AUTHOR=Hussain Syed Asim , Han Feng Qing , Ma Zhe , Hussain Amjad , Mughal Muhammad Saleem , Han Jibin , Alhassan Abdullah , Widory David TITLE=Origin and Evolution of Eocene Rock Salts in Pakistan and Implications for Paleoclimate Studies: Insights From Chemistry and Cl Stable Isotopes JOURNAL=Frontiers in Earth Science VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2021.644485 DOI=10.3389/feart.2021.644485 ISSN=2296-6463 ABSTRACT=
The Kohat Basin (KB) lies on the Himalayan Foothills and is of scientific importance as it directly recorded the closure of the Tethys Sea and the Himalayan collision between India, Asia, and a number of other small plates. During the Eocene, after the collision between the Indian and Eurasian plates terminated the Tethys Sea, thick-bedded marine evaporite sequences developed in the KB. In this study, we combined mineralogy, geochemistry, fluid inclusion and chlorine stable isotope compositions to discuss the origin and evolution of the KB Eocene halite deposits with the ultimate objective of defining the paleoclimate that was prevailing in Asia during the Eocene. Our results showed that halite samples were SO42− rich (225–370.103 ppm) and Br− poor (<3 ppm). Cl−, B+, Mg2+, K+, SO42− and very low Br concentrations as well as the (Br/Cl) ratios indicated that halite resulted of a mixture of solutions with variable compositions and that dissolution, recrystallization and a progressive decrease in dolomitization were the mechanisms leading to the formation of these evaporites. A Br/Cl vs Cl plot revealed that the end members involved were: seawater (sw), saline waters and/or freshwaters. The recrystallization process prevented identifying the primary structures and primary fluid-inclusions. Most of Cl isotope compositions (−0.54‰<