and Zhangjiajie
districts of Hunan Province. In Guizhou during the early
Cambrian, deep-sea sedimentary rocks were enriched mainly
in Mo, V, and barite, while the shallow-sea carbonate platform
was enriched mainly in Ni, Mo, V, and P (Figure 1B), forming
one of the few economically viable Ni–Mo and V black-shale
polymetallic deposits (Fan et al., 1984; Fan et al., 1987).
Globally, it is rare for such Ni–Mo and V deposits to be
economic (Coveney, 2003; Orberger et al., 2003).

The host sequence is a diachronous, transgressive black shale
sequence of the Niutitang Formation. A conformable Ni–Mo
polymetallic sulfide horizon occurs in the lowermost few
centimeters of this succession. The linear geographic trend of
Ni–Mo polymetallic sulfide ores in South China suggests the
possibility of structural control by a major deep fault zone in the
Neoproterozoic back-arc-basin/platform transition zone
(Steiner et al., 2001). Alternatively, as the trend is parallel to
the reconstructed Cambrian shoreline, it is also possible that
water depth, distance from shore, sunlight availability, or other
features of the paleo-environment controlled ore deposition (Xu
et al., 2012; Pagès et al., 2018; Sarwar et al., 2019). The Niutitang
Formation lies unconformably on dolomite of the
Neoproterozoic Dengying Formation, which in turn is
underlain by black shale, chert, phosphorite, and dolomite of
the Doushantuo Formation (Fan et al., 1992). The Ni–Mo and V
deposits have distinct spatial distributions, with the former
being distributed mainly in the Bozhou and Huichuan
districts of Zunyi City, and west of Meitan-Weng’an,
Nayong, and Zhijin in Bijie City (Figure 1B). The combined
Mo and Ni reserves of the known deposits in Guizhou are
897 kilotonne (kt) and 621 kt, respectively. These deposits
include three large, three medium, and nine small ore
deposits, and four ore-rich regions. Vanadium deposits are
distributed mainly in the Tongren–Songtao–Wanshan,
Shibing–Zhenyuan–Tianzhu, and Weng’an–Yuqing–Fuquan
areas (Figure 1B). One large-scale, 15 medium-sized, and
43 small-scale V deposits have been found in Guizhou.
Ni–Mo deposits, distributed mainly in the Yangtze area,
occur in black carbonaceous mudstone at the base of the
Niutitang Formation. Vanadium ore is distributed mainly in
the transition zone of slope to basin and occurs in black
carbonaceous mudstone, the lower part of the Niutitang
Formation, and in siliceous rock of the Laobao Formation.

SECTION AND SAMPLES

The early Cambrian black-shale Ni–Mo and V polymetallic
deposits have clearly defined distributions in Guizhou, with
the Nayong–Zunyi area containing predominantly Ni–Mo
deposits and the Weng’an–Tongren area V deposits. The XJ4
exploration well profile in Shuidong, and the Moshi profile in
Niuchang, were chosen for study. The polymetallic layer and
black shale were analyzed for PGE composition in the two study
areas, with results being compared with published data for
Ni–Mo–V–PGE polymetallic layers in black shales in South
China. Sampling locations are shown in Figure 2.

Shuidong Section XJ4, Nayong
Lower Cambrian black shale in the Nayong area occurs in the
western area of Guizhou Province and the southwestern area of
the Yangtze Platform. The Shuidong Ni–Mo–polymetallic
deposit lies ∼20 km southeast of Nayong County. Strata
exposed in the mining area include the upper Sinian
Dengying Formation; lower Cambrian Niutitang Formation;
Mingxinsi Formation; upper Carboniferous Dapu,
Huanglong, and Maping formations; Permian Liangshan,
Qixia, Maokou Formation; and clasolite of Quaternary. The
ore-bearing rock is within the first member of the lower
Cambrian Niutitang Formation (0.5–18.0 m thick), and is in
unconformable contact with the underlying Sinian Dengying
Formation. The ore-bearing rock includes siliceous rock,
banded dolomitic phosphorite, siliceous phosphorous rock,
carbonaceous argillaceous siltstone, siliceous sandstone,
carbonaceous mudstone, pyrite-bearing carbonaceous
siltstone, and a Ni–Mo deposit (Figure 2A). The Ni–Mo
deposit, which occurs on top of the ore-bearing rock group,
is a dark-gray to gray-black shale layers. It has a scaly structure
post-weathering. The deposit base is comprised siliceous
siltstone and carbonaceous mudstone (0.05–0.10 m thick).
The ore containing 0.50–7.40 wt% Mo (average 4.32 wt%)
and 0.33–5.78 wt% Ni (average 2.37 wt%). The Mo and Ni
contents tend to be negatively correlated.

Niuchang Section, Weng’an
The main Sinian–Cambrian strata in the Weng’an area include
phosphorite of the Doushantuo Formation, dolomite of the
Dengying Formation, black shale of the Niutitang Formation,
and mudstone and sandstone of the Mingxinsi Formation. The
Niuchang section shows that the stratum could divided seven
sub-layers accordding to their lithology and mineralization from
top to bottom, namely during the Sinian-Cambrian transition
period (Figure 2B).

(1) Gray massive dolomite (∼1.2 m thick) of the Dengying
Formation, locally containing dissolution pores.

(2) Fe–Mn oxide claystone (0.2 m thick), has a characteristics of
typical paleo-weathering crust. It is discontinuous lens shape
generally and distributed on concave and convex surfaces of
the underlying dolomite of Sinian.

(3) A Gy P-bearing dolomite layer, with a relatively high P
content (0.2 m thick). It is the same age with the
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phosphorite in Zhijin of Guizhou and Kunyang of western
Yunnan.

(4) Carbonaceous silty hydromica claystone intercalated with
lenticular phosphorite, total thickness 0.25 m.

(5) Carbonaceous shale deposits containing Ni, Mo, and V. The
metal sulfides are worm-like, bamboo-leaf-like and colloidal-
like, distributed in a matrix of carbonaceous mica and silty
sand. The ore bed is layered, lamella-like and lenticular. The
boundary between the mineralized layer and the
carbonaceous shale is clearly defined. The ore bed is
generally 0.30 m thick.

(6) A carbonaceous shale layer (0.1 m) containing V. The
lamination is well developed and the bedding surface is
smooth with a relatively high degree of cementation.

(7) Carbonaceous hydromica claystone and silty claystone, total
thickness >2 m.

ANALYTICAL METHODS

PGE analyses were undertaken at the National Research Center
for Geoanalysis (NRCG), Beijing, China. A digestion technique
involving 100 ml Teflon beakers and stainless-steel pressure
bomb was used (Qi et al., 2011). Powdered sample (2–3 g) was

dissolved in HF + HNO3 in a 120 ml Teflon beaker to remove
silicates and sulfides. The dried residue, with an appropriate
amount of isotopic spike solution containing 101Ru, 193Ir,
105Pd, and 194Pt was digested with 5 ml HF + 15 ml HNO3 in
a sealed beaker in the pressure bomb at 190°C for 48 h, and the
resulting solution evaporated to dryness. HCl (5 ml) was added to
remove residual HF and HNO3 during evaporation to dryness.
The residue was dissolved in 40 ml 2 mol L−1 HCl and
centrifuged. PGEs were preconcentrated from the supernate by
coprecipitation with Te. The main interfering elements (Cu, Ni,
Zr, and Hf) were removed by ion-exchange chromatography with
Dowex 50WX8 cation exchange resin and a P507 Levextrel resin.
The eluate was analyzed by inductively coupled plasma–mass
spectrometry (ELAN DRC-e), with detection limits ranging from
0.004 ppb for Ir to 0.014 ppb for Pt.

RESULTS

PGE analysis results are listed in Table 1. The total PGE (ΣPGE)
content of the polymetallic layer in the Weng’an area is in the
range 538.87–989.59 ppb (average 773.18 ppb) with Os �
50.41–79.99 ppb; Ir � 1.82–3.09 ppb; Ru � 5.39–13.58 ppb; Rh
� 1.56–6.19 ppb; Pt � 216.87–381 ppb; and Pd � 263–380.82 ppb.
The ΣPGE of the polymetallic layer in the Nayong area is in the

FIGURE 2 | Lithological column and sampling locations in the studied sections at Shuidong and Niuchang, Guizhou Province.
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range 373.00–793.44 ppb (average 604.96 ppb) with Os �
21.07–51.87 ppb; Ir � 1.52–4.03 ppb; Ru � 1.93–6.66 ppb; Rh �
0.03–4.32 ppb; Pt � 142.67–370.28 ppb; and Pd �
205.76–356.95 ppb. The Rh content of sample Nayong xj4-11
is very low, possibly because Rh has no corresponding isotopic
calibration and the analytical result is inaccurate.

DISCUSSION

Regional Distribution of PGE
Analysis of the Shuidong (Nayong) section indicates that PGEs
are enriched only in the polymetallic layer, with low contents in
country rocks and the overlying and underlying black shale
(Figure 3). The Weng’an area contains predominantly V
mineralization, with the PGE content of the polymetallic layer
generally being higher than in the Nayong area. This difference
implies that the PGE content varies between sedimentary
environments. Previous studies have shown that the PGE
contents of polymetallic layers in Zhongnan Village, Zunyi,
and in Guizhou and Dayong, Hunan, are in the range
551–1215 ppb (Li et al., 2003), and that the Huangjiawan
polymetallic layer in the Songlin, Zunyi (Guizhou) contains
773–1187 ppb (Mao et al., 2001). The PGE content of the
V-bearing black-shale layer in western Hunan is 123 ppb (Wu
et al., 2001), much lower than in regional polymetallic layers.

Carbonaceous black shale in the Nayong area has ΣPGE
contents of 11.5–13.7 ppb with Os � 0.47–1.35 ppb; Ir �
0.08–0.13 ppb; Ru � 0.49–1.92 ppb; Rh � 0.05–0.19 ppb; Pt �
5.1–6.4 ppb; and Pd � 2.8–6.4 ppb. Its ΣPGE content is similar to
those of deep-water black shale in western Hunan (Wu et al.,
2001) and Cambrian black shale in the base of the Tarim Basin
(Yu et al., 2003) (Figure 4). This indicates that under anoxic
conditions, the adsorption capacity of organic-rich shale is
similar for all PGEs and that the formation environments of
these rocks were similar.

Nayong and Weng’an black shale samples exhibit PPGE (Pt +
Pd) enrichment and relative IPGE (Os + Ir + Ru + Rh) depletion.
The PPGE/IPGE ratio is generally >1 (3.8–14.4), with ratios for
most samples being around 9 (barring sample XJ4-11) in the
polymetallic layer, much higher than that of original mantle
(0.88) and upper crust (1.3) but lower than the crustal ratio
(15); and also higher than the value for modern South China Sea
sediments (3.45; Zhu et al., 2010) and oceanic Co-rich crusts
(1.62–7.32; Yao et al., 2002; Sun et al., 2006). Sample Pt/Pd ratios
are generally in the range 0.7–2.2 and <1 in the polymetallic layer
(0.6–1.0), much lower than in Co-rich oceanic crust (53–439; Yao
et al., 2002; Sun et al., 2006), lower than normal seawater (4.5;
Hodge et al., 1985), and similar to sulfides in basic–ultrabasic rock
(Pašava et al., 2003; Pašava et al., 2004). The Os/Ir ratio in the
polymetallic layer is in the range 12.9–26.6, much higher than in
primitive mantle (∼1.1) and chondrite (∼1.0; McDonough and
Sun, 1995), but similar to organic-rich shale such as oil shale in
Tibet (12.2–15.8; Fu et al., 2010). There is strong positive
correlation between Pt and Pd contents (Figure 5A). The Pt
content is also positively correlated with Os, Ir, and Ru contents
(Figures 5B–D). There is a lack of correlation between Ru–RhT
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and Os–Ir, among other elements (Figures 5E,F). The Ni/Cu, Ce/
La, Ni/Pd, and Cu/Ir ratios are respectively 5.4–21.7, 0.3–2.1,
50–211, and 289–1384, and the Cu/Ir ratio of the polymetallic
layer is much higher than that of black shale. The Ni/Pd ratio is
generally lower than that of black shale (Table 1).

PGE Distribution Model
PGEs are not strongly affected by low-temperature alteration and
diagenesis; consequently, their distribution pattern in rocks is

indicative of the environment in which the host rock was formed
and of their source (Mao et al., 2001; Lehmann et al., 2003; Li
et al., 2003; Pašava et al., 2003; Pašava et al., 2004). A PGE
distribution model based on Ni–Mo–V–PGE contents of the
polymetallic layer was developed for the black shales of
Nayong and Weng’an. The elemental distribution curve is
similar to that of the polymetallic layer in mining areas of
Zunyi and west Hunan (Figure 6; Li and Gao, 2000; Wu
et al., 2001; Mao et al., 2002; Yu et al., 2003; Lehmann et al.,
2007; Xu et al., 2013; Han et al., 2015; Xing et al., 2015). The four
regions of Nayong, Zunyi, Weng’an, and Zhangjiajie lie on the
same metallogenic belt (Figures 1A, 6B) and have the same
material source and metallogenic mechanism.

The source of mineralization elements in the black-shale
polymetallic layer at the base of the Niutitang Formation is
considered in terms of our analytical data. Although the PGE
content of seafloor Fe–Mn crusts is similar to that of the
Cambrian black-shale polymetallic layer (Sun et al., 2006) and
the PGE distribution model is consistent with normal oceanic
sediments. PGE distributions are similar in basic–ultrabasic
rocks, continental basalt, organic-rich black shale, and oil
shale (Figure 6B), implying that either 1) PGEs in black shale
are derived from basic–ultrabasic rocks in underlying strata (Li
and Gao, 2000; Jiang et al., 2003; Jiang et al., 2007) or 2) the
underlying basic–ultrabasic rocks are weathered and their
contents transported to the ocean after being exposed on the
surface, with extreme enrichment occurring due to changes in the
Eh/pH balance of seawater (Lehmann et al., 2003; Lehmann et al.,
2007).

Oil shale in Tibet and Cambrian black shale in the Tarim
Basin have PGE distribution curves similar to that of the
polymetallic layer in the Hunan–Guizhou area (Yu et al.,

FIGURE 3 | Plot of ΣPGE, Ru, Rh, Pd, Pt La, Ce variations in the Shuidong profile.

FIGURE 4 | Comparison of ΣPGE values of the lower Cambrian black-
shale polymetallic layer in Hunan–Guizhou (after Li and Gao, 2000; Mao et al.,
2002; Luo et al., 2003; Lehmann et al., 2007; Han et al., 2015).
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2003; Fu et al., 2010), further implying that the PGE distribution
in organic-rich shale is controlled by the occurrence of PGE
rocks. The PGE contents of different phases in black shales of
South China indicate that PGEs are associated mainly with
organic matter and sulfide phases (Wang et al., 2004). Other
studies have found that Au (1900 μg g−1), Pt (600 μg g−1), and
Pd (1900 μg g−1) are highly enriched in the organic-rich clay
rock of black shale. In minerals containing arsenide, uranium,
and thorium, Pt and U contents are positively correlated, while
Pd is enriched in As–Au–Ag-containing aggregates (Kucha,
1982; Kucha and Przybylowicz, 1999). Adsorption by organic
matter and sulfides in organic-rich shales thus affects the
distribution of PGEs in black shale, meaning that not
appropriate for clarifying the source of PGEs, simple
according to the PGE distribution curves.

PGE Ratios in Polymetallic Layers
PGE ratios and their relationship with ore-forming elements are
considered an effective geochemical method for tracing mineral
sources (Li and Gao, 2000; Mao et al., 2001; Lehmann et al., 2003;
Lehmann et al., 2007; Pašava et al., 2003; Pašava et al., 2004). The
polymetallic layers in lower Cambrian black shales in South
China contain elevated Ir contents, exceeding 10 ppb (Fan
et al., 1984), similar to the Ir content of clays at the
Cretaceous–Tertiary (K–T) boundary where the Os/Ir ratio of
clay minerals is generally <1 (Evans et al., 1993) and different to
chondrite values (McDonough and Sun, 1995). However, for the
Cambrian polymetallic layer in South China the Os/Ir ratio is in
the range 12–26 (Li et al., 2000; Mao et al., 2001; Jiang et al., 2007),
much higher than that of the clay layer at the K–T boundary.
Furthermore, the PGE distribution curve of the K–T clay layer is

FIGURE 5 | (A) Pd–Pt; (B) Os–Pt; (C) Ir–Pt; (D) Ru–Pt; (E) Rh–Ru; and (F) Ir–Os diagrams for the Cambrian ore-bearing layer and black shale.
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completely different to that of the polymetallic layer. The
chondrite standard curve is near level, similar to that of the
element distribution (Figure 6B).

Pt/Pd and Au/Pd ratios in the polymetallic layer of Cambrian
black shale in South China are near unity (Lehmann et al., 2003;
Lehmann et al., 2007), similar to the ratios in seawater (Nozaki,
1997). Cambrian seawater had high metal contents. The Mo
isotopic studies of the PGE polymetallic layer indicating that
Sinian–Cambrian-boundary seawater contained large amount of
H2S (Lehmann et al., 2003; Lehmann et al., 2007). This is the
mineralization model for sedimentation from normal seawater.
However, Pt/Pd ratios in many PGE deposits are near unity, as in
the Jinbaoshan basic–ultrabasic deposit, the Yangliuping deposit,
and Archean komatiite sulfides (Brugmann et al., 1989; Tao et al.,
2007; Liang et al., 2019).

The PGE enrichment factor in the black-shale polymetallic
layer can reach 107–109, differing from the adjacent non-metallic
layers by one to two orders of magnitude. If seawater were rich in
metal elements together with excessive H2S, the PGE content of
the black shale would be high. However, the PGE content above
and below the polymetallic layer is not significantly different to
that of typical sediments (Zhu et al., 2010). An example of
anomalously high levels of PGE in sediments is cobalt-rich
Fe–Mn oceanic crusts, reaching hundreds of ppb (Yao et al.,
2002; Sun et al., 2006). The enrichment of many ore-forming
elements in oceanic Fe–Mn crusts is controlled mainly by the
deposition rate of the crust (Puteanus and Halbach, 1988).
Therefore, a low deposition rate of black shale would favor the
formation of polymetallic deposits (Lehmann et al., 2003;
Lehmann et al., 2007). However, some studies have indicated
that the deposition rate cannot be the dominant factor in Fe–Mn
crust enrichment in mineral elements (Basolo and Pearson,
1973). The Eh–pH values in the formation environment of
Fe–Mn crusts may promote oxidation/reduction reactions
between free PGE ions in seawater and Mn2+ on the contact
surface of the Fe–Mn crust. Free PGE ions would also form
hydroxides and be adsorbed by the Fe–Mn crust under
appropriate Eh–pH conditions. The PGE enrichment of
Fe–Mn crusts is thus not controlled by deposition rate; rather,
it is due to the geochemical conditions of seawater and PGE
properties (Sun et al., 2006). Black shale is formed at relatively low
Eh–pH values (Basolo and Pearson, 1973; Gao et al., 2018);
i.e., under conditions suitable for PGE adsorption by Fe–Mn
crusts. However, excessive PGE enrichment is rare in black shale.
Globally, PGE-rich black-shale deposits occur mainly in the Dry
Valley in Russia (Distler et al., 2004), the Yukon in Canada
(Pašava et al., 2003), and Palentin in the Czech Republic (Pašava
et al., 2003). These deposits were controlled by organic matter and
sulfides, with their metallogenic setting being rift-type basins and
with their ore-forming matters are mainly derived from
hydrothermal fluid. Therefore, the model of PGE enrichment
and mineralization in polymetallic layers formed by normal
seawater deposition should be further discussed.

A comparison of the PGE distribution in black shales with that
in modern submarine hydrothermal sulfides indicates that the
polymetallic layers in black shales of South China were formed

FIGURE 6 | PGE/chondrite distribution pattern of the Cambrian ore-
bearing layer and black shale. Chondrite data are from McDonough and Sun
(1995); Jinbaoshan basic-rock sulfide-enclave data are from Wang et al.
(2010); ocean-floor basalt data are from Sun et al. (2010); K–T boundary
layer clay data are from Evans et al. (1993); oil shale data are from Fu et al.
(2010); other data are from Wu et al. (2001), Li and Gao (2000), Mao et al.
(2001), Wu et al. (2001), Xu et al. (2013), Xing et al. (2015), and Han et al.
(2015).
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mainly by hot brine (Li et al., 2000; Jiang et al., 2003; Pašava et al.,
2003; Pašava et al., 2004; Jiang et al., 2007). The distribution curve
of PGEs in the polymetallic layers is similar to that in basic and
ultrabasic rocks. Zinc-rich black shale in the Czech Republic and
Ni-rich black shale in Canada have Pt/Pd ratios similar to those in
the South China polymetallic layer (Figure 7; Pašava et al., 2003),
while the ratios in Co-rich crusts formed by seawater
sedimentation are completely different, tut similar with the Zn-
rich black shale in the Czech Republic which was influenced by
hydrothermal processes (Kucha, 1982). So the minerology of black
shale in South China may also have been controlled by
hydrothermal processes. Cu/Ir, Ni/Pd, Ni/Cu, and Pd/Ir ratios

can be used to trace the material sources of ore-forming fluids
(Pašava et al., 2003). The polymetallic layer in the Nayong and
Weng’an areas plots in the ophiolite and PGE-vein fields in the
(Cu/Ir)–(Ni/Pd) and (Ni/Cu)–(Pd/Ir) diagrams (Figure 8),
implying that the main source of PGE elements in the
Nayong–Weng’an polymetallic layers was related to ultrabasic
rocks. The tectonic background of the region suggests that the
Nayong–Zhijin–Zunyi–Weng’an–Dayongmetallogenic belt was in
an extensional setting in the Hunan–Guizhou area during the
Cambrian (Wu et al., 1999; Li et al., 2003), with the many
extensional fractures that developed providing sites for
hydrothermal activity. Sulfides in the largest modern-day
submarine hydrothermal area (the Trans-Atlantic Geotraverse,
Mid-Atlantic Ridge) have a Pd content of up to 1 μg g−1, while
those in submarine black chimneys can reach 136 ppb (Wang et al.,
2004). Submarine hydrothermal solutions could thus provide large
amounts of PGEs. A quartz vein was found cutting the
phosphorous rock layer under the black shale polymetallic layer
in the Huangjiawan deposit, Guizhou, and the Daping deposit,
Hunan. Fluid inclusions in this ore-bearing vein have a fluid
salinity of up to 30 wt% and a trapping temperature of
70–140°C (Wang et al., 2004), indicating that the formation of
the black shale was directly related to hydrothermal fluids. Many
“siliceous chimneys” have been discovered in the Ganziping
section at Dayong but not at Nayong. The siliceous layer is only
50–70 cmbelow the black-shale polymetallic layer. Banded barite is
common in the siliceous rock, confirming the existence of ancient
hydrothermal fluids. Fluid inclusions in siliceous rocks have also
been found to contain high-salinity brine with a salinity of >35%
and sealing temperatures of 110–135°C (Chen et al., 2009).

During the Sinian–Cambrian period, seawater suddenly
changed from being oxygen-rich to oxygen-deficient, with
large amounts of organic matter accumulating in the oceans
and sulfate rock being reduced to sulfide, providing conditions

FIGURE 7 | (Pt/Pd)–(Ir/Pd) diagram for different sediments (data sources
as for Figure 6).

FIGURE 8 | (Cu/Ir)–(Ni/Pd) and (Ni/Cu)–(Pd/Ir) diagrams for black shale and the polymetallic layer at the base of the Cambrian profile in Nayong–Weng’an (after
Pašava et al., 2003).
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conducive to PGE enrichment (Wu et al., 1999; Mao et al., 2002;
Jiang et al., 2007; Han et al., 2015). Volcanic tuff occurs near the
bottom of the Cambrian profile in the Kunyang and Songlin
areas, under the Ni–Mo layer and occuring as a lens shape on the
southeastern edge of the Yangtze Platform (Luo et al., 2003). The
tuff contains large amounts of sulfide and organic matter, with
PGE contents of up to hundreds of ppb, including Pt and Pd at up
to 434 and 142 ppb, respectively. The distribution of PGEs
relative to chondrites is similar to that of PGEs in the black-
shale polymetallic layer (Pašava et al., 2010). At the bottom of the
black shale of Niutitang Formation, a thin layer of tuff is usually
developed, indicating the presence of volcanism. In other words,
the PGE and polymetallic sources may be contributed by volcanic
rocks. There is no direct evidence for such a direct PGE source but
it does appear that the PGEs were derived mainly from basic or
ultrabasic rocks rather than directly from seawater.

Enrichment of PGES in Black Shale
The mineralization of PGEs in black shale in South China is
controlled mainly by their source area and seawater Eh–pH
conditions. PGEs are generally considered inert, with their
separation and enrichment being associated mainly with high-
temperature and high-pressure magmatic activity. Previous
simulations of the effects of low-temperature hydrothermal
activity on PGEs indicate Pd and Pt exist as PdCl2– 4 and
PtCl3– in solution, respectively, at concentrations of up to
>1 ppb (Mountain and wood, 1988; Gammons et al., 1992),
and demonstrate the mobile nature of Pt and Pd in high-
salinity hydrothermal fluid. Furthermore, a simulation of the
solubility of PdS and PtS in H2S + NaHS solution indicates that
the amounts dissolved exceed the number of chloro complexes
(Gammons and Bloom, 1993). This may explain why the Pd

sulfide content at the mouth of seafloor black chimneys can be as
high as 1 ppb (Crocket, 1990), illustrating the ease with which Pt
and Pd enter solution as complexes during low-temperature
hydrothermal processes (Mountain, 1989; Gammons et al.,
1992; Gammons and Bloom, 1993; Chen et al., 2009). We
conclude that hydrothermal fluids participated during the
early stages of the formation of the black-shale polymetallic
layer in South China, leading to PGE enrichment.

PGEs are transported mainly in the form of chlorides
(Figure 9), and when hydrothermal fluid crosses the
seawater–sediment interface, Pt2+ and Pd4+ are released into
the seawater. In seawater, Pt2+ is most stable as PtCl2−4 . Only
when seawater reaches a high pH and low oxygen fugacity will it
exist in the form of +4 ions, as follows (Halbach et al., 1989):

log[(PtCl2−4 )/(PtCl2−6 )] � −15.96 − 1
2
log f o2H2O + 2pH (1)

Where log f o2H2O represents the oxygen fugacity of seawater and
the pH value is that of seawater.

Pt and Pd do not enter sediments as chlorides for the waters of
South China, but are adsorbed on sediment as sulfide, and
arsenide forms with the MeCly x (Me � Pd–Pt–Os) + S2–/As2–

� MeS/(As + Cl); MeCly x(Me � Pd, Pt, Os)—ne � Me +
Cl−chemical reaction on the surface of sediment. Kucha (1982)
found that PGEs in Zn-rich black shale are distributed mainly in
arsenide and sulfide. Pt–Cl and Pd–Cl bond energies in K2Me(Pt,
Pd)Cl4 are 372.6 and 347.5 kJ mol−1, respectively (Basolo and
Pearson, 1967). In seawater, Pd ions are reduced before entering
sediments, with Pd/Pt ratios in sediments thus being >1 in
reducing environments.

The PGE distribution in black shale shows a typical Pt–Pd
enrichment pattern, similar to that in many basalts (Rehkämper

FIGURE 9 | PGE metallogenic model for the Cambrian polymetallic layer in South China (after Wang et al., 2012; Li et al., 2020).
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et al., 1999), with Pt/Ru ≈ 10 and Pt/Pd ≈ 1. Osmium is highly
enriched (up to 100 ppb) due to its solubility in seawater where it
exists mainly as H3OsO−

6 (Sharma et al., 1997), H2OsO5, or
OsCl2−6 (Koide et al., 1991). Osmium is therefore more soluble
in seawater than are Ir, Ru, and other elements, with more being
adsorbed by organic matter; this explains why the Os content of
black shale is higher than the Ir and Ru contents (Ravizza et al.,
2001).

In summary, PGE-rich ore in the Ni–Mo polymetallic layer
of black shale in South China was formed during the
development of rifts, with fractures forming in basement
rocks and frequent water–rock exchange reactions.
Coincidentally, the geothermal gradient in the South China
metallogenic belt increased rapidly, enhancing the thermal
convection velocity and causing the overflow of high-salinity
brine rich in metals (Li et al., 2020). Oceanic hypoxia events
occurred during the Sinian–Cambrian, producing large
amounts of organic matter and H2S in the oceans (Lehmann
et al., 2003; Lehmann et al., 2007; Wang et al., 2012). When
high-salinity brine reached the ocean floor as part of oceanic
circulation, the rapid change in Eh–pH conditions caused many
metal elements to become enriched at the sedimentary interface,
ultimately enriching the ore. Metal ions were also transported in
ocean circulation, resulting in distal precipitation and
mineralization (Figure 9).

CONCLUSION

PGEs are enriched only in the polymetallic layer of the black shale
examined here. The PGE contents in the vanadium-mining area
of Niuchang are higher than in the Ni–Mo mining area of
Shuidong. The accumulation of PGEs in the lower Cambrian
black-shale polymetallic layer was controlled mainly by
hydrothermal processes, which provided large amounts of ore-
forming elements to the South China anoxic ocean basin. With
ocean circulation and continuing sea-level rise, the productivity

of bio-organisms increased, enriching the ocean floor in organic
matter. The degradation of this organic matter produced H2S,
changing seawater Eh–pH conditions and promoting PGE
enrichment. Black-shale PGE-rich ore in South China is thus a
syn-sedimentary ore formed under the action of hydrothermal
fluids.
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