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Elastic interactions between fractures will greatly affect the effective elasticity, which, in

turn, will reshape the effective fracture parameters. The disturbance will be more complex

in the fault zone due to the complicated fracture distributions. This problem is addressed

by the comparison of two types of solutions: one containing the stress interaction while

the other one excluding the stress interaction. The gap between the two solutions allows

the quantitative estimation of stress interactions on elasticity. Furthermore, based on the

orthorhombic assumption for fracture clustering in the damage zone, the effect of stress

interaction on the equivalent fracture parameter is estimated. We first characterize the

fracture parameters in the fault damage zone considering more realistic distributions of

fractures. Then, a series of numerical simulations are conducted to study the effective

parameters of the fractured model. Finally, assuming the orthorhombic system of the

fracture clustering, we invert the crack density and validate the accuracy of the inversion

through the incidence angle seismic velocities. Our numerical results suggest that the size

of fractures will determine the dominant type of stress interactions, and thus significantly

reshape the effective properties of the models regardless of the spatial distribution of the

fracture. Furthermore, the stress interactions tend to underestimate the fracture density

for models containing long fractures but generate a relatively satisfactory inverted fracture

density for short fractures.

Keywords: stress interaction, fracture clustering, damage zone, inversion, modeling

INTRODUCTION

In general, local stress distribution generated by a single crack hardly influences their neighbors
for a sparse concentration for cracks, which, however, would be significant as the crack density
exceeds the dilute limit (Zhao et al., 2015; Cao et al., 2020a). That is, for a small fracture density,
the resultant effective compliance tensor depends linearly on the crack density but non-linearly for
a high concentration for cracks, implying a non-negligible effect of stress interactions.

Actually, there are two types of stress interactions, namely shielding and amplification,
with opposite signs (Cao et al., 2019). Stress shielding considerably stiffens rocks while stress
amplification appreciably reduces the effective elasticity (Zhao et al., 2015). Furthermore, the
shielding and amplification effect dominate for stacked cracks and co-planar cracks, respectively
(Grechka and Kachanov, 2006b). The effect of stress interactions has been described by both
numerical simulations and analytical expressions of the effective elasticity for the fractured media
in a series of publications (Kachanov, 1993; Hopkins, 2000; Lapin et al., 2018; Cao et al., 2020a).
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Many effective analytical medium theories have been
developed for the fractured media, including the self-consistent
theory (SC), differential effective medium (DEM) theory, and
T-matrix solution (Jakobsen, 2012), and a comprehensive review
of these theories can be found in Mavko et al. (2009). These
methods could be used to characterize the mechanical properties
of an effective sample considering the stress interactions. Besides
the analytical solutions, a series of numerical solutions have also
been developed for characterizing the fractured media (Masson
and Pride, 2007). Using the finite-element (FE) solution,
Wenzlau et al. (2010) obtain five independent elastic moduli
in a heterogeneous layered medium. Similarly, Quintal et al.
(2011) propose a computationally efficient method to solve Biot’s
quasi-static equations of consolidation. Furthermore, based on
the solution, Quintal et al. (2012) also obtain S-wave attenuation
for a medium containing periodically distributed circular
inclusions. Due to the tectonic movement, the underground
medium often behaves like a triclinic medium with the highest
degree of anisotropy, which, however, is hard to describe
using the aforementioned numerical methods. Therefore, a
novelty numerical method, developed by Rubino et al. (2016),
is used to solve the problem by generating complex-valued,
frequency-dependent equivalent stiffness tensors, the advantage
of which lies in the quantification of six elastic tensors for the
two-dimensional (2D) case. However, neither the analytical nor
the numerical solutions could explicitly identify the dominant
type of stress interactions. Cao et al. (2020a) proposed a
workflow to address the problem through the gaps between the
analytical results without stress interactions and the numerical
one with stress interactions, making the quantification of stress
interaction possible.

The non-interaction approximation (NIA) or the linear slip
(LS) theory treats the compliance tensors of the fractured rock as
a sum of the compliance tensors of the hostmatrix plus individual
fractures, which works well for a low concentration for cracks,
and thus provides a benchmark for a quantitative estimation of
stress interactions. However, when applied to fractured solids,
NIA has a larger-than-expected range of applicability in the cases
of dilute limit as well as the high fracture densities (Grechka and
Kachanov, 2006b). The reason lies in that, the opposite effects
of shielding and amplification largely cancel one another in the
medium with the fractures distributed randomly (Lapin et al.,
2018), thus making the result similar to that of the NIA solution.

Strictly speaking, only the equivalence between the normal
fracture compliance and the shear fracture compliance could
ensure the orthorhombic symmetry of the fractured medium
(Schoenberg and Sayers, 1995). However, Kachanov (1993)
believes that, in the NIA approximation, effective elasticity for
the cracked model could also be orthorhombic. Based on this,
Grechka (2007) extends the case to the transversely isotropic with
a host with a vertical symmetry axis (VTI), which also satisfies
the aforementioned orthorhombic assumption. Therefore, it is
possible to retrieve some key parameters related to the fractured
information based on seismic recordings such as fracture density
(Barbosa et al., 2018).

In the damage zone, fractures often exhibit spatial variation
in the petro-physical properties, such as characteristics of the
fracture length distribution (Lei and Gao, 2018) and the spatial

distribution for the fractures inside (Harris et al., 2003). In recent
years, there have been some attempts at describing the fracture
length distribution based on the power law. Hunziker et al. (2018)
adopted the power law to describe the fracture length distribution
for the systematic exploration of the attenuation sensitivity to
the properties characterizing the fracture network. Lei and Gao
(2018) also characterize the stress variability in geological media
based on the assumed synthetic fracture networks following
power law length scaling. On the other hand, the fracture also
exhibits in some forms of spatial distribution (Odling et al., 2005).
The aspect ratio (4), proposed by Jakobsen et al. (2003), is used
to characterize the fracture spatial distribution, which, however,
is more complex in nature.

For example, the fracture clustering in the damage
zone, often distributed in a complex pattern and, hence,
characterizing realistic spatial distributions of fractures
quantitatively, is necessary for an accurate interpretation of
seismic measurements. Savage and Brodsky (2011) investigate
the development of fracture spatial distributions as a function
of displacement to determine whether damage around small
and large faults is governed by the same process. Harris et al.
(2003) also capture the characteristics of the damage zone using
distance from the fault surface. Although the fracture clustering
in the damage zone is a rather common scenario in nature,
description of the effects of stress interaction on the elasticity and
effective fracture parameters of the damage zone remains largely
unexplored, partly due to the limitations of the analytical models
as well as the high computational cost because of the complex
fracture distribution.

In this study, the authors address this problem by the
following procedures. First, we develop a numerical model
for the fracture clustering in the 2D fault damage zone. This
model includes the statistical parameters of the fault damage
zones observed in outcrop, followed by the investigation of
effective elasticity as well as anisotropic parameters of themodels.
Finally, assuming the damage zone possesses the orthorhombic
symmetry in the NIA, the fracture parameters for two sets of
orthogonal fractures are inverted, based on which we could
obtain the incidence angle dependency of the seismic wave.

GENERATION OF FRACTURE
CLUSTERING IN THE FAULT DAMAGE
ZONE

For modeling the fracture clustering in the fault damage
zones, the characteristics of the fracture system must be
quantified in advance, including fracture length distribution,
spatial distribution, and orientation distributions. Therefore,
in the following section, detailed information about these
characteristics, and how they are systematically incorporated into
numerical models, is introduced.

Rules for the Fracture Length
The power law for fracture length distribution (Bonnet et al.,
2001) is often used to characterize the natural fracture system.
The stochastic distribution m for the fracture length l (Hunziker
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et al., 2018) is expressed as:

m
(

I, l
)

= dcL
2 (a− 0.1)

I−a

I−a+1
min

I ∈ [Imin, Imax] , (1)

where L is the scale of the modeling domain while Imin and Imax

are the minimum and maximum fracture lengths, respectively.
Furthermore, the maximum fracture length (Imax) is only one-
third of the square length (L/3 = 0.33m), because having
fractures greater than half the sample size would mechanically
weaken the sample. In this study, the size L of the sample
was fixed at 1.0m. Throughout the study, the aperture of the
fracture is set to be 3mm. The exponent a is the power law
length exponent, which affects the relative probability of long
and short fractures. A smaller a prefers the long fractures at the
expense of the short fractures. Here, we would like to set two
values for the length exponent, a = 1.5 and 3, which covers two
scenarios, one dominated by long fractures and the other by short
fractures, respectively.

The parameter dc is the fracture density term, defined as the
number of fracture centers per unit area. However, throughout
the study, the fracture density, e, (Equation 1) is used as defined
by Guo et al. (2018), which is quite different from that defined by
de Dreuzy et al. (2001). As for dc, we set it as a function of the
fracture number as follows:

dc = 0.03n/L2, (2)

where n is the fracture number inside the 2D sample, with four
different values (50, 100, 150, and 200) in our study. The constant
0.03 is an optimized parameter. For keeping the units unchanged,
the factor L2 is imposed into equation 1 as the denominator.

Rules for Fracture Spatial Distribution
In addition to the aforementioned length distribution, particular
focus is also given to characteristics of fracture spatial
distribution, one of the most challenging tasks that remain to
be unexplored.

For fracture clustering, the fracture density often decays away
from the main fault. Moreover, for any fracture, except the
fracture with the smallest length, there is a chance that a smaller
fracture will be clustered about it. That is, each fracture is placed
depending on the location of the long fracture.

To construct such a kind of fractured model, an ellipsoidal
volume with the aspect ratio 4 is generated. This ellipsoid
is supposed to include all centers of the clustering fractures
(Figure 1A). Then, the volume is divided into a series of
concentric ellipsoidal shells (Figure 1B), which cuts the vertical
principal axis into equal parts. The fractures are sorted by
size scale and further divided equally into concentric shells.
The centers of the largest fracture are located inside the
smallest ellipsoidal shell. The successive clusters of fractures with
decreasing scales are then located in successive shells, which are
of increasing volume (Harris et al., 2003).

Based on the extended ellipse around the major fault, a
random proportion of the area (black area in Figure 2) swept
by a radius of this ellipsoidal volume is used to define an

FIGURE 1 | (A) The ellipsoid area, defined by the aspect ratio (4),

encompasses all fractures surrounding the major faults. (B) Concentric

ellipsoidal shells around the major fault in (A). Each shell contains equal

fractures, and thus, the resultant fracture density decreases gradually toward

the outside. The darker area means a greater fracture density.

FIGURE 2 | Location of the fracture center, C. The azimuthal angle θ as well

as the radius OB could be defined according to the random black area swept

out by a radius of this ellipse. Point C is chosen along OB using a normalized

function (Equations 3, 4).

azimuthal angle θ and the radius OB (Figure 2). Compared with
the adoption of the random angle, the use of the swept area (black
zone in Figure 1) would produce a bias toward the major axis of
the ellipse, which is more representative of the natural fault zone.

For the location of the fracture center C, the authors would
like to introduce the normalized function, t(r), as the function
of normalized distance, r, along with the radius OB, with r = 1
being the shell boundary and r = 0 being the shell center. The
normalized function has the form given in equation 3:

t (r) =

{

1 0 ≤ r ≤ p
1
2

[

1+ cos
(

π
r−p
1−p

)]

p ≤ r ≤ 1
, (3)

lOC = lOB × t (r) . (4)

where the value p = 0.15, which is used throughout this
study, resembles a pyramid-like displacement profile, making the
fractures distributed more evenly over the major fault.

For a better description of the generation of the numerical
model, a workflow chart to describe the generation procedure is
presented in Figure 3.

Rules for Fracture Orientation
According to Harris et al. (2003), fractures inside both the Moab
and Ninety Fathom fault damage zones are generally oriented
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FIGURE 3 | A work flow chart to describe the generation procedure for the fracture set in the damage zone.

TABLE 1 | The boundary conditions for the three models (Figure 4).

Figure 4A Figure 4B Figure 4C











T : u3 = −1u

B : u2 = 0

L&R : u2 = 0











T : u2 = −1u

R : u2 = 0

L&R : u3 = 0











T : u2 = 1u

B : u2 = −1u

L&R : Free boundary

Where L, R, B, and T are the left, right, bottom, and top boundaries of the

domain, respectively.

sub-parallel to the major fault. Therefore, in the followingmodels
presented here, the strike of the fractures is set according to the
Gaussian distribution law, each with a standard deviation of 10◦.

A smaller 4 results in a locally dense fracture clustering, thus
leading to more fracture intersections, which, however, would
bias the realistic fracture densities. Therefore, in this study,
none of the fractures inside the models have intersections with
each other.

NUMERICAL METHODOLOGY

Methodology of the Numerical Simulation
Due to tectonic movement, the rock mass often shows a certain
degree of deformation, resulting in the triclinic crystal models
with the highest degree of anisotropy, which could characterize
a homogeneous distribution of cracks.

In order to study the elastic properties of this complex
medium, three numerical simulations with various boundary
conditions are conducted here (Rubino et al., 2016) to obtain
the elasticity matrix of the model. Detailed information
about the process is given in Table 1 and as follows: (1) a
fixed displacement is imposed on the upper boundary while
keeping the vertical displacement to the other boundaries
zero (Figure 4A); (2) the displacement is applied on the
lateral side while keeping the displacement vertical to the
other boundaries zero (Figure 4B); (3) a simple shear test is
conducted (Figure 4C). The displacements 1u are all static
rather than oscillatory.

In this work, for each test (Figure 4) with specified boundary
conditions, the stress–strain relation (Equation D-2) is solved

based on the finite-element method (FEM). Detailed information
on the process can be found in Appendix D.

A cost function based on the three sets of stress–strain
relations could be used to determine the equivalent stiffness
tensors (six unknowns) by using the least square method. Details
describing the process can be found in the publication reported
by Rubino et al. (2016).

Two-Dimensional NIA Solution
According to the NIA theory, the effective elastic compliance
tensor S of a cracked medium is determined by two additive
components: the compliance tensor of the background medium
(Sb) and that of the cracks (1S).

SNIA = Sb + 1S, (5)

where the crack compliance tensor 1S represents the
accumulative contributions of the fractures to the effective
compliance tensors, which is a function of the Eshelby
(1957) tensors:

1S = φ
[

(Si − Sb)
−1 + cb :

(

J− SEshelby
)]−1

, (6)

where ϕ represents the crack porosity, J is the fourth-order
symmetric identity tensor, Si are the compliance tensors of the
individual fractures, and Sbcorresponds to the tensors of host
matrix surrounding the fractures, respectively; the components
SEshelby represents the Eshelby tensor (Eshelby, 1957; Guo et al.,
2019).

For the 2D case, the ellipsoidal fracture inside the volume
could be treated as an infinite cylinder (a3 → ∞); therefore,
we have the Eshelby tensors in Appendix B (Masson and Pride,
2014). Therefore, the input parameters include the tensors of the
host matrix Sb, semiaxis of the fractures, fracture orientations,
Poisson ratio, and so on.

In order to get the compliant tensors, a series of parameters
are input in advance, including the host matrix Sb; all fracture
apertures are assumed to be 3mm; and the fracture length and
the fracture number for two orthogonal fractures are selected by
using ant colony algorithms.

The NIA, considering no stress interactions, works well-under
the dilute assumption of crack densities. Moreover, according to
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FIGURE 4 | (A–C) Schematic illustration of the three tests adopted to get the corresponding stress–strain relations. The thick bold line represents a zero solid

displacement vertical to the edge (Cao et al., 2019). The arrow shows the direction of displacement at the boundary.

FIGURE 5 | Three different fractured models with various length distributions (A) and spatial distributions (4). The relating characteristic exponent a and the aspect

ratio 4 are given at the bottom of each plot. (A) 4 = 0.71 & a = 1.5; (B) 4 = 1.0 & a = 1.5; (C) 4 = 1.0 & a = 3.0.

equation (6), there is no parameter describing the fracture spatial
distribution or fracture size distribution; therefore, it could not
provide detailed information about fracture clustering.

Evaluation of the Stress Interactions
According to Hudson’s theory (Hudson et al., 1996), the effective
stiffness tensors of the medium are composed of three parts:

C
︸︷︷︸

CNUM

= Cb + 1C
︸ ︷︷ ︸

S−1
NIA

+11C, (7)

where the summation of the first and second terms corresponds
to the inverse matrix of SNIA (equation 6), while the third term
11C is the result of the stress interaction between different
fractures. C equals the CNUM (Equation D-2), which could be
obtained through the numerical simulation directly. Therefore,
a comparison between the S−1

NIA and CNUM, allows for the
quantification of the effect of stress interactions.

NUMERICAL RESULTS

In this part, a series of fractured models are introduced, with
various spatial and length distributions. The corresponding
elasticity and anisotropic parameters, affected by the stress
interactions, are then studied using the FEM, respectively.
Finally, assuming the orthotropy of the fracture clustering, we get
the two sets of inverted fracture parameters3.

Fracture Parameter Setup
For a better illustration of the considered fracture networks,
we vary the fracture density (e), fracture size distribution (a in
equation 1), and aspect ratio (4 in Figure 1A) of the fracture
clustering. For each parameter combination, 20 stochastic
fracture networks are generated. Three typical examples are
presented in Figure 5.

For each of the fracture densities (Table 2), a series of
numerical models with a given fracture density is presented, with
the fracture centers located in different areas for each model
(Figure 5).
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We choose the hypothetical dry sample with isotropic
background medium, which has the following parameters: λ =

7.83 GPa; µ = 19.74 GPa (Guo et al., 2019). Moreover, the filling
material is the gas whose Young’s modulus is 0.066 GPa and the
Poisson ratio υ = 0. Additionally, the definition of the fracture
density in the 2D sample is introduced as follows:

e =
nr2

A
, (8)

where n defines the total fracture number inside the 2D sample, r
is the major radius of the elliptical 2D fracture, and A is the area
of the sample (Guo et al., 2018). Detailed information about the
fracture densities for different cases is listed in Table 2.

Effective Elasticity Affected by Stress
Interactions
To gain insight into the dominant stress interactions in the
fracture clustering, the elastic NIA modulus (Equations B-1,
B-2), which neglects stress interactions, is used to compare
with the numerical results considering the stress interaction, the
gap between them allows for a quantitative description of the
dominant stress interactions.

For C33, opposite signs of the gaps between the NIA and the
numerical results can be obtained for both long fractures (a =

1.5 in Figure 6A) and short fractures (a = 3.0 in Figure 6B),
implying different dominant stress interactions determined by
the fracture size. For instance, a smaller C33 produced by

TABLE 2 | Fracture densities for eight cases with various values of a.

Case 1–2 Case 3–4 Case 5–6 Case 7–8

a = 1.5 0.1056 0.1806 0.2938 0.3815

a = 3.0 0.0083 0.0144 0.0258 0.0341

NIA compared with the numerical one implies a dominant
amplification effect, as given in Figure 6A, while a greater C33

obtained from NIA suggests a weakly dominant shielding effect
for case b (Figure 6B; Cao et al., 2020b). Similar rules could also
be applied to the shear modulus C44 in Figure 7.

Moreover, modulus discrepancies between different models
with various aspect ratios (4) of the bounding ellipsoid are quite
different for C33. In Figure 6A, the discrepancies for C33 with
different 4 are negligible for long fractures but more significant
for short fractures (a = 3.0 in Figure 6B). Conversely, C44 with
various 4 is greater for long fractures but almost negligible for
short fractures.

This can be explained by the effect of the fracture interactions.
For long fractures, it is believed that a smaller aspect ratio (4)
leads to a smaller distance between the fracture surfaces, which
thus leads to a greater shielding effect, especially for the models
containing long fractures. However, for the fracture clustering
in this study, most of the long fractures concentrate at the core
part, and therefore, 4 variation contributes little to the distance
between the close fracture, and thus, the additional shielding
effect due to the increment in 4 is comparably negligible. For
short fracture, due to the cancellation of stress interactions
(Kachanov, 1993), the net effect of stress interaction is small,
and therefore, the additional stress interaction caused by a small
variation in 4 will lead to a more significant change in C33. On
the other side, for the shear test (Figure 4C), the shear stress
distribution is quite different from the compressive stress in the
compressive test (Figures 4A,B; Cao et al., 2020a); it is more than
a function of the distance between the ajacent fracture surface;
further exploration is expected in the future.

Anisotropic Properties
Besides the effective stiffness tensors (C44 and C33), the
anisotropic properties of the fractured samples (Figure 5) could
be described by ε and δ. For orthorhombic media, the velocity

FIGURE 6 | C33 as the functions of fracture densities for different models determined by a and 4, using the NIA solution and the numerical method. The lengths of

bars are the standard deviations for 20 different realizations by changing the crack locations with the same crack density.
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FIGURE 7 | C44 as the functions of fracture densities for different models determined by a and 4, using the NIA solution and the numerical method. The numerical

result bars are in line with those in Figures 5, 6.

FIGURE 8 | Anisotropic parameters ε, as the function of fracture density, are presented for various rock samples. The bar centers correspond to the averaged values

of the numerical ε; the bar sizes define their standard deviations. In the legend, 4 is the aspect ratio for the ellipse boundary of the fracture clustering, while a = 1.5 (A)

and 3 (B) correspond to long and short fractures, respectively. The numerical result bars are in line with those in Figure 6.

anisotropic parameters in the 2D can be computed according to
equations C-1, C-2.

For the models with long fractures (a = 1.5 in Figure 8A),
the shielding effect corresponds to a larger C33. Meanwhile, since
the fractures are almost parallel with the X-axis, variation in
C22 due to the stress interaction is negligible. Therefore, the
stress interaction minimizes the contrast between C22 and C33,
corresponding to a decreasing ε, according to equation C-1.

However, for ε in the models with short fractures (a =

3 in Figure 8B), similar discrepancies could be observed, but
in a reverse pattern, that is, the numerical result is greater
than the NIA result. This is understandable since the dominant

amplification effect leads to a smaller C33 (Figure 6B).

According to the definition of δ by Woodruff et al. (2015), δ
means the difference between the short-offset velocity and the
vertical velocity. For the model containing long fractures, the
vertical velocity, mainly determined by the shielding effect, leads

to a hardening effect that compensates for the shrinking elasticity
due to the individual fracture, corresponding to a smaller gap
between the short-offset velocity and vertical velocity, which, in
turn, leads to a smaller δ in Figure 9A. Furthermore, a greater
4 means a less dense fracture clustering, and thus a weaker
shielding effect, corresponding to a greater δ in Figure 9B.

In contrast to the model with long fractures, δ for the model
containing short fractures is greater compared with the NIA
solution (Figure 9B), due to the dominant amplification effect.

INVERSION FOR FRACTURE
PARAMETERS

Actually, amodel containingmultiple sets of vertical dry fractures
in an isotropic background matrix behaves more like orthotropic
media, suggesting that the accumulative contribution of variously
oriented fractures to the effective elastic properties is equivalent
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FIGURE 9 | Anisotropic parameters δ, as the function of fracture density, are presented for various rock samples. The centers of the bars correspond to the averaged

numerical anisotropic parameter. The numerical result bars are in line with those in Figure 6. In the legend, 4 is the aspect ratio for the ellipse boundary of the fracture

clustering, while a = 1.5 (A) and 3 (B) correspond to the long and short fractures, respectively.

FIGURE 10 | A workflow chart to describe the inversion procedure.

to that of only two principal fracture sets (Lapin et al., 2018).
However, previous publications focused on the application of the
approximation in the randomly located models where the net
stress interaction is negligible (Grechka and Kachanov, 2006a,
Grechka and Kachanov, 2006b; Lapin et al., 2018). As for the
damage zone with significant stress interaction, the effects of two
types of stress interactions on the effective fracture densities for
the two orthogonal sets have not been fully explored yet. We first
evaluate the incidence angle dependence of the seismic velocity,
so as to check the accuracy of the inverted result. Then, the
fracture densities, ex and ey, associated with these two principle
fracture sets are inverted from the effective elasticity.

Inversion Methodology
The problem of characterizing multiple fractures has been
studied extensively by Grechka and Tsvankin (2003) and Grechka
(2007). Using 2D NIA, the authors of the previous publications
observed that the accumulative effect of variously oriented
fractures on the effective elasticity approaches that of just two
orthogonal sets of fractures. Thus, we prefer to employ the
NIA solution (Appendix B) to invert the equivalent orthogonal
fracture parameters for two orthogonal fractures.

S=S
(

m̃
)

, (9)

where the unknown vector m̃ for fracture characterization
contains four parameters:

m̃ = {nx, ny, rx, ry}, (10)

where n is the fracture number while r is the radius of the fracture;
the subscripts x and y refer to the principal axes of a 2D Cartesian
coordinate system. In accordance with equation 8, ex and ey for
the two orthogonal fracture sets can be predicted based on the
assumed orthorhombic effective elasticity.

Based on the stiffness tensors cnumij through the numerical

solution (Figures 6, 7), we adopt the 2DNIA to compute Sinversionij

for a trial vector m̃. Using the ant colony algorithm, we could
get the expected fracture parameters, which could minimize
the discrepancies (Equation 11) between the trial result and
the numerical result. Based on the unknowns in the vector m̃.,
the fracture density could be deduced according to equation 6.
Detailed information about the inversion procedure is displayed
in Figure 10.

ζ = min
(m̃)

{

∑

abs
(

cnumij − cinversionij

(

m̃
)
)

/cnumij

}

(11)

Besides, in NIA, the fracture densities for two sets of
orthorhombic fractures could also be obtained directly like
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FIGURE 11 | P-wave (solid lines) and SV-wave (dashed lines) velocities as functions of different incidence angles for six kinds of models. (A) a = 1.5, 4 = 0.71; (B) a

= 1.5, 4 = 0.86; (C) a = 1.5, 4 = 1; (D) a = 3, 4 = 0.71; (E) a = 3, 4 = 0.86; (F) a = 3, 4 = 1. The blue line denotes the results obtained from the numerical

simulations, which is based on the real fracture parameters, while the red line represents the results obtained from NIA, but using the inverted fracture parameters.

the eigenvalues of the second-order fracture–density tensor
estimated in equation 9.

α=

L
∑

(l)

e(l)n(l)n(l). (12)

The difference between the two types of fracture densities
lies in that, both densities fit well with each other under the
dilute fracture density assumption. However, at high fracture
densities, the two densities will be quite different due to the stress
interactions, which also allow for a quantitative description of the
stress interaction on the inverted fracture densities.

Incidence Angle Dependence of the
Inverted Seismic Velocity
So far, the inversion methodology based on the orthorhombic
assumption for fracture clustering has been displayed. In
the following, by employing the inverted fracture parameters
(Equation 8), the comparability of the inverted result through the
incidence angle dependence of the seismic wave is to be checked.

The inverted P- and SV-wave velocities, as functions of the
inverted parameters for the two equivalent sets of fractures (blue
solid/dashed lines in Figure 11), fit well with the numerical
seismic velocities based on the real fracture parameters (Equation

A1–A4), suggesting that the inverted parameters obtained
are reasonable and that, as expected, the accuracy of the
orthorhombic approximation is acceptable.

However, some minor gaps in the magnitude of the SV-
wave anisotropy exist, especially for the case with long fractures
(Figure 11A). These are expected for the following reasons: for
long fractures (a = 1.5, Figures 11A–C), the medium is the
one with the triclinic system, and thus, the nonzero C24 and
C34 (Equation 5), due to the stress interactions, lead to greater
SV-wave fluctuations.

Effect of Stress Interactions on the
Inverted Fracture Densities
Considering the good agreement between the numerical
velocities and the inverted data (Figure 11), the authors would
like to further explore the effect of stress interactions on the
inverted fracture parameters.

For long fractures (a = 1.5 in Figure 12A), the inverted ey
is gradually biased toward the smaller values, especially at the
high fracture densities, where the relative error reaches nearly
50%. A similar bias that was observed by Grechka and Kachanov
(2006b) corresponds to the hardening effect of the shielding
effect. On the other side, for short fractures (a= 3 in Figure 12B),
the greater slope of the inverted fracture density ey (solid lines)
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FIGURE 12 | Principal fracture densities ex and ey for different models. (A) a = 1.5, 4 = 0.71; (B) a = 1.5, 4 = 0.86; (C) a = 1.5, 4 = 1; (D) a = 3, 4 = 0.71; (E) a =

3, 4 = 0.86; (F) a = 3, 4 = 1. The solid line corresponds to the inverted result. The numerical result bars are in line with those in Figure 6. The dashed line

corresponds to ex and ey predicted as eigenvalues of the density tensor illustrated by Equation 10.

suggests a slightly dominant amplification effect of fracture
interactions, whose relative error is about 10%, which is much
smaller compared with that of the long fracture.

Moreover, for both long (Figures 12A–C) and short fractures
(Figures 12D–F), similar gaps between the blue solid and blue
dashed lines for the models with various 4 suggest that aspect
ratio (4) contributes little to inverted fracture densities.

On the other hand, for the wave propagates along with the
fracture surface, the effect of stress interaction is negligible;
therefore, the inverted fracture density ex has an overall
agreement with the NIA ones generally.

Actually, the inverted fracture densities based on NIA share
the same size, which, however, bias the real models with various
length scales and spatial distributions. Furthermore, due to the
limitation of the NIA solution, the inverted result could not
provide information about the spatial distribution of fractures.

DISCUSSIONS

According to many previous publications about the T-matrix
method (Jakobsen, 2012, Jakobsen and Chapman, 2009), the
aspect ratio (4) characterizing the spatial distribution of
fractures (Jakobsen et al., 2003, Zhao et al., 2015) represents

the conditional probability of finding another inclusion
given the position of a known inclusion. However, the
definition of such a parameter limits its application in
describing fracture clustering. In the present work, the
aspect ratio is used to characterize the boundary of the
fracture clustering. Such a definition change for the aspect
ratio (4) allows for the description of the properties for the
fracture clustering.

According to Lapin et al. (2018), for the NIA, the effective
elastic properties of an isotropic matrix with fractures distributed
in certain spatial patterns always possess the orthorhombic
symmetry, regardless of the orientations of the fractures
without the same symmetry. However, due to the effect of
stress interactions, the model behaves like a triclinic medium
rather than an orthorhombic one. Thus, the nonzero moduli
C24 and C34, due to the stress interaction, contribute more
to the SV-wave anisotropy, leading to more obvious SV-
wave velocity fluctuation (such as the SV-wave velocity in
Figure 11A).

Both the fracture size and the aspect ratio of the fracture
cluster contribute to the effective elasticity. However, an
agreement between C33 for the models with various aspect
ratios suggests that the contribution of aspect ratio to the stress
interaction is negligible, partly due to the fact that variation in the
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aspect ratio influences the distance between the short fractures
distributed at the outer part of the damage zone more when
compared to the long fractures at the core part.

It should be noted that all the fractures inside the
cluster have no intersection with each other, which, however,
is counterintuitive to reality. Nonetheless, according to the
conclusion of Grechka and Kachanov (2006b), the fracture
intersections impose negligible influence on the effective tensors.
Therefore, the conclusion presented in this study still holds
acceptable accuracy for the fractured clustering in the field.

Garboczi and Berryman (2001) believe that the error of
the numerical simulation may come from statistical variation
due to the inhomogeneous distribution of fractures. For the
inhomogeneous distribution with a given concentration of
cracks, there are multiple spatial arrangements for the cracks,
which may have somewhat different elastic moduli. The error
size due to inhomogeneous distribution could be assessed by
computing the elastic parameters for various realizations of the
same system. Therefore, all numerical results as well as the
inverted parameters are determined based on the 20 different
realizations by changing the crack locations with the same crack
density, which could guarantee the accuracy of the conclusions in
this study.

Throughout the article, the fracture aperture is set to be 3mm.
However, the aperture varies a lot in the field, which would
also contribute to the effect of stress interactions. According to
current knowledge, the aperture will also affect both types of
stress interactions; further development in this aspect is expected
in the future.

CONCLUSION

Aiming at the damage zone in the fault, numerical models based
on the characteristics of the fracture clustering were built, based
on which the authors analyzed the effective elastic tensors of the
fracturing clusters and estimated the fracture parameters based
on the orthorhombic assumption.

Long parallel fractures tend to generate a strong shielding
effect, which, therefore, contribute more to the C33 and C44, and
a smaller ε. Conversely, the weakly dominant amplification effect

induced by the short fractures leads to smaller C33 and C44, and a
greater ε.Moreover, the effect of the boundary aspect ratio (4) on
the stress interaction for fracture clustering is almost negligible
for long fractures (a= 1.5) but relatively more significant for the
short fractures (a= 3), where a greater4 corresponds to a greater
amplification effect.

The inverted fracture density is also strongly influenced
by the stress interaction. Amplification tends to weakly
overestimate the fracture density while the shielding
effect underestimates the fracture density. Furthermore,
the incidence angle dependency for the P-wave velocity
in fracture clustering is similar to that for the medium
containing two orthogonal or principal fracture sets;
however, the similarity is somewhat less satisfactory for the
SV-wave velocity.
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