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River flooding affects more people worldwide than other natural hazards. Thus, analysis of
the changes in flood regime caused by global warming and increasing anthropogenic
activities will help us make adaptive plans for future flood management. The nonstationary
flood behavior in the upper Yangtze River was examined comprehensively in terms of
trend, change point, and periodicity with co-usage of different methods. Results show that
there are decreasing tendencies in the corresponding series of annual maximum flood
peak flow and flood volume in four out of six control stations, except Pingshan andWulong
stations in the Jinsha River and the Wu River, respectively, and the flood peak occurrence
time appears earlier mostly. The uniformity of flood process increases in four main
tributaries, while it decreases in mainstream of the Yangtze River (Yichang and
Pingshan stations). The rates of both rising limb and recession limb of all the typical
flood process flowing through the six stations were analyzed. 77.8% of the rates of rising
limb decrease, while 61.1% of the rates of recession limb increase, which is almost
consistent with the variation reflected by the uniformity. The change points of most
evaluation indicators happened in 1970s–1990s. The first main periodicity of evaluation
indicators in Yichang is about 45 years, while that of other stations is about 20 years.
Invalidity of stationarity in the flood series can be attributed to the intensified construction
on major water conservancy projects, changes of underlying surface, and influences of
climatic variables. The contributions of both climatic control and the Three Gorges Dam
(TGD) to the variation of the annual flood peak in Yichang station were further quantitatively
evaluated, which has verified that the construction of the TGD has played a positive role in
peak-flood clipping.
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INTRODUCTION

With the influence of changing climate, land cover, channel morphology, and other human activities,
the spatial–temporal distribution of water resources and the characteristics of runoff generation and
flow concentration in the basin have changed, resulting in the shifts in the mechanisms that generate
inundations (Fang et al., 2012; Guo et al., 2018; Akbari and Reddy, 2020). River flood risks are
expected to rise as climate change intensifies the global hydrological cycle and more people live in
floodplains (Field et al., 2012), which may be revealed by changes in the flood regime, including

Edited by:
Xiaolan L. Wang,

Environment and Climate Change,
Canada

Reviewed by:
Panfeng Zhang,

Jilin Normal University, China
Kangmin Wen,

Fujian Meteorological Bureau, China
Huaming Yao,

Georgia Institute of Technology,
United States

*Correspondence:
Guohua Fang

hhufgh@163.com

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Earth Science

Received: 08 January 2021
Accepted: 10 May 2021
Published: 02 June 2021

Citation:
Zhang Y, Fang G, Tang Z, Wen X,

Zhang H, Ding Z, Li X, Bian X and Hu Z
(2021) Changes in Flood Regime of the

Upper Yangtze River.
Front. Earth Sci. 9:650882.

doi: 10.3389/feart.2021.650882

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6508821

ORIGINAL RESEARCH
published: 02 June 2021

doi: 10.3389/feart.2021.650882

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.650882&domain=pdf&date_stamp=2021-06-02
https://www.frontiersin.org/articles/10.3389/feart.2021.650882/full
https://www.frontiersin.org/articles/10.3389/feart.2021.650882/full
http://creativecommons.org/licenses/by/4.0/
mailto:hhufgh@163.com
https://doi.org/10.3389/feart.2021.650882
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.650882


annual maximum flood peak flow, volume, flood peak occurrence
time, rates of rising and recession limbs, and uniformity (Li et al.,
2012; Bloschl et al., 2017; Slater and Wilby, 2017). Therefore,
understanding the characteristics of changes in flood regime and
further analyzing the reasons of these changes are important for
flood management.

The Yangtze River Basin is home to 33% of China’s
population and plays an important role in China’s economic
development. The occurrence of flood in this basin is closely
related to precipitation, while the spatial and temporal
variability of precipitation in the basin is associated with
monsoon activities that transport a huge amount of
atmospheric moisture from the East and the South China Sea
to the basin (Gao et al., 2012). In addition, the temporal
distributions of precipitation are highly uneven, and over
60% of the annual precipitation occurs in summer, resulting
in frequent floods. Historically, the Yangtze River catchment has
been known for its frequent huge floods that halted the social
advancement of the basin to a large degree.

The upstream of the Yichang hydrometric station is called
the upper Yangtze River and has a drainage area of
approximately 1.0 million km2. The upper Yangtze River is
abundant in hydropower potential, with a suite of large
reservoirs having been constructed in the past five decades.
With the large-scale development of hydropower, the
hydrological regimes in the basin, especially the
spatial–temporal distribution of runoff at the outlet control
hydrometric station, have presented a new situation, which also
changes the flood regimes, therefore negatively affecting the
efficiency of the planning and design of water conservancy
projects and flood prevention management (Yao et al., 2006).
There have been a lot of research results on the change
characteristics of runoff and their attribution analysis in the
Yangtze River (Jiang et al., 2007; Chen et al., 2014; Wei et al.,
2014; Yang et al., 2015). However, research about the all-round
change characteristics of flood regime is relatively few, and how
to quantitatively evaluate the Three Gorges Dam’s (TGD) effect
on peak-flood clipping is worthy of discussion. Specifically, it
has been proven that the river engineering has amplified the
flood hazard in the Mississippi River (Munoz et al., 2018).

Here, 12 evaluation indicators, including annual flood peak
discharge, flood volume, flood timing, and uniformity, are used to
comprehensively detect the flood regime change characteristics of
the six control hydrometric stations in the upper Yangtze River
from three perspectives of trend, change point, and periodicity,
and the contributions of both climatic control and the TGD to the
variation of the annual flood peak in Yichang station were further
quantitatively evaluated. The main objectives of this study have
been to: 1) detect the flood regime change, including the flood
peak discharge, flood volume, time of flood peak occurrence, and
uniformity of the upper Yangtze River; and 2) discuss how the
annual maximum flood peak discharge is related to the TGD and
the climatic control factors. This study will provide a better
understanding on the all-round changes in flood regime of the
upper Yangtze River, and how the dam-building activities and
climate change affect the annual flood peak discharge in a long-
term perspective.

Study Area
The upper Yangtze River (UYR) is located in southwest
China, spanning 21°8ʹ–34°20ʹN and 97°22ʹ–110°11ʹE. The
UYR has a drainage area of 1.054 million km2, accounting
for 59% of the total drainage area of the Yangtze River. It is
composed of five river systems, that is, the Jinsha River, the
Mintuo River, the Jialing River, the Wu River, and the trunk
stream. The Jinsha River system is the main source of
sediment in the Yangtze River, the Min River is the
tributary with the largest water in UYR, the Jialing River is
the tributary with the biggest drainage area in the UYR and
the Wu River is the largest tributary on the right bank of the
UYR. The flood in the Qing River always meets the flood in
the trunk stream of the Yangtze River, which increases the
threat to the Jingjiang embankment. The sketch map of the
river systems and the digital elevation model (DEM) in the
UYR are shown in Figure 1. The six key hydrometric stations
and the TGD have been marked with asterisks and triangle
symbol, respectively.

Data
The controlling hydrometric stations located at the outlets of the
trunk stream, the Qing River, the Jialing River, the Wu River, the
Min River, and the Jinsha River are Yichang, Changyang, Beibei,
Wulong, Gaochang, and Pingshan, respectively. According to the
multiyear daily runoff data of the six key hydrometric stations
provided by the Hydrological Office, Yangtze Water Resources
Committee, the typical flood events including the annual
maximum peak discharge are selected to analyze the flood
regime changes in the UYR. Due to the limitation of data
availability, the length of data used in the six hydrometric
stations is 139, 59, 61, 50, 55, and 71 years, respectively (see
Table 1.

The climatic control factor data including the sunspot
numbers (SSNs) and the North Atlantic Oscillation (NAO) are
available at the websites https://psl.noaa.gov/gcos_wgsp/
Timeseries/SUNSPOT/ and https://psl.noaa.gov/gcos_wgsp/
Timeseries/NAO/, respectively.

Methods and Evaluation Indicators
On the basis of the measured daily runoff at six controlling
hydrometric stations, namely, YC, CY, BB, WL, GC, PS, and the
trend, abrupt change and periodicity analyses of 12 evaluation
indicator time series extracted from the annual typical flood event
are performed in each station. Therefore, the corresponding
annual series derived from the daily data were actually
analyzed in this study.

Methods
Recent evidences of the impact of regional climate variability,
coupled with the intensification of human activities, have led
hydrologists to study flood regime and test the hypothesis of
stationarity (Bormann et al., 2011). In view of the magnitude and
ubiquity of the human disturbances and hydro-climatic change,
the stationarity of flood no long holds true because substantial
anthropogenic and natural changes of climate are altering the
means and extremes of precipitation, evapotranspiration, and
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rivers’ discharge rates (Milly et al., 2008). Salas once pointed out
that there were no trends, shifts, or periodicity (cyclicity) in a
consistent hydrological time series (Salas et al., 1980), so the non-
stationarity was mainly manifested as the trend, abrupt change,
and periodicity.

Most standard statistical techniques, including the
Mann–Kendall test (Mann, 1945; Kendall, 1975), require
the assumption that the analyzed series are the realizations
of the independent random variables. However, most of the
hydrological or climatological series are somehow correlated
in time, which will make it easier for the trend test to obtain a
conclusion that the trend is significant at a presetting level,
even if the original series have no trend (Storch, 1995). An

iterative pre-whitening process which was originally
proposed by Zhang et al. (2000) and later refined by Wang
and Swail (2001) can effectively diminish the impact of the
series correlation on trend estimate and the trend test. This
algorithm has been widely used (Alexander et al., 2006) and
can be easily performed through an open R package zyp
(Bronaugh and Werner, 2019). Periodic fluctuation is a
common form of hydrologic process evolution and an
important manifestation of hydrologic variation. The
wavelet analysis (Kumar and Foufoula-Georgiou, 1993;
Venugopal and Foufoula-Georgiou, 1996) is the commonly
used periodicity identification analysis methods. The Morlet
and Mexican Hat wavelet transforms are two kinds of the

FIGURE 1 | River systems and DEM of the upper Yangtze River.

TABLE 1 | Detailed information about the data used.

The controlling hydrometric
station at the basin outlet

Abbreviation River Length of data used
(period)

Yichang YC Trunk stream 139 (1882–2020)
Changyang CY Qing river 59 (1951–2009)
Beibei BB Jialing river 61 (1950–2010)
Wulong WL Wu river 50 (1952–2001)
Gaochang GC Min river 55 (1956–2010)
Pingshan PS Jinsha river 71 (1940–2010)
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most popularly used continuous wavelet transforms (CWT)
in revealing period properties of meteorological and
hydrological signals (Mallat, 1989; Daubechies and Bates,
1993; Torrence and Compo, 1998).

In this study, a Theil–Sen slope estimator (Sen, 1968), and the
pre-whitening approaches of Zhang et al. (2000), Wang and Swail
(2001), and Yue et al. (2002) were used for trend analysis; the
penalized maximal F test was used to detect the abrupt change
point since there are no reference series (Wang, 2003; Wang,
2008a; Wang, 2008b); the Morlet wavelet transform was used to
recognize the main period (Zhang et al., 2006; Zhang et al., 2010;
Yu et al., 2012).

Evaluation Indicators
Each typical flood process is defined by the flows at n moments.
The typical flood process of a given year (i) can be described as
Eq. 1.

Xi � (xi1, xi2,/, xin), i � (1, 2,/, s). (1)

The initial time of the selected typical flood process is defined
as the occurrence time of the first trough before the annual
maximum peak discharge. According to the book “the Heavy
Flood in China—a Brief Description of Disastrous Floods”
(Luo and Le, 1996), the duration of the flood process is
intercepted to make it as long as 30 days, namely, n � 30,
which can also determine the end time. Therefore, the
annual typical flood processes of the six hydrological
stations were selected.

The 12 evaluation indicators are concluded in Table 2, most
of which have a clear meaning, except the rates of rising and
recession limbs and the uniformity. Fm represents the
annual maximum peak discharge when calculating
k1, k2,/, k6. More descriptions about the uniformity are
given below. The uniformity model of flood process is
established by using information entropy due to its
advantage in the characterization of uniformity (Chen
et al., 2015). The calculation procedure of the uniformity
is shown as follows:

(1) The flood duration is divided, and the corresponding
flood volume is calculated as Qj(j � 1, 2,/, n).

(2) The percentage of the flood volume in the total flood
volume is calculated as Eq. 2.

Pj � Qj/W(j � 1, 2,/, n),W � ∑
n

j�1
Qj. (2)

(3) The information entropy of the typical flood process is
calculated as Eq. 3.

H � −∑
n

j�1
(Pj ln Pj). (3)

(4) The uniformity of the typical flood process is defined as
the ratio of the actual entropy value to the maximum
entropy value, as is shown in Eq. 4.

J � −∑
n

j�1
(Pj ln Pj)/ln n. (4)

The uniformity of the flood process can be represented by
entropy. The higher the entropy value, the more dispersed the
distribution of flood volume, which further indicates that the
difference of flood volume in different time periods is smaller and
that the flood process is more uniform. The absolute uniform
state of the flood process means that the flood volume in each
period is the same, when P1 � P2 � / � Pn � 1/n, and the
entropy value reaches the maximum valueln n. As the same
with entropy, the larger the uniformity, the smaller the
variation of the distribution of flood volume in each period.

RESULTS

The Yichang hydrometric station located at the outlet of the
upper Yangtze basin was selected to visualize the results for

TABLE 2 | Meanings of evaluation indicators extracted from the annual typical flood event.

Evaluation indicator Meaning Unit

Flood peak discharge Annual maximum peak discharge m3/s
Flood peak occurrence time The time when the annual maximum discharge occurs day
3-day flood volume Annual maximum flood volume for three consecutive days m3

5-day flood volume Annual maximum flood volume for five consecutive days m3

7-day flood volume Annual maximum flood volume for seven consecutive days m3

Rate of rising limb (I) k1 � 0.5Fm−0.25Fm
ΔT1 —

Rate of rising limb (II) k2 � 0.75Fm−0.5Fm
ΔT2 —

Rate of rising limb (III) k3 � Fm−0.75Fm
ΔT3 —

Rate of recession limb (I) k4 � 0.75Fm−Fm
ΔT4 —

Rate of recession limb (II) k5 � 0.5Fm−0.75Fm
ΔT5 —

Rate of recession limb (III) k6 � 0.25Fm−0.5Fm
ΔT6 —

Uniformity J � − ∑N
i�1
(Pi lnPi)/lnN —
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analyzing the flood regime changes because of the availability
of long-term daily discharge data from 1882 to 2020, which
can provide sufficient information as far back from present to
obtain the range of flood regime variation. The YC
hydrometric station is merely 44 km downstream of the
TGD, and the flood regime changes at this station provide
a direct measurement of the impacts of the TGD. The analysis
of the annual maximum flood peak discharge in YC is taken
as an example. The non-stationarity analysis is carried out
from three perspectives, that is, the trend, abrupt change, and
periodicity.

Trend Analysis
The Theil–Sen slope estimator, wavelet decomposition, and the
pre-whitening approaches of Zhang et al. (2000), Wang and Swail
(2001), and Yue et al. (2002) were used to determine trends of the
corresponding time series of the evaluation indicators. The
Theil–Sen slope estimator is −57.02 with the intercept of
161,682.46. The trend results obtained by the pre-whitening
approaches are listed in Table 3 (refer to the package “zyp”
written by Bronaugh andWerner, (2019)) for the meanings of the
parameters. And the trend calculated by the pre-whitening
approach of Yue et al. (2002) is consistent with the Theil–Sen

TABLE 3 | The trend analysis results by the pre-whitening approaches.

Parameter
method

Lbound Trend Trendp Ubound Tau Sig Nruns Autocor Valid-
frac

Linear Intercept

Zhang −109.83 −60.86 −8460.22 −12.90 −0.14* 0.01 3.00 0.17 1.00 −55.84 55,601.87
Yuepilon −100.00 −57.02 −7925.44 −16.67 −0.14* 0.01 1.00 0.17 1.00 −55.84 54,432.46

Note: Asterisk indicates the significant trend at the 0.05 level.

FIGURE 2 | Curve of annual maximum flood peak discharge in YC.

FIGURE 3 | Curve of Morlet wavelet decomposition (A3) of the annual maximum flood peak discharge in YC.
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slope estimator. It is concluded that the annual maximum peak
discharge in the Yichang station presents a significant decreasing
trend at the 0.05 level from the Table 3 and the Theil–Sen slope
estimator value.

The linear fitting line and curve of Morlet wavelet
decomposition are shown in Figures 2, 3, respectively. The
trend analyses of all the evaluation indicators time series at
the six control hydrometric stations in the UYR are presented
in Tables 4, 5.

Figure 2 shows the linear fitting line, the line of the
multiyear mean, and the 10-year moving average curve of
the annual maximum peak discharge in YC. The decreasing
trend and fluctuation are detected from the linear fitting line
and the 10-year moving average curve, respectively. The
multiyear mean of annual flood peak discharge is
50,264.91 m3/s. The maximum flood peak flow during the
period from 1882 to 2011 occurred in 1896, with the value
of 71,100 m3/s, while the minimum flood peak flow occurred in
1942, with the value of 29,800 m3/s. The linear fitting curve and
the line of the multiyear mean intersected in the year of 1951,
which means the multiyear average before 1951 was higher
than 50,264.91 m3/s, while the multiyear average after 1951
was lower than 50,264.91 m3/s.

Figure 3 shows the wavelet decomposition (A3) graph of the
time series of the annual maximum flood peak flow. There was a
steep rise in 1889, and a steep fall in 1897, then a relatively flat
change during 1900–1940, and a drastic change during

1940–1980. After 1980, there were two clear phases with a
decreasing trend, namely, 1980–2000 and 2000–2020.

From Tables 4, 5, it can be seen that the annual maximum
flood peak flow and flood volume in YC, CY, BB, and GC showed
a decreasing trend, with a significant decrease in flood volume of
YC and GC, while those in WL and PS showed an increasing
trend. The flood peak occurrence time showed an insignificant
forward (decreasing) trend, except for that in GC and WL. The
uniformity of typical flood processes in YC and PS had an
insignificant decreasing trend, while that of other stations in
the four tributaries had an increasing trend, and a significant
increasing trend in CY and GC at the significance level of 5%.
There are 18 evaluation indicators of the rate of rising limb for
typical flood processes in the six stations: 77.8% of which showed
a decreasing trend, while 61.1% of evaluation indicators of rates of
recession limb showed an increasing trend. It reflects that the
flood events in the UYR are getting gradually uniform from the
perspective of local fluctuation of the typical flood processes.

Change Point Analysis
The penalizedmaximal F test allows the time series being tested to
have a linear trend throughout the whole period of data record,
with the annual cycle, linear trend, and lag-1 autocorrelation of
the base series being estimated in tandem through iterative
procedures, while accounting for all the identified mean shifts.
No reference series will be used in functions including the FindU
and Stepsize of PMF, according to Wang and Feng (2013). As for

TABLE 4 | The Theil–Sen slope estimator of evaluation indicators at the six stations in the UYR.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Unifor-
mity

Rate of rising limb Rate of recession limb

3-day 5-day 7-day I II III I II III

Yichang (YC) −57.0200 −153.4000 −230.4000 −294.4000 −0.0333 0.0000 −9.0740 −1.3280 −0.4939 10.9600 1.1710 −0.1780
Changyang
(CY)

−19.2500 −45.0800 −67.2600 −79.1900 −0.1915 0.0033 −4.6790 −1.4710 −1.0120 2.0000 3.3650 1.4610

Beibei (BB) −59.4900 −147.5000 −201.1000 −389.6000 −0.0698 0.0006 −15.7300 −12.0000 −5.5120 6.8760 7.7780 8.5370
Wulong (WL) 31.5800 67.7800 82.4100 114.5000 0.0000 0.0000 −1.6670 12.1500 0.8763 −16.3800 −6.0940 −2.8120
Gaochang
(GC)

−57.6900 −213.8000 −291.0000 −332.9000 0.0938 0.0006 5.3570 −3.3330 −5.2500 3.3520 5.2880 2.8920

Pingshan
(PS)

12.5000 35.9000 44.4400 76.4700 −0.1000 0.0000 −0.6211 3.2860 0.3272 −0.4922 −0.8631 0.2081

TABLE 5 | Kendall’ tau statistic of evaluation indicators at the six stations in the UYR by zyp.zhang.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Unifor-mity Rate of rising limb Rate of recession limb

3-day 5-day 7-day I II III I II III

Yichang (YC) −0.1408* −0.1292* −0.1270* −0.1232* −0.0398 −0.0091 −0.1000 −0.0298 −0.0585 0.1679* 0.0348 −0.0361
Changyang (CY) −0.0575 −0.0865 −0.0913 −0.0938 −0.0734 0.2005* −0.0248 −0.0321 −0.0146 0.0175 0.0660 0.0427
Beibei (BB) −0.1040 −0.0881 −0.0915 −0.1435 −0.0285 0.0579 −0.0893 −0.0749 −0.0576 0.0629 0.0618 0.0798
Wulong (WL) 0.0680 0.0612 0.0510 0.0476 0.0025 0.0008 −0.0139 0.1156 −0.0340 −0.1650 −0.1497 −0.0539
Gaochang (GC) −0.1321 −0.2746* −0.2495* −0.2676* 0.0105 0.1879* 0.0273 −0.0182 −0.0524 0.0277 −0.0161 0.1388
Pingshan (PS) 0.0448 0.0407 0.0346 0.0330 −0.0435 −0.0128 −0.0185 0.1348 0.0994 −0.0097 −0.0612 0.0277

Note: Asterisk indicates the significant trend at the 0.05 level.
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TABLE 6 | List of abrupt change points of evaluation indicators at the six stations in the UYR by PMF.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Unifor-
mity

Rate of rising limb Rate of recession limb

A 5-
day

7-
day

I II III I II III

Yichang (YC) 1994 1978 1970 1971 — 1983 — 1991 1962 — 1994 —

Changyang (CY) — — — — — — — 1966;
1995

— — — 1968;1993

Beibei (BB) 1989 1989 1989 1989 — — 1991 1989 — — 1992 1959; 1972; 1999
Wulong (WL) — 1990 1990 — 1961 1983 — — 1968 1968; 1984 — —

Gaochang (GC) — — — — — 1970 1996 1997 — 1988 1993 —

Pingshan (PS) 1974 1974 1974 1974 — 1952 — 1974 1969 — — —

Note: Bold values indicate the change points confirmed by the causes of dam-building activities.

TABLE 7 | The commencement and completion time of key water conservancy projects in the upper Yangtze River.

River Control hydrometric station Key water conservancy project Commencement time Completion time

Mainstream of the Yangtze river Yichang (YC) Gezhouba 1971 1988
Three Gorges dam 1994 2009

Pingshan (PS) Xiangjiaba 2006 2014
Xiluodu 2007 2014
Baihetan 2013 2022 (expected)
Wudongde 2015 2021

Min river Gaochang (GC) Zipingpu 2001 2005
Jialing river Beibei (BB) Tingzikou 2009 2014
Wu river Wulong (WL) Wujiangdu 1970 1983

Goupitan 2003 2009
Qing river Changyang (CY) Geheyan 1987 1995

Gaobazhou 1995 2000
Yalong river Xiaodeshi Jinping I 2005 2014

Jinping II 2007 2014
Guandi 2010 2013
Ertan 1991 2000

Note: Bold values indicate the change points consistent with the commencement or completion time of dam-building activities.

FIGURE 4 | The general graph of the key water conservancy project location in the upper Yangtze River.
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the annual maximum peak discharge time series of Yichang
station, there are no Type-1 change points when the FindU
function was called. From Table 6, we can know that the
change points of the annual flood peak flow time series in BB
and PS happened in 1989 and 1974, respectively, while no change
points exist in other four stations; all the change points of flood
volume (3-day; 5-day; and 7-day) time series in the six stations
happened in 1970s–1990s; the change points of uniformity
happened in 1980s–1990s, except for that in GC and PS; and
the most change points of rates of rising and recession limb
happened in 1960s–1990s.

The upper reaches of the Yangtze River are the most highly
developed water system in China. Numerous large- and medium-
sized reservoirs have been constructed along the upper reaches of
the Yangtze River since 1970, forming the world’s largest
reservoir group with the Three Gorges reservoir at its core.
Here, we list the commencement and completion time of 16
key water conservancy projects closely related to the six control
hydrometric stations in the mainstream of the Yangtze River and
other five tributaries, as described in Table 7, and we draw the
general graph of the location of these projects, as shown in
Figure 4. All the documented changes in Table 7 that could
cause a mean shift to be added in the file named
Example_mCs.txt if they are not already here according to
procedure 5) and procedure 7) of Trend Analysis and F5 of
Periodicity Analysis in the RHtestsV4_UserManual. We found
that 1994 (commencement time of the TGD) for flood peak flow
in the Yichang station, and 1983 (completion time ofWujiangdu)
for uniformity in Wulong station are the potential Type-0 change
points which are statistically significant, and these two change
points have been added in Table 6.

These reservoirs realize comprehensive utilization benefits by
changing the spatial and temporal distribution characteristics of
the natural streamflow, and transform flood regimes directly. For
example, the construction of the TGD and the Gezhouba
hydropower station in mainstream of the Yangtze River
caused the abrupt change of the 5-day and 7-day flood
volume, and the rate of recession limb (II) of Yichang station;
the construction of Gaobazhou hydropower station in the Qing
River caused the abrupt change of the rate of rising limb (II) of
Changyang station, and the construction of Wujiangdu
hydropower station corresponding to the change of rate of
recession (I) in the Wulong station. In conclusion, the change
points of flood peak discharge, 3-day flood volume, 7-day flood
volume, uniformity, the rate of rising limb (II) and the rate of
recession limb (II) in YC, the rate of rising limb (II) and the rate of
recession limb (III) in CY, and 3-day flood volume, 5-day flood
volume, uniformity, and the rate of recession limb (I) in WL are
confirmed by the causes of dam-building activities listed in
Table 7, which happened during or after the construction of
corresponding water conservancy project; and the change points
of the flood peak discharge, 7-day flood volume, the rate of
recession limb (II) in YC, the rate of rising limb (II) in CY, and the
uniformity in WL are completely consistent with the
commencement time of the TGD and Gezhouba, the
commencement time of Gaobazhou, and the completion time
of Wujiangdu, respectively.

Although the intensified dam-building activities directly
affected the flood regime change, the influence of the
precipitation structure change is also non-negligible, since the
Min River, the Jialing River, and the Yalong River are located in
the rainstorm area in western Sichuan. From Table 6, we can find
that the abrupt change points of Pingshan, Gaochang, and Beibei
are not consistent with the commencement or completion time of
corresponding major water conservancy projects. The change of
precipitation structure is the most obvious indicator of the
variation of water cycle (Moberg et al., 2006; Brommer et al.,
2007; Zolina et al., 2010), and precipitation in July and August
over the upper reaches of the Yangtze River is highly correlated
with annual peak discharge (Li et al., 2020). Two abrupt climate
change points of summer precipitation in China that occurred in
1978 and 1992 were identified by Ding et al. (2008), and the shift
of the summer rainfall over the Yangtze River valley in the late
1970s was also identified (Gong and Ho, 2002; Gao and Xie,
2016). In addition, Ye et al. (2014) analyzed the spatiotemporal
variability characteristics of precipitation structure across the
upper reaches of the Yangtze River and found that the year of
1976 was marked by an abrupt change for the contribution rate of
short-duration (1 and 2 days) precipitation events, while the
timing of abrupt changes for the occurrence rate and the
contribution rate of long duration (6 and 10 days) was in 1984
and 1999, respectively, all of which happened during 1970s–1990s
and were consistent with the abrupt change points of Pingshan,
Gaochang, and Beibei. Therefore, it can be concluded that the
abrupt change points of Yichang, Changyang, and Wulong
during 1970s–1990s are mainly caused by the dam-building
activities, while those in Pingshan, Gaochang, and Beibei are
mainly caused by the precipitation change in the late 1970s across
the Yangtze River Basin, especially in the rainstorm area in
western Sichuan.

Periodicity Analysis
The periodicity of all evaluation indicators was analyzed
according to the Morlet wavelet transformation. The real
part of the wavelet transform coefficient contains the
information of the signal distribution and phase along the
time axis under certain time scale. In the contour map of the
real part of the wavelet coefficient, the positive value indicates
that the annual maximum flood peak presents an increasing
trend, while the negative value indicates that the annual
maximum flood peak presents a decreasing trend. The
modulus of the wavelet coefficient is equivalent to the
wavelet energy spectrum, from which the oscillation
energy of different scales (period) can be analyzed. When
the modulus is larger, the periodicity of the corresponding
time and scale is more obvious.

In regard to the annual peak-flood series in YC, the contour
plot of the real part and modulus of the wavelet transformation
coefficients and the global power spectrum are shown in Figures
5A–C, respectively. The periodicity analysis results of all
evaluation indicators are concluded in Table 8.

For Figures 5A–C, the Y-coordinate represents period, while
the X-coordinate represents time in (A) and (B) and power in (C),
respectively. The positive value and the negative value in
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Figure 5A indicate that the annual maximum flood peak presents
an increasing trend and a decreasing trend, respectively. And the
modulus in Figure 5B represents the intensity of the periodicity:
the larger the modulus, the stronger the periodicity.

It can be seen from Figure 5A that there were four clear
periodicities of annual maximum flood peak flow time series in
YC during the period from 1892 to 2020, which were 14a, 22a,
41a, and 61a, respectively. The periodicity of 41a existed
throughout the whole study period with relatively stable
performance, while 22a mainly existed from 1880s to 1960s,
and 14a mainly existed from 1960s to 2020s. It can be seen
from Figure 5B that the wavelet coefficient modulus
corresponding to the periodicity of 41a is the largest, so the
periodicity is the strongest, followed by 22a, as shown in
Figure 5C.

From Table 8, we can know that the first main periodicity of
most evaluation indicators in Y was about 45a. The first main
periodicity of annual maximum flood peak time and flood
volume series in CY was about 21a; the first main periodicity
of the flood peak occurrence time and uniformity, and most rates
of rising and recession limb were 23a, 6a, and 16a, respectively.
The first main period of all evaluation indicators in BB and WL
varied obviously, while that in GC are mainly 11a and 15a, and
that in PS are mainly 26a and 20a.

SUMMARY AND DISCUSSION

The “stationarity” of flood-generating mechanism is lost under
the changing environment. Climate and human forcings

FIGURE 5 | Contour plots of the real part (A), the modulus (B), and the global power spectrum (C) of Morlet wavelet transform coefficients.

TABLE 8 | Periodicity analysis of evaluation indicators at the six stations in the UYR.

Indicators
stations

Flood
peak
flow

Flood volume Time
of flood
peak

occurrence

Uniformity Rate of rising limb Rate of recession limb

3-days 5-days 7-days I II III I II III

Yichang (YC) 41;
22; 61

44;
22; 59

22;
44; 59

22;
44; 59

56; 6; 36 — 22; 40; 7 — — 46;
20; 11

46;
20; 11

46;
20; 11

Changyang
(CY)

21; 11; 5 20;
11; —

21;
11; —

20;
11; —

23; 4; — 6; 14; 25 16;
22; 10

6; 14; 25 6;
14; 25

16;
22; 10

16;
22; 10

16;
22; 20

Beibei (BB) 14; 8; 5 8; 14; 5 13; 8; 5 14; 8; — 7; —; — 27; 9; 15 15; 8; 4 9; 6; 13 27;
14; 8

8—— 5; 26; 14 8; 6; 4

Wulong (WL) 22; 30; 6 30; 6; 22 7; 22; 31 7; 21; 11 13; 5; 30 7; 4; — 30; 7; 13 26;
18; 12

22;
15; 7

30;
22; 12

30; 6— 30; 7; 14

Gaochang (GC) 11; 3; — 11; 3— 11; 21; 3 11; 21; 3 13; 9— — 15; 11; 5 15; 11; 5 15;
11; 5

15; 11; 5 15; 11; 5 15; 11; 5

Pingshan (PS) 26; 13; 6 26; 13; 6 26; 13; 6 26; 13; 6 23; 17; 7 — 20; 8; 12 6; 11; 27 — 22; 8; 4 20; 8; 12 17; 25; 9
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FIGURE 6 | Variation of annual peak discharge before and after the Three Gorges Dam (TDG) construction.

FIGURE 7 | Sunspot numbers (SSNs) in March during 1749–2020.

FIGURE 8 | North Atlantic Oscillation (NAO) in December (1822–2020).
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combined have been imposed on the flood regimes in the upper
Yangtze River. Ye et al. (2015) applied univariate and the
multivariate Mann–Kendall method to test the stationarity of
the annual peak discharge and annual maximum 15-day volume
of four control hydrological stations in the UYR. Xiong and Guo
(2004) carried out the trend test and change-point analysis of the
annual maximum, annual minimum, and annual mean discharge
series in Yichang station during the period of 1882–2001. Zhang et al.
(2006) detected the trend and periodicity of the annual maximum
water level and streamflowofYichang,Hankou, and theDatong station
across the Yangtze River Basin. Most of the research aforementioned
found the decreasing trend of flood peak discharge and flood volume
due to the intensified dam-building, yet the other characteristics of
flood regime, such as the timing offloodpeak occurrence (Bloschl et al.,
2017; Rokaya et al., 2018) and uniformity (Chen et al., 2015), were
ignored. To improve the understanding of the all-round flood regime
change in the UYR, the non-stationarity analysis of hydrological series,

including 12 evaluation indicators time series extracted from the annual
typical flood event, was performed.

For trend analysis, the annual flood peak discharge and flood
volume present a decreasing trend except Pingshan and Wulong,
since the length of the two stations are 71 (1940–2010) and 50
(1952–2001), respectively. The Xiangjiaba and Xiluodu dams
were not fully built, and the construction of the Baihetan and
Wudongde dams were not started yet before 2010. The four
reservoirs are located in the lower reaches of the Jinsha River,
which have direct influence on the flood regime in Pingshan
station. The reason for the increasing trend of annual peak
discharge and flood volume is similar for Wulong station,
since the key reservoirs in the lower reaches of the Wu River
have not been constructed yet. And therefore, the uniformity of
the two stations exhibited no obvious change during the
corresponding study period.

For abrupt change analysis, the abrupt change of flood regimes
in YC, CY, and WL is mainly caused by the dam-building
activities, while that in PS, GC, and BB is mainly caused by
the precipitation change in the late 1970s across the Yangtze River
Basin, especially in the rainstorm area in western Sichuan. For
periodicity analysis, the major period of the Yichang station is
longer than that of other stations. As the controlling station of the
upper Yangtze River, it has stronger regulatory capacity, while
other stations are more prone to be influenced by the human
activities and climate change.

To better understand the role of peak-flood clipping the TGD
plays, we quantitatively evaluate the contribution of the climatic

FIGURE 9 | Reconstructed discharge through the BP neural network and observed discharge in the modern period.

TABLE 9 | Observed and reconstructed flood magnitudes with different recurrence intervals by the BP model after the construction of the TGD (1994–2020).

Climate control Q10 (m³/s) Q100 (m³/s) Q1000 (m³/s) Q10000 (m³/s)

Reconstruction by SSN-only 61,283.24 74,061.72 86,288.66 93,281.61
Reconstruction by NAO-only 60,732.33 75,315.46 86,544.45 89,634.87
Reconstruction by SSN-NAO 62,467.30 78,042.56 91,686.82 94,405.70
Observed flow at baseline period 65,173.17 78,765.88 89,832.51 91,678.12
Observed flow at modern period 59,024.21 73,070.49 84,458.67 94,561.79

TABLE 10 | Contributions of climatic control and human activities to floods with
different recurrence intervals.

Climate control Factors Q10 (%) Q100 (%) Q1000 (%) Q10000 (%)

SSN-only Natural 0.63 0.83 0.66 0.56
Human 0.37 0.17 0.34 0.44

NAO-only Natural 0.72 0.61 0.61 0.40
Human 0.28 0.39 0.39 0.60

SSN-NAO Natural 0.44 0.13 −0.35 −0.53
Human 0.56 0.87 1.35 1.53
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control factors and the TDG to the variation of the annual flood
peak in Yichang station. According to the time at which the TDG-
building activities commenced, the whole study period
(1882–2020) was divided into two phases: the period before
1994 (defined as the “baseline period”) and the period after
1994 (defined as the “modern period”). Accordingly, the
observed discharge was also divided into two types: the
observed discharged during the baseline period and that
during the modern period as shown in Figure 6. It is clear
that the mean value of the annual peak discharge before and
after the TGD construction is 51,571.4 m³/s and 44,845.3 m³/s,
respectively, which shows the important role of peak-flood
clipping the TGD plays.

To assess the effects of climatic control on flood peak
discharge, the climate control factors need to be identified.
The SSNs in March and the NAO in December were found to
be highly correlated with annual peak discharges (Li et al., 2020).
The SSNs in March during 1749–2020 and the North Atlantic
Oscillation in December (1882–2020) are shown in Figures 7, 8,
respectively. Over the nearly past 300 years, SSNs have exhibited
an average 11-year cycle (Clette et al., 2014), while the NAO
presents irregular oscillation without any obvious cycle (Gu et al.,
2009).

To separate the impacts of natural and human activities on the
variation of the flood peak discharge, the reconstructed annual
peak discharge during 1994–2020 was derived based on the back
propagation neural network (BPNN) model, which was trained
by the corresponding discharge, SSNs in March, NAO in
December, and SSN–NAO, respectively (R2 � 0.69; 0.62; 0.57),
as shown in Figure 9. In the absence of human activities, the SSN-
only model predicts that Q10, Q100, Q1000, and Q10000 obtained by
P-III fitting were 61,283.24; 74,061.72; 84,288.66; and
93,281.61 m³/s (in Table 9), respectively, accounting for
approximately 56–83% of the observed decrease in discharge.
This implies the remainder (approximately 17–44%) of the
decline in flood magnitude is the result of the TGD
construction. However, the results predicted by SSN–NAO (in
Table 10) indicate that climatic controls and the TGD construction

contribute − 53–44% and 56–153%, respectively. Therefore, the
TGD construction has played a positive role in reducing flood
magnitude with different recurrence intervals, especially for the
flood with a 0.01% chance of exceedance in any year.
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