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Landslides constitute a severe environmental problem in Jiangxi, China. This research
was aimed at conducting landslide hazard assessment to provide technical support for
disaster reduction and prevention action in the province. Fourteen geo-environmental
factors, e.g., slope, elevation, road, river, fault, lithology, rainfall, and land cover types,
were selected for this study. A test was made in two cases: (1) only based on the
main linear features, e.g., main rivers and roads, and (2) with detailed complete linear
features including all levels of roads and rivers. After buffering of the linear features, an
information value (IV) analysis was applied to quantify the distribution of the observed
landslides for each subset of the 14 factors. The results were inputted into the binary
logistic regression model (LRM) for landslide risk modeling, taking the known landslide
points as a training set (70% of the total 9,525 points). The calculated probability of a
landslide was further classified into five grades with an interval of 0.2 for hazard mapping:
very high (3.70%), high (4.05%), moderate (18.72%), low (27.17%), and stable zones
(46.36%). The accuracy was evaluated by AUC [the area under the receiver operating
characteristic (ROC) curve] vs. the validation set (30%, the remaining landslides). The
final results show that with increasing the completeness of the linear features, the
modeling reliability also significantly increased. We hence concluded that the tested
methodology is capable of achieving the landslide hazard prediction at regional scale,
and the results may provide technical support for geohazard reduction and prevention
in the studied province.

Keywords: landslide, information value analysis, logistic regression model, risk zoning, Jiangxi province

INTRODUCTION

Landslides are a worldwide natural hazard, especially in Southern and Southeastern Asia including
South China, and cause huge damages to human life and property, e.g., destroying houses,
farmland, roads, and various infrastructures; killing livestock; and even amplifying existing
disasters (Wu and Ai, 1995; Nadim et al., 2006; Assilzadeh et al., 2010; Froude and Petley, 2018).
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It is of critical importance to conduct landslide risk prediction,
zoning, and assessment to provide scientific advice and technical
support for disaster prevention and early warning.

Actually, a large number of institutions and scientists have
implemented projects or undertaken research to find solutions
to the problem of landslide disasters, including landslide
mechanism analysis, risk mapping, and assessment (Montgomery
and Dietrich, 1994; Guzzetti et al., 1999; Aleotti and Chowdhury,
1999; Ayalew and Yamagishi, 2005; Ruff and Czurda, 2008; Fan
et al., 2016; Arabameri et al., 2017; Zhang Y. et al., 2020)1. These
authors have proposed different qualitative and quantitative
assessment approaches by involving a set of indicators (Guzzetti
et al., 1999; Corominas et al., 2014; Goetz et al., 2015; Furlani
and Ninfo, 2015; Li et al., 2017; Zhu et al., 2019; Zhang Y. et al.,
2020; see text footnote 1), and these studies laid a solid foundation
for our landslide hazard assessment study in Jiangxi, which ranks
number 2 in terms of geohazard occurrence frequency in China
in 2019 (Zhang Y. et al., 2020).

Actually, landslides are the result of the interaction of multiple
geo-environmental factors and human activity, including
geological lithology, structure (e.g., fractural zones, faults, and
joints), elevation, slope, aspect, river, regolith, soil, land cover,
rainfall, roads, and housing development. Djukem et al. (2020)
and Zhang Y. et al. (2020) have discussed and successfully
applied these factors for landslide hazard assessment. Hence,
these geo-environmental factors will be necessary and taken into
account for achieving our purpose in this study.

Combining the knowledge of different disciplines can
effectively improve the assessment accuracy of geohazards in
practical applications (Kilburn and Pasuto, 2003). The assessment
of landslide hazard refers to the prediction of the probability of its
occurrence in a specific area by studying the combined effects of
multiple geo-environmental factors (Tian et al., 2020; Zhang Y.
et al., 2020; see text footnote 1). To achieve an assessment,
two types of approaches, i.e., knowledge-driven and data-driven
methods, are at present available. The knowledge-driven method
relies on expert experience and knowledge. It is subject to certain
subjectivity and uncertainty and suitable for areas with simple
geo-environmental conditions or areas with limited data. This
method is of limited assessment accuracy for areas with complex
conditions and unknown landslide mechanisms. For the data-
driven method, the landslide assessment factors are selected
by quantitative analysis, and risk assessment is conducted by
employing artificial intelligence approaches. Hence, theoretically
and practically, the data-driven method seems to be more robust
and reliable although more computing power is required (Zhang
and Jiang, 2004; Zhang et al., 2017).

As a matter of fact, a number of scientists have made efforts
on this research topic. For the time being, statistical analysis,
especially machine learning (Wu et al., 2018), is the common
approach for landslide hazard risk assessment, for example, the
information value (IV) analysis (Gao et al., 2006; Chen et al.,
2012; Sharma et al., 2015; Feng et al., 2016; Ren et al., 2018),
the logistic regression model (LRM) (Carrara, 1983; Lee and

1Zhou, X., Wu, W., Lin, Z., Zhang, G., Chen, R., Song, Y., et al. (under review).
Zonation of landslide susceptibility in Ruijin, Jiangxi, China. Int. J. Environ. Res.
Public Health (2nd round review).

Min, 2001; Ayalew and Yamagishi, 2005; Xing et al., 2004; Bai
et al., 2010; Feng et al., 2016), artificial neural networks (ANNs)
(Pradhan and Lee, 2007; Yilmaz, 2009; Lee et al., 2010; Feng et al.,
2016; Kalantar et al., 2018), support vector machines (SVMs)
(Yao et al., 2008; Peng et al., 2014; Kumar et al., 2017; Xia et al.,
2018; Wang et al., 2019), and random forests (RFs) (Li et al.,
2014; Kim et al., 2018; Dang et al., 2018; Zhang Y. et al., 2020;
see text footnote 1). Recently, some authors have even attempted
to employ a combination of LRM with IV analysis (Feng et al.,
2016; Du et al., 2017; Fan et al., 2018; Zhang Q. et al., 2020)
or LRM with certainty factor (CF) analysis (Yang et al., 2019;
Zhang Q. et al., 2020) for achieving landslide risk assessment.
Although these different techniques have been proven to be
effective, there is no consensus on which technique and method
are the best (Wang et al., 2005; Zhang, 2019). It can be seen
from the above brief review that data-driven approaches, in
particular, machine learning approaches, have great potential in
geohazard risk prediction and assessment. Zhang (2019) and
Zhao et al. (2019) noted that IV-based LRM is well capable of
addressing the problem of binary variables (e.g., presence or
absence of landslides) and has been applied to the assessment of
landslide hazards.

In view of these, the objective of this study was to realize
a landslide risk assessment by the combined approaches of IV
and LRM in order to provide technical support for disaster
reduction and prevention of the local authorities, taking Jiangxi,
China, as an example. With more and more regional-scale
studies on geohazard assessment being required to meet the need
of Disaster Reduction and Prevention actions of governments,
one may immediately think to use coarse-resolution data with
major features of the geo-environmental factors for this purpose.
Thus, one specific objective was to test the influence of data
completeness and detailed extent on such regional-scale modeling
and prediction and to check whether coarse-resolution data and
major features alone are able to successfully achieve this task.

MATERIALS AND METHODS

Study Area
Jiangxi is a province located in Southeast China, extending from
24◦29′14′′N to 30◦04′41′′N in latitude and from 113◦34′36′′E
to 118◦28′58′′E in longitude, covering an area of 166,900 km2.
Situated in the south of the middle reaches of the Yangtze River
Watershed, the overall terrain of Jiangxi looks like a horseshoe-
type or dustpan-type basin. The Poyang Lake basin is situated
between the Yangtze River in the north and a series of NE-
or NNE-striking mountain ranges such as Huaiyu and Baiji in
the east, Wuyi in the southeast, Jiulian in the south, and Mufu,
Jiuling, Wugong, Wangyang, and Zhuguang in the west. There
are five main rivers, namely, Xinjiang and Raohe from the east,
Fuhe and Ganjiang from the south, and Xiushui from the west,
all flowing into the Poyang Lake and then joining the Yangtze
River (Figure 1). Jiangxi belongs to the subtropical climate
zone. Rainfall is abundant, and monsoon rain is predominant
in spring and summer, in particular in June and July. The
annual precipitation is more than 1,500 mm. The average annual
temperature is about 16.3–19.5◦C, generally increasing from 16.3
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FIGURE 1 | Location of the study area, Jiangxi Province, and its main geotectonic units (Source: Geological Book of Jiangxi, Jiangxi Bureau of Geology, 2017).

to 17.5◦C in the north to 19.0–19.5◦C in the south. The northwest
wind prevails in winter, and it is relatively cold. In summer, it is
humid and hot with an average temperature of 24–29◦C (and the
extreme maximum temperature is more than 40.0◦C because of
the Pacific subtropical monsoon).

Geologically, as shown in Figure 1, Jiangxi crosses over two
geotectonic units: Yangtze Plate in the north (I) and Cathaysia
Massif (South China Plate) in the south (II3) where the Qian-
Hang Tectonic Belt (II1) is the joint belt between the two plates

(Yang, 2003). Though active faults are rarely observed nowadays,
shaped by such geotectonic settings, the landform characterized
by the mountains-basin pattern facilitates the occurrence of
geohazards, especially landslides, in Jiangxi. Up to 2020, a total
of 9,525 landslide taking place in the past decades were collected.
The economic losses caused by geohazards are next to those
by floods and droughts, and their casualties even exceed those
of floods (Jiangxi Geological Disaster Emergency Center, 2014).
Research on zoning of landslide susceptibility will hence help us
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understand the overall situation of landslide disasters and provide
technical support for decision making in hazard prediction,
prevention, and early warning in the province.

Data and Preprocessing
Landslide Inventory Data
Apart from the field survey by ourselves in July–October
2019 and August 2020, the majority of the landslide data in
Jiangxi were obtained from the Environmental Science Data

Center, Institute of Geographical Sciences and Natural Resources
Research (IGSNRR) of the Chinese Academy of Sciences (CAS).
A total of 9,525 landslide points were made available for this
research. The spatial distribution of these landslides is shown in
Figure 2.

Geo-Environmental Factors
Based on the field survey and general understanding of
the landslide mechanism, the following geo-environmental

FIGURE 2 | Distribution map of landslide in Jiangxi in the context of annual rainfall.
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parameters were utilized for risk assessment, e.g., slope; aspect;
elevation derived from the digital elevation model (DEM);
rainfall including mean annual rainfall; accumulated monthly
rainfall of March–July, March–June, and May–July; roads; rivers;
faults; lithologies of strata; normalized difference vegetation
index (NDVI); and land cover (Table 1). These factors include
both continuous and discrete data and are described as follows.

Slope
The slope is an important factor in the occurrence of landslides
which take place only when the slope reaches a certain degree.
The geometric characteristics of the slope determine the stress
distribution and hence the stability of the slope (Lan et al., 2002).
Human activity such as road construction reduces the slope
resistance and exacerbates instability (Yu, 2003). Derived from
the DEM product ASTGTM (V003, 30 m), slope ranges from 0◦
to 75◦ in Jiangxi and is presented in Figure 3A.

Aspect
The aspect is the normal direction of the slope surface projected
on the horizontal plane. Jiangxi is situated to the north of
the Tropic of Cancer. The southern slopes receive more solar
radiation, leading to a higher temperature, bigger contrast in day–
night temperature, and a stronger evapotranspiration than in
the northern ones. Such difference in physiochemical conditions
results in difference in vegetation development and weathering
between the southern and northern slopes. Su (2006) noted that
landslides occur more frequently in the southern slopes than in
the northern ones. For this reason, the aspect information of
Jiangxi was extracted from the DEM based on spatial analysis
(Figure 3B) and used for landslide hazard assessment.

Relief Degree of Land Surface (RDLS)
The RDLS is a parameter to recount surface morphology, one
of the most important factors to determine the topographic
conditions and to characterize the potential energy of surface
erosion and material movement of the slope (Yin et al., 2010; Su
et al., 2017). It is useful for quantitative analysis of landform and
erosion degree of the regional surface (Guo et al., 2008). Based on

TABLE 1 | Data sources and data types of assessment factors.

Basic data Sources of data Type of data or
resolution

DEM ASTGTM V003 30 m from NASA
(www.earthdata.nasa.gov)

Raster (30 m)

Rainfall China Meteorological Data Network
(monthly rainfall data from 83 stations
of 1980–2010, http://data.cma.cn)

Vector data (points)

Road, river National Geomatics Center of China
(http://ngcc.sbsm.gov.cn)

Vector data

Geological map
(lithology, fault)

Coal Geological Bureau of Jiangxi
Province (scale of 1:500,000)
(www.jxmtdzj.gov.cn)

Vector data

NDVI November MODIS Data from NASA
(www.earthdata.nasa.gov)

Raster (250 m)

Land cover Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences
(www.radi.cas.cn)

Raster (30 m)

the spatial analysis, the RDLS is calculated from the DEM with
values ranging from 0 to 588 m (Figure 3C).

Distance From the Linear Features: Roads, Rivers, and Faults
The study area is situated in the south of the Yangtze River,
composed a series of hills and mountains (see section “Study
Area”), leading to the development of the five important
rivers and their tributaries and subtributaries. They have been
modifying the landscape and breaking up the rocks and, at
the same time, generating instability of slopes and landslides.
Generally, the closer to the river, the higher the slope instability
and risk of landslide.

Faults are geological structures in which the rock blocks
of the two sides are displaced against each other along the
fractural surface, destroying the integrity of the rock formations.
The development degree of joints of the geological bodies
is often controlled by faulting. The occurrence of several
geohazards is closely associated with faults, especially active faults
(Huang and Li, 2009).

Road construction and other housing development
engineering have led to slope cutting and destruction of the
stability of slopes composed of rocks and soils. Hence, road
networks and slope housing are a landslide indicator as well
(Xu, 2005; Meten et al., 2015; Zhang Y. et al., 2020; see text
footnote 1).

Linear features like roads (Figure 3D), rivers (Figure 3E),
and faults (Figure 3F) have the same proximity effect; that is,
the closer the slope to the linear feature, the higher the risk of
landslide it may have. Moreover, scale may also play a role as the
larger the scale of the faults, roads, and rivers, the stronger their
impacts on the stability of the slope.

With a specific purpose to test the impacts of completeness
of roads and rivers, we set up two groups of these two
linear features for modeling: (1) main roads (highways and
railways) and big rivers and their major tributaries and (2)
main roads, secondary roads (provincial and county levels) and
countryside roads, and big rivers with their major tributaries,
subtributaries, and streams.

According to the field investigations undertaken in the period
July–October 2019 and August 2020 and prior knowledge of
experts, these features were largely divided into two scales:
large and small. The large-scale main roads were categorized
into buffers of 0–60, 60–120, 120–180, and >180 m, and
the small secondary and countryside roads into 0–30, 30–
60, 60–90, and >90 m. For the big rivers and faults
(>10 km), buffer zones of 0–90, 90–180, 180–270, 270–360,
360–450, 450–540, and >540 m were derived, while for small
rivers or subtributaries and faults (<10 km), smaller buffers
of 0–30, 30–60, 90–120, 120–150, 150–180, and >180 m
were generated.

Rainfall
Rainfall is a salient triggering factor for landslides as it constitutes
slope runoff, leading to soil erosion and lubrication of potential
sliding surfaces. Rainfall may increase the load of rock and soil
and reduce the resistance from underlying rocks. Usually, after
a continuous rainfall reaches a certain threshold, landslides take
place (Guzzetti et al., 2008). The distribution of heavy rainfall
affects the concentration of landslides (Shan et al., 2004). Because
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FIGURE 3 | Landslide proneness factors used in this research, taking the following as an example: (A) slope, (B) aspect, (C) RDLS, (D) roads, (E) rivers, (F) faults,
(G) lithology, (H) NDVI, and (I) land cover.

of the subtropical monsoon climate, Jiangxi receives abundant
rainfall and frequent heavy rains, which strongly provoke the
occurrence of landslides. The annual rainfall in Jiangxi ranges

from 1,361.6 to 2,037.4 mm (Figure 2). As landslides occur
mainly in spring and early summer from March to July, especially
from June to July, the mean annual rainfall and the mean
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accumulated March–June, March–July, and May–July rainfall of
the period 1981–2010 were produced for hazard analysis.

Lithology of Strata
Lithology plays a certain role in landslide events as it constitutes
different resistances and degrees of propensity to this hazard
(Yu, 2003). In addition, different lithologies may be weathered
into different regoliths and soils. Lithological properties of
the study area can be largely divided into weathering crust
(including soil), sandstone, metamorphic rocks, conglomerate,
shale, granodiorite, limestone, volcanic rocks, basic rocks, and
granitic rocks (Figure 3G).

NDVI
The NDVI reflects the growth status and coverage of vegetation
(Tucker, 1979). It is a widely used vegetation index for land cover
characterization (Tucker, 1979; Huete et al., 1997; Walsh et al.,
2001; Wu, 2014; Wu et al., 2016). The soil and water conservation
effect of vegetation reduces surface runoff and soil erosion. At
the same time, the biological weathering of vegetation also causes
certain damage to rocks and soils (e.g., rock breakup process
by plant rooting). Though it is not absolute, slopes with more
abundant vegetation are more resistant to landslide than bare
soils. Therefore, the occurrence of landslides is often related to
vegetation coverage. The NDVI value was calculated from the
November MODIS data from 2005 to 2010, and that below 0
(mostly water-bodies) was replaced by zero, and finally, its value
ranges from 0 to 0.92 (Figure 3H).

Land Cover
Different types of land cover have different vegetation properties
and different effects on surface water and soil conservation, which
are associated with the slope surface stability, enforcing to a
certain extent impacts on the occurrence of landslides. The main
land cover types are croplands, grasslands, forests, woodlands,
wetlands, artificial lands, barelands, and water bodies (Figure 3I).

Methods
IV Analysis
IV was used in the fields of geology and mineral prospecting in
early times, converting the measured values reflecting various
influencing factors into the IV. Later, some scholars transformed
it into a bivariate statistical analysis, which can combine the
subjective estimation of experts with objective data. The IV
analysis is to analyze the possibility of landslides under similar
conditions by counting the information of past landslides. Hence,
Gao et al. (2006), Sharma et al. (2015), and Ren et al. (2018)
considered that this IV represents regional stability.

Landslide information is calculated by the IV in each subset of
the selected indicator. The IV of each factor is overlaid on each
other to calculate the possibility of landslides in the study area.
The greater the IV, the higher the possibility of a landslide or vice
versa (Dai, 2013). The possibility of landslides can be evaluated by
the amount of information or IV in the prediction process. The
formula of the information model is shown as follows:

I
(
y, x1, x2, x3, · · · , xn

)
= ln

P
(
y|x1, x2, x3, · · · , xn

)
P
(
y
) (1)

where I is the IV, P is the probability of landslide hazard
occurrence for each evaluated indicator, and P(y) denotes the
probability of landslide occurrence in the normalized treatment
area; x1, x2, x3,... xn are the influencing factors of geohazards.
Actually, the final form of Equation 1 can be further simplified
and presented as follows:

I
(
y, x1x2x3 · · · xi

)
= ln

Ni/N
Si/S

(2)

where N is the total number of landslides (points or sites)
in the study area; Ni is the number of landslides in each subset
of the given factor; S is the total pixel number of assessment
units in the study area; Si is the total pixel number of each
subset of the given factor; and I(y, x1x2x3 . . . xi) is the IV of
each factor contributing to the landslide hazard. IV can be both
positive (favorable) and negative (unfavorable). Taking the geo-
environmental factor slope as an example, we consider that a
slope of <3◦ is stable and is selected for non-risk sampling,
subsetting started with 3◦ upward by an interval of 5◦ up to
>38◦, and IV was calculated using Equation 2 and is shown in
Table 2.

LRM
LRM is a non-linear statistical model in which the variables
can be either continuous or discrete. In the assessment of
geological hazards, the data combined with continuous and
discrete variables are to be comprehensively processed (Nandi
and Shakoor, 2010; Zhao et al., 2019). LRM has been widely
used in land cover change estimation (Mertens and Lambin,
2000; Serneels and Lambin, 2001; Wu, 2003) and disaster
prediction (Nandi and Shakoor, 2010; Zhao et al., 2019) and is
able to reveal the relationship between the dependent variable,
i.e., change or disaster occurrence (with 1 indicating that
an event occurred and 0 indicating that no event occurred),
and multiple independent variables, i.e., spatial determinants
or hazard factors.

When the probability of an event is P with a value range of (0,
1), the probability of the event not occurring is 1−P. If P is close
to 0 or 1, it is difficult to capture its value, and thus, it is necessary
to transform it into a logarithm function, i.e., ln(P) = ln(P/1− P),
which is called a logit transformation, in which

P =
exp(Z)

1+ exp(Z)
(3)

where
Z = α+ β1x1 + β2x2 + · · · + βnxn (4)

P =
exp(α+ β1x1 + · · · + βnxn)

1+ exp(α+ β1x1 + · · · + βnxn)
=

1
1+ e−(α+β1x1+···+βnxn)

(5)
where P is the probability of an event occurrence, e the natural
logarithm, α the intercept (a constant), and βi (i = 1, 2, 3, . . .,
n) the regression coefficient corresponding to the independent
variable xi (i = 1, 2, 3, . . ., n). In our case, since the IV was
calculated based on the subsets of each geo-environmental factor,
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TABLE 2 | Information values (IVs) of different subsets of the geo-environmental factors contributing to landslides.

Factors Subsets Subset area
(%)

Number of
landslides (%)

IV Factors Subsets Subset area
(%)

Number of
landslides (%)

IV

Slope (◦) <3 15.20 3.36 −1.51 Rainfall (mm) <1,500 3.68 3.57 −0.03

3–8 26.75 19.07 −0.34 1,500–1,550 11.93 10.77 −0.10

8–13 17.55 27.11 0.44 1,550–1,600 17.31 14.81 −0.16

13–18 13.77 22.57 0.49 1,600–1,650 16.81 14.73 −0.13

18–23 10.85 14.55 0.27 1,650–1,700 12.60 12.09 −0.04

23–28 7.57 7.82 0.03 1,700–1,750 10.88 9.80 −0.10

28–33 4.55 3.54 −0.25 1,750–1,800 9.44 10.98 0.15

33–38 2.32 1.64 −0.35 1,800–1,850 8.68 8.79 0.01

>38 1.44 0.68 −0.76 1,850–1,900 6.13 10.46 0.53

>1,900 2.52 3.99 0.46

RDLS (m) <30 25.78 1.50 −2.84 Road (m) <30 26.39 1.49 2.87

30–60 20.36 26.42 0.26 30–60 19.59 1.47 2.59

60–90 16.42 35.59 0.77 60–90 12.21 1.46 2.12

90–120 14.11 20.45 0.37 >90 34.72 91.49 −0.97

120–150 10.19 10.07 −0.01 <60 3.06 1.41 0.78

150–180 6.31 3.90 −0.48 60–120 2.51 1.36 0.61

180–210 3.50 1.43 −0.90 120–180 1.52 1.32 0.14

>210 3.32 0.65 −1.64 >180 34.72 91.49 −0.97

River buffer (m) <30 1.29 2.61 0.70 <30 0.35 0.48 0.32

30–60 1.29 2.93 0.82 30–60 0.35 0.41 0.15

60–90 1.28 2.90 0.81 Fault buffer (m) 60–90 0.35 0.42 0.18

90–120 1.28 3.06 0.87 90–120 0.35 0.63 0.59

120–150 1.27 3.08 0.88 120–150 0.35 0.26 −0.32

150–180 1.26 2.99 0.86 150–180 0.35 0.42 0.18

>180 89.87 81.65 −0.09 >180 96.62 95.42 −0.01

<90 0.42 0.06 −1.95 <90 0.21 0.39 0.61

90–180 0.42 0.20 −0.77 90–180 0.21 0.38 0.57

180–270 0.41 0.15 −1.01 180–270 0.21 0.26 0.18

270–360 0.41 0.11 −1.35 270–360 0.21 0.33 0.44

360–450 0.40 0.14 −1.08 360–450 0.21 0.39 0.59

450–540 0.39 0.15 −0.95 450–540 0.21 0.23 0.05

>540 89.87 81.65 −0.09 >540 96.62 95.42 −0.01

Litho. Water body 2.22 0 0 Litho. Weathering crust/soil 10.02 0.63 −2.77

Limestone 4.50 4.38 −0.03 Basic rocks 0.03 0.08 0.79

Volcanic rocks 0.01 0.02 0.86 Granodiorite 18.26 29.33 0.47

Sandstone 10.73 5.18 −0.73 Shale 3.86 3.21 −0.18

Metamorphic rocks 30.63 38.35 0.22 Conglomerate 19.55 18.36 −0.06

Granitic rocks 0.17 0.48 1.02

Note: For rivers and faults, the parts left by small- and large-scale buffering, e.g., >180 and >540 m, or for roads, that is, >90 and >180 m, share the same percentage
of subset area and number of landslides (%).

hence, for the ith factor (i = 1, 2, 3, . . ., k) and jth subset (j = 1, 2,
. . ., n), Equation 5 can be further specified as follows:

P =
1

1+ e−(α+β11x11+···+βnkxnk)
(6)

where P is the probability of landslide occurrence and βij the
regression coefficient of the variable xij (i = 1, 2, . . ., n, factor
number; j = 1, 2, . . ., k, the subset number of factor i), i.e., the
IV of subset ij.

It is seen that the LRM is actually coupled with the IV analysis.
This modeling is able to solve the problem of determining the
weight of assessment factors and integrating different types of

factor data. This may also reduce the influence of subjectiveness
of a single model. The specific operation of model coupling is
to get the IV of each subset of the geo-environmental factor
through the IV analysis and then to input them into the LRM
as independent variables to establish the regression equation in
which the regression coefficient of each assessment factor is to be
calculated (Zhang Q. et al., 2020).

Modeling and Prediction of Landslide Hazard
For assessing the landslide hazards in Jiangxi, 14 geo-
environmental factors were selected. The 9,525 landslide disaster
points collected were randomly divided into a training set
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(TS) and a validation set (VS) at a ratio of 7:3. Also non-
landslide points were chosen from the relatively flat areas (such
as cultivated land and urban areas) with a slope of <3◦ in terms
of Miao et al. (2016) and Zhang Y. et al. (2020), and they were
integrated into the TS and VS. The raster calculator within the
spatial analysis tool of GIS was used to realize the superposition
and calculation of IV for each geo-environmental factor.

Calculation of the IVs
The landslides in the study area are mostly small and expressed in
the form of points. The attribute values of the geo-environmental
factors corresponding to each landslide point were extracted. In
combination with division of the subsets, the IV of different
subsets of each factor was calculated using Equation 2 as
mentioned above, and the results are presented in Table 2, taking
a part of factors as an example.

Correlation Test of the Assessment Factors
To avoid the collinearity of the geo-environmental factors, a
correlation analysis was performed. As shown in Table 3, the
correlation among all the factors is less than 0.3, indicating that
these factors and their division subsets are reasonable.

LRM
All IVs of subsets of each geo-environmental factor were
outputted in DBF format and then converted into an Excel
file. Taking the attributes of landslides and non-landslide points
in the TS as dependent variables and all predictive factors as
independent variables, the binary LRM was realized within SPSS
25, a software package for statistical analysis.

Modeling was conducted in two cases: one with only the major
linear features, e.g., big rivers, roads, and faults, and the other
with both major and minor scales of linear features including
also subtributaries of big rivers and streams, small roads (county
level and commune level), and faults. The modeling results are
presented in Tables 4, 5.

Calculation of Landslide Risk
The calculated regression coefficients (β) were inputted into
Equation 5 to get the LRM:



Y = 0.391x1 + 0.497x2 + 0.937x3 + 0.628x4 + 0.603x5
+0.896x6 + 0.126x7 + 0.159x8−0.263x9 + 0.672x10
+0.465x11 + 0.392x12 + 0.742x13 + 0.294x14 − 0.041

P =
1

1+ e−Y

(7)
where x1 is the IVs of land cover, x2 of lithology, x3 of road,
x4 of river, x5 of NDVI, x6 of the mean annual rainfall, x7 of
May–July rainfall, x8 of March–July rainfall, x9 of March–June
rainfall, x10 of fault, x11 of slope, x12 of elevation, x13 of RDLS, and
x14 of aspect. P is the probability of landslide occurrence, with a
value of 0–1. With the use of the raster calculator tool within GIS
and Equation 5, the probability of landslide hazard in the study
area was obtained.

Landslide Hazard Mapping and Reliability Analysis
The obtained probability of the whole study area was divided
into five hazard levels, i.e., stable (0–0.2), low (0.2–0.4), moderate
(0.4–0.6), high (0.6–0.8), and very high (0.8–1).

Different approaches were used to analyze and compare the
results of landslide hazard modeling. One was to check the
rationality of the number distribution of the actual disaster
points of each risk grades; the second was to assess the accuracy
of hazard zoning through the receiver operating characteristic
(ROC) curve, in which the latter is an effective method to
assess the performance of classification algorithms. The area
under the ROC curve (AUC) is the area between the ROC curve
and the horizontal axis. The larger the AUC value, the better the
prediction accuracy (Wang, 2013).

TABLE 3 | Correlation matrix of 14 geo-environmental factors.

Factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

x1 1

x2 0.017 1

x3 0.017 0.067 1

x4 0.005 −0.023 −0.007 1

x5 −0.111 0.003 0.040 −0.022 1

x6 −0.079 −0.155 0.050 −0.001 0.001 1

x7 0.016 0.022 −0.030 0.011 0.026 −0.145 1

x8 −0.005 0.007 0.032 −0.032 0.023 −0.370 −0.301 1

x9 −0.007 −0.039 −0.053 0.003 −0.033 −0.072 −0.123 −0.456 1

x10 0.007 0.025 0.018 −0.005 0.025 −0.010 0.010 0.025 −0.030 1

x11 0.000 −0.029 0.121 0.075 0.054 0.015 0.004 −0.370 0.020 −0.017 1

x12 0.012 −0.080 0.038 −0.003 −0.050 0.026 0.129 0.021 −0.049 −0.026 −0.073 1

x13 0.003 −0.141 0.033 −0.014 −0.148 −0.005 −0.023 −0.022 −0.007 −0.006 −0.188 −0.216 1

x14 −0.067 0.003 −0.012 −0.016 0.024 −0.005 −0.009 0.007 −0.005 0.011 −0.032 0.003 0.012 1

Notes: x1 is the land cover, x2 lithology, x3 road, x4 river, x5 NDVI, x6 mean annual rainfall, x7 May–July rainfall, x8 March–July rainfall, x9 March–June rainfall, x10 fault, x11

slope, x12 elevation, x13 RDLS, and x14 aspect.

Frontiers in Earth Science | www.frontiersin.org 9 April 2021 | Volume 9 | Article 648342

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-09-648342 April 27, 2021 Time: 16:47 # 10

Ou et al. Assessment of Landslide Hazard

TABLE 4 | Results of logistic regression modeling only with main linear features (Model 1).

Factors β σ wals df sig Exp(β)

Lithology 3.107 0.126 606.795 1 0.000 22.354

RDLS 2.859 0.092 970.230 1 0.000 17.436

Land cover 1.376 0.230 35.882 1 0.000 3.957

NDVI 1.266 0.089 200.888 1 0.000 3.547

Aspect 1.179 0.183 41.441 1 0.000 3.252

Mean annual rainfall 1.144 0.163 49.058 1 0.000 3.139

May–July rainfall 1.096 0.238 21.210 1 0.000 2.993

Road 1.023 0.084 148.019 1 0.000 2.782

March–June rainfall 0.881 0.165 28.630 1 0.000 2.412

Elevation 0.788 0.063 157.889 1 0.000 2.199

River 0.786 0.133 34.865 1 0.000 2.195

Slope 0.767 0.068 127.991 1 0.000 2.153

Fault 0.399 0.366 1.188 1 0.276 1.490

March–July rainfall −0.299 0.226 1.758 1 0.185 0.741

Constant −0.854 0.024 1,218.895 1 0.000 0.426

Notes: β, regression coefficient of each factor in the model; σ, standard deviation; wals, chi-square value; df, degree of freedom; sig, significance; and Exp(β) is
the odds ratio.

TABLE 5 | Results of logistic regression modeling with complete linear features (Model 2).

Factors β σ wals df sig Exp(β)

Road 0.937 0.020 2,174.576 1 0.000 2.552

Mean annual rainfall 0.896 0.125 51.226 1 0.000 2.449

Slope 0.742 0.050 218.114 1 0.000 2.101

Fault 0.672 0.276 5.808 1 0.015 1.959

River 0.628 0.079 63.210 1 0.000 1.874

NDVI 0.603 0.037 258.861 1 0.000 1.828

Lithology 0.497 0.056 78.026 1 0.000 1.643

RDLS 0.465 0.034 191.772 1 0.000 1.592

Elevation 0.392 0.041 90.567 1 0.000 1.480

Land cover 0.391 0.107 51.226 1 0.000 1.479

Aspect 0.294 0.122 5.808 1 0.016 1.341

March–July rainfall 0.159 0.204 0.606 1 0.436 1.172

May–July rainfall 0.126 0.177 0.507 1 0.476 1.134

March–June rainfall −0.263 0.144 3.316 1 0.069 0.769

Constant −0.041 0.026 2.345 1 0.126 0.960

RESULTS

Based on the above analysis and modeling, the results obtained
are presented in this section.

Landslide Hazard Models and Maps
Tables 4, 5 show the results of LRM for landslide hazard and
the related coefficients of each geo-environmental factor. The β

value represents the weight of each factor in a landslide event.
The significance of each factor is judged by comparing the value
of wals or sig. The larger the value of wals or the smaller the value
of sig, the higher the significance (Liang and Cui, 2010). Clearly,
in comparison with Table 5, the LRM of Table 4 is something
not logical as the roles of lithologies and RDLS are exaggerated
and those of roads, rivers, and slopes are underestimated. There
is more detail in the discussion.

The probability-based hazard zoning map based on the results
from Table 5 is shown in Figure 4, and from the statistics, it is
known that stable, low, moderate, high, and very high hazardous

areas take up respectively 76,282.21 km2 (46.36%), 44,713.33 km2

(27.17%), 30,802.22 km2 (18.72%), 6,659.40 km2 (4.05%), and
6,091.74 km2 (3.70%).

From this risk map, we get to know that areas prone to
landslide are those with a slope of 12–23◦, within the scope of
150 m from the rivers and 100 m from the road and with an RDLS
of 60–140 m, where annual rainfall is greater than 1,700 mm. In
addition, landslides occur more frequently in low-altitude areas
of mountainous and hilly slopes, where human activities are
relatively intense.

Reliability of the Risk Map
(1) Assessment of the risk maps from the LRM of Tables 4, 5
vs. the VS (field points not used for training) demonstrates a
significant difference in prediction of the very high and high
risk zones (Tables 6, 7). These two zones from the LRM of
Table 4 (33.15%) are much larger than those from the LRM of
Table 5 (7.75%).
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FIGURE 4 | Landslide hazard map of Jiangxi derived from a logistic regression model with complete linear features (Table 5).

The observed VS landslide points were projected into the
different risk zones, and we found that a large proportion falls in
the very high and high hazardous zones and that the stable zone
has a little percentage. The corresponding ratio (Rei) between the
percentage of landslide points of the VS falling in each grade (Gei)
and the percentage of the area of each grade to the entire study

area (Sai) should have a clear increase (Tian et al., 2016) if the
prediction is reliable. From the calculation results (Tables 6, 7A),
Rei(I) < Rei(II) < Rei(III) < Rei(IV) < Rei(V) meets these
requirements, but Table 7 from the LRM with complete linear
features seems much better as very high and high risk zones are
much narrower or, rather, more accurate than those from Table 6.
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TABLE 6 | Distribution of the VS landslides in different hazard zones derived from Model 1 (Table 4).

Hazard level Number of VS Proportion of VS (Gei ) Zoning area (km2) Proportion of zone area (Sai ) Rei = Gei/Sai

Stable 179 6.26% 74,371.59 45.20% 0.14

Low 208 7.27% 18,255.39 11.09% 0.66

Moderate 343 11.99% 17,373.03 10.56% 1.14

High 614 21.47% 21,273.36 12.93% 1.66

Very high 1,516 53.01% 33,275.63 20.22% 2.62

TABLE 7 | Distribution of the landslides in different hazard zones derived from Model 2 (Table 5).

(A) Validation set (VS: 30%)

Hazard level Number of VS Proportion of VS (Gei) Zoning area (km2) Proportion of zone area (Sai) Rei = Gei/Sai

Stable 65 2.28% 76,282.21 46.36% 0.05

Low 310 10.85% 44,713.33 27.17% 0.40

Moderate 358 12.56% 30,802.22 18.72% 0.67

High 367 12.85% 6,659.40 4.05% 3.18

Very high 1,756 61.48% 6,091.74 3.70% 16.61

(B) Training set (TS: 70%)

Hazard Level Number of TS Proportion of TS (Gei) Zoning area (km2) Proportion of zone area (Sai) Rei = Gei/Sai

Stable 232 3.48% 76,282.21 46.36% 0.08

Low 694 10.41% 44,713.33 27.17% 0.38

Moderate 796 11.94% 30,802.22 18.72% 0.64

High 735 11.03% 6,659.40 4.05% 2.72

Very high 4,208 63.14% 6,091.74 3.70% 17.06

(2) The ROC curve is an efficient approach to assess the
performance of classification algorithms. According to a series
of different dichotomous methods, the curve is drawn with
sensitivity as ordinate and 1 - specificity as abscissa, reflecting
the restrictive relationship between sensitivity and 1 - specificity
(Tian et al., 2016). The AUC is a standard used to measure the
quality of the classification model. The AUC value is the area
between the ROC curve and the horizontal axis. The larger the
AUC value, the better the prediction accuracy (Wang, 2013).
Based on the GIS interface, the landslide hazard map was sampled
corresponding to the points in the VS, and the ROC curve and
AUC value of the model are shown in Figure 5.

The AUC from LRM of Table 5 is 0.863. The accuracy of
the model is more than 86%, indicating that the IV-based LR
modeling for landslide risk prediction and zoning allows us to
achieve satisfactory results of high reliability, in particular with
complete linear features.

DISCUSSION

Rationality of the IV-Based LRM
Approach
The above research shows that the results of risk zoning are
basically consistent with the distribution of the regional historical
landslides. With a rather complete inventory of the landslide
data, our approaches composed of IV analysis and LRM with

complete linear features allowed us to achieve landslide risk
prediction with high reliability with an accuracy of >86%
against the VS. Actually, Du et al. (2017); Fan et al. (2018),
Tian et al. (2020), and Zhang Q. et al. (2020) have conducted
landslide susceptibility assessment at the local scale using
similar approaches but with an accuracy of about 79–84%. We
hence believe that the proposed methodology has improved
the reasonableness for regional-scale studies, and it shall be
extendable to other similar provincial and regional landslide
risk assessments.

Actually, Tian et al. (2016) and Zhang (2019) have,
respectively, employed CF-based LRM for landslide risk analysis
in Guangdong and Shaanxi. Their results show that 57.99 and
60% of the field-observed landslides fall in the very high risk
areas (22.15% of the total area, with an AUC of 0.782, and 10.03%
of the total area with an AUC of 0.890, respectively). However,
our analysis revealed that 74.33% of the landslides of the VS
are located in the high and extremely high risk zones (7.75% of
the total study area). This indicates that our analysis provides a
more accurate prediction in locality of the potential hazards as we
have used more geo-environmental factors and a better sampling
scheme, e.g., division of the subsets, and used a higher-resolution
DEM with more detailed factors.

Though rational weight assignment in terms of the propensity
to landslide as applied by Chu (2012), Wang and Wang (2017),
Zhang Y. et al. (2020), and see text footnote 1, appears plausible,
a significant advantage of our approach lies in the fact that
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FIGURE 5 | Receiver operating characteristic (ROC) curve of the information value (IV)-based logistic regression (LR) modeling results: (A) with main linear features
and (B) with complete linear features.

the combination of expert knowledge-driven and data-driven
approaches avoids the subjective weight assignment to the
geological strata and linear features after buffering. At the same
time, the prior knowledge of experts obtained in the field is also
considered important to achieve modeling and prediction with
higher reasonableness.

Importance of the Predictive Variables
The six most important independent variables revealed by LRM
with complete linear features are roads, annual rainfall, slope,
faults, river, and NDVI. These variables are more or less similar to
those obtained by Zhang Y. et al. (2020) and see text footnote 1.
For both local and provincial landslide hazard predictions, roads,
rainfall, and slope are always the most important factors.

Findings and Existing Difficulties
As previously expected, one finding is that given the same
condition of other planar factors, the completeness of the
linear features will be beneficial for a reliable prediction of
landslide hazard. It is essential to use complete linear features,
or rather, to use linear features that are as detailed as possible
even for regional- and provincial-scale assessments. Coarse-
resolution and major feature-based modeling and prediction
may lead to a strong bias and even failure. This would be
helpful for implementing the disaster reduction and prevention
measures of governments.

Another surprising finding is that the slope of the most
probable landslide occurrence in Jiangxi is low, about 3–23◦, in
which 83.3% of the total landslides have taken place (Table 2),
much lower than the threshold of 28–35◦, proposed for natural
landslides by Fan et al. (2016). Zhang Y. et al. (2020) and (see
text footnote 1) have also discovered a similar result. This may
be due to (1) the uniformization of the realistic relief by the
moderate resolution of DEM, 30 m, and the DEM-derived slope
that is lower than the real one and (2) human activity, especially
the development of the road network and urbanization through

slope cutting, which has led to slope failure and reduced landslide
slope threshold.

It is worth noting that while conducting IV analysis, we
noted that area with a slope of < 3◦ is also distributed with
3.36% of the total landslides (Table 2). This may result from
the slope homogenization as mentioned above. Thence, for
regional- and even national-scale landslide hazard assessments,
coarser-resolution DEM (such as SRTM, 90 m) data are
not recommended as they may hide most of the small-scale
landslides (e.g., several tens to several hundreds of square meters
in surface area).

Another problematic issue arising in our study is the
utilization of the MODIS NDVI, with 250 m of resolution.
This factor is not as important as DEM but clearly not ideal
for representation of the greenness and coverage, in particular
of forests and woodlands because of their heterogeneity.
Nevertheless, for an often cloudy province, it is extremely difficult
to obtain cloud-free November Landsat images of a 5-year period
for such a large area. Hence, to use the MODIS NDVI was
the only choice.

Comparative Verification
Zhang Y. et al. (2020) and see text footnote 1 have taken
advantage of the RF algorithm to assess the landslides in
Guixi and Ruijin in Jiangxi, respectively. We compared our
provincial/regional-scale IV-based LR modeling results with the
local risk maps of Guixi and Ruijin and found a good agreement
between the percentages of the observed landslides falling in the
predicted high and very high risk zones. In Guixi, 81.69% of the
total landslide points and 79.27% of the VS are distributed in the
very high and high risk area (Zhang Y. et al., 2020), whereas see
text footnote 1 illustrated that 92.67% of the total landslide points
and 86.59% of the VS fall in these two zones in Ruijin. This means
our risk modeling and prediction results for the Jiangxi Province
are reliable and of practical value to provide technical support for
disaster reduction and prevention in this province.
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CONCLUSION

In this paper, IV-based LRM for regional-scale landslide hazard
mapping was applied to a complex disaster development
and occurrence environment, namely the Jiangxi Province.
The reliable results may provide technical support for
landslide hazard reduction and prevention action at local- and
provincial-scales.

One may think that it is enough to use large scale and the
main linear features for regional-scale landslide risk modeling.
However, this study reveals that it is essential to employ factors
of all scales or as detailed as possible to achieve a reliable and
accurate prediction.

From both local and regional/provincial-scale studies, it
is uncovered that slope instability is mainly caused by road
construction and housing development through slope cutting
and triggered by rainfall. Hence, it is particularly important for
engineers to select sites of stable geological and environmental
conditions for road system development and urban planning
to minimize the landslide risk. This is the precondition for
a holistic and optimal design of infrastructures and urban
planning, which is necessary for regional- or provincial-scale
socioeconomic development.
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