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Heavy rainfall and changes in the water levels of reservoirs directly affect the degree of landslide
disasters in major hydropower project reservoir areas. Correlation analyses of rainfall- and
water-level fluctuations with landslide displacement changes can provide a scientific basis for
the prevention and early warning of landslide disasters in reservoir areas. Because of the
shortcomings of the traditional correlation analysis based on linear assumptions, this study
proposed the use of a pseudo-maximum-likelihood-estimation-mixed-Copula (MLE-M-
Copula) method instead of linear assumptions. We used the Bazimen landslide in the
Three Gorges Reservoir Area as a case study to carry out the correlation analysis of the
rainfall, water-level fluctuations, and landslide displacement. First, we selected several
appropriate influencing factors to construct four candidate Copula models and estimated
the parameters using the pseudo-MLEmethod. After the goodness-of-fit test, we selected the
M-Copula model as the optimal model and used this model to study correlations between the
monthly displacement increment of the landslide and influencing factors. We then established
the joint distribution functions of these correlations. We computed and analyzed the overall and
tail correlations between the displacement increment and the influencing factors, and we
constructed the conditional probability distribution of the monthly displacement increment for
different given conditions. The results showed that the pseudo-MLE-M-Copula method
effectively quantified the correlation between the rainfall, reservoir-level fluctuations, and
landslide displacement changes, and we obtained the return periods and value at risk of
the influencing factors of the Bazimen landslide under different rainfall conditions and reservoir-
level changes. Furthermore, the tail correlations between the monthly displacement increment
of the landslide and the rainfall- and reservoir-level changes were higher than the overall
correlations.
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INTRODUCTION

The Three Gorges Hydropower Station is currently the largest
hydropower station in the world, and it is the largest project ever
constructed in China. Since the start of the experimental water
storage in 2003, it has been in continuous operation for 16 years.
Because of the complex geological conditions and the frequent
human activities in TGRA, this area has been prone to frequent
geological disasters over a long period of time (Chen et al., 2008; Yin
et al., 2009; Kirschbaum et al., 2010; Miyagi et al., 2011; Ahmed,
2015). The ecological environment of the reservoir has deteriorated as
a result of landslides caused by heavy rainfall and reservoir water-level
changes, which has become a major potential hazard affecting the
long-term operational safety of major hydropower projects and the
ecological environment of the reservoir (Varnes, 1996). Important
topics in the field of hydrodynamic landslide disaster monitoring and
early warning and prevention include: 1) the analysis of the reservoir’s
hydrodynamic landslide deformation characteristics and the
deformation-induced response, 2) the analysis of landslide
influencing factors and deformation prediction, and 3) the
establishment of a threshold extraction model. To reveal the
disaster-causing mechanism of hydrodynamic landslides in
reservoir areas, it is particularly important to study the correlation
between the influencing factors and the displacement, which holds
great significance for the monitoring and early warning of reservoir
disasters and the prevention and mitigation of geological disasters.

Currently, correlation analysis of influencing factors of landslide
deformation has been based primarily on linear theory. For instance,
some traditional correlation analysis methods, such as linear
correlation analysis, gray correlation analysis, and hypothesis
testing, have been applied to select the influencing factors that
affect the displacement of the hydrodynamic landslide (Ohtake,
1986; Kafri and Shapira, 1990; Wang et al., 2004; Pavan et al.,
2012; Telesca et al., 2012; Miao et al., 2017a). In addition, some
researchers have used autoregressive–moving-average (ARMA) time
series analysis and Pearson product-moment correlation coefficients
(PPCC) to analyze the lagged correlation between the monthly
displacement increments and their influencing factors (Cai et al.,
2016; Cao et al., 2016; Zhou et al., 2016; Li et al., 2018). Moreover,
based on the daily rainfall data for the TGRA, the finite element
method (FEM) and discrete element method (DEM) also have been
used to simulate the effect of influencing factors on landslide stability
and have verified the correlation between influencing factors and
landslide displacement (Kawamoto, 2005; Lollino et al., 2010; Tang
et al., 2017). Data-mining technique and clusteringmethod have been
applied to interpret landslide monitoring data and to select the
influencing factors of the landslide deformation (Shiuan, 2012;
Hong et al., 2016; Ma et al., 2016).

These researchmodels andmethods based on linear theory, however,
can just depict the linear relationship between two variables, and they
ignore the thick-tailed variables. Thus, they cannot satisfactorily represent
the full relationship between the two variables, and it becomes extremely
difficult to accurately measure the correlation structure of the two
random variables when the distribution function of the random
variables is uncertain or too complex (Iyengar, 1997).

Because the influences associated with landslide hazards are
uncertain and dynamic (Bai et al., 2010), a more flexible and

robust nonlinear correlation analysis tool (i.e., the Copula theory;
(Sklar, 1959) has been used to analyze the correlation structure
between variables when it is not certain that linear correlation
coefficients can properly measure the correlation. In addition, the
Copula method offers many advantages over traditional
correlation analysis methods (Sklar, 1959).

Thus, the Copula model often is used to construct complex
multidimensional probability distributions. For example, several
kinds of Copula models were used to generate the joint
probability density distributions of the rainfall, reservoir water-
level changes, and landslide displacement to study their tail
correlation (Motamedi and Liang, 2014; Bezak et al., 2016; Miao
et al., 2017; Li et al., 2018; Wang et al., 2020). These methods,
however, still have limitations (Hu, 2002). The Copula functions that
belong to the elliptic Copula family in the high-dimensional
construction case are extremely difficult, whereas construction of
the Archimedean Copula function is simple. When the correlation
between the random variables is too complex, using a single
Archimedean or elliptic Copula function is more likely to produce
a one-sided description. To solve this problem, the M-Copula
method combing Frank, Clayton, and Gumbel Copula functions
has been used for relationships and risk analysis between two random
variables (Liu and Zhang, 2016). More important, nearly all of these
methods have used the full maximum likelihood estimation (MLE)
method to estimate the parameters of the Copula model. The MLE
method, however, requires prior assumption of the marginal
distribution of the random variables, which directly affects the
results of the parameter estimation if the marginal distribution is
incorrectly selected.

In summary, we proposed a new pseudo-MLE-M-Copula model
to quantitatively investigate the correlation between the displacement
of the Bazimen landslide and the influences of the rainfall and
reservoir water-level fluctuations in the TGRA. This model not
only overcomes the shortcomings of the linear method and more
accurately describes the joint distribution relationship between the
random variables, but also linearly combines the Gumbel Copula,
Frank Copula, and Clayton Copula functions in the Archimedean
Copula family to construct theM-copula functionmodel. Thismodel
is more comprehensive and flexible, allowing it to describe complex
correlations, and also adopts a semi-parametric estimation method.
Thus, the pseudo-MLE, for the parameter estimation of the Copula
model, eliminates the need to assume the marginal distributions and
can effectively reduce the error of the parameter estimation. This
research has provided the scientific basis for the study of reservoir
hydrodynamic landslide disaster-causing mechanisms, landslide
disaster monitoring and early warning, and disaster prevention
and mitigation.

METHODOLOGY

Copula Theory
Copula functions generally include two classes (Reboredo, 2011):
the Archimedean Copula and the elliptical Copula. The elliptical
Copula includes the normal Copula function and the t-Copula
function, whereas the Archimedean Copula family includes the
Gumbel-Hougaard function, the Clayton function, and the Frank
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function. (Mackay, 1986; Nelsen, 1986). The Archimedean
Copula function family has been used widely because of the
simplicity of its computation process and the relative clarity of the
construction model as well as because it is not limited by the
positive or negative correlations between the different variables
(Yan, 2006). Given random variables x and y, the two-
dimensional Archimedean Copula function is defined as follows:

C(u1, u2) � φ−1[φ(u1),φ(u2)], 0< u1 < u2 < 1, (1)

where φ(u) and φ−1(u) are the element generators and their
inverse functions for the Archimedean Copula, respectively; u1 is
the marginal distribution of variable x; and u2 is the marginal
distribution of variable y. The Gumbel, Clayton, and Frank
Copula functions used in this study are shown below,
respectively:

C1(u1, u2) � exp{ − [ − (log u1)β1 + (− log u2)β1](1/β1)},
β1 ≥ 1,

(2)

C2(u1, u2) � (u−β2
1 + u−β22 − 1)−(1/β2), 0< β2 <∞, (3)

C3(u1, u2) � 1
β3

log(1 + (eβ3u1 − 1)(eβ3u2 − 1)
eβ3 − 1

),
−∞< β3 <∞.

(4)

In Eqs 2–4, C1(u1, u2), C2(u1, u2), and C3(u1, u2) are the
Gumbel, Clayton, and Frank Copula functions, respectively; and
α, θ, and c are their corresponding parameters.

In 2002, Hu proved that if these three Archimedean Copula
functions were combined linearly by adding coefficients (Hu,
2002), a mixed Copula function could be formed. The mixed
function, which has all of the good features of the three Copula
functions, can be described from several different angles to depict
the more complex correlations between the variables. The
expression is as follows:

CM � m1C1 +m2C2 +m3C3, (5)

where C1, C2, and C3 are the Gumbel, Clayton, and Frank Copula
functions; m1, m2, and m3 are the weighting coefficients of the
three Copula functions, respectively; and m1, m2, and m3 are ≥0,
and m1 +m2 +m3 � 1.

The tail correlation coefficient (Zhang and Singh, 2007a)
includes the lower-tail correlation coefficient and the upper-
tail correlation coefficient. The lower-tail correlation coefficient
represents the effect on another random variable when one
random variable takes a smaller value and is given by the
following formula:

λlo � lim
u→ 1

P[Y <G−1(u)∣∣∣∣X < F− 1(u)] � lim
u→ 1

Ĉ(1 − u, 1 − u)
1 − u

. (6)

The upper-tail correlation coefficient represents the effect on
another random variable when one variable takes a larger value,
and it is given by the following formula:

λup � lim
u→ 0

P[Y >G−1(u)∣∣∣∣X > F− 1(u)] � lim
u→ 0

C(u, u)
u

, (7)

where u ∈ [0, 1]; and Ĉ � 1 − 2u + C(u, u) is the Copula survival
function. If λlo and λup exist and both are in the interval [0, 1], the
larger the value, the stronger the correlation. If λlo and λup are
equal to 0, the random variables in the upper and lower tails are
independent of each other.

To further study the influence of each influencing factor on the
landslide displacement deformation, we constructed a value-at-
risk (VaR) model (Rockafellar and Uryasev, 2002) and tailed
value-at-risk (TVaR) based on the Copula parameters and
extracted the thresholds. The expression is as follows:

VaRα(x) � F̂
− 1(x), (8)

TVaRα � −∫α

0
VaRr(x)dr

α
(9)

where x is the value of each influencing factor; α is the confidence
level (0.95 in this study); and F̂

− 1(x) is the cumulative probability
density function of the selected optimal Copula function.

Building a Correlation Model Based on a
Copula Function
Data Preprocessing
To analyze the correlation between the rainfall, the reservoir
water-level fluctuations, and the landslide deformation, we
selected the optimal Copula model. From the type of data
source, we knew that the monthly displacement increment, the
rainfall, the two-month rainfall, the one-month reservoir water-
level change, and the two-month reservoir water-level change
were all discrete data. Thus, a discrete data transformation should
be considered when constructing the binary Copula model. In
this study, we used the distribution function transformation
method proposed by Wu (Wu et al., 2009), which could solve
the problem faster. The core idea of this method was that the
random variable X (discrete or continuous) was known, and for
any real number in x ∈ R, k ∈ I, and the defining functions are as
follows:

D(x, k) � P(X < x) + kP(X � x), (10)

where k obeys a uniform distribution and is independent of X.
From this, the generalized distribution function transformation
of X is obtained:

Q � D(x, k). (11)

In this study, we used this method to carry out the generalized
transformation of the four impact factor data sets X and the
monthly displacement increment data Y:

Qx � D(x, k) � P(X < x) + kP(X � x), (12)

Qy � D(y, k) � P(Y < y) + kP(Y � y). (13)

Parameter Estimation
The process of estimating the parameters of these four Copula
functions using the MLE method (Dempster et al., 1977; Liu and
Zhang, 2016) is as follows: Assume that the joint distribution of
two-dimensional random variables is HM , and the marginal
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distribution is continuous; they are F1, F2 respectively. According
to Sklar’s theorem,

HM(m1,m2,m3; β1, β2, β3) � ∑3
j�1

mjCj(F1, F2; βi), (14)

where Cj is the Archimedes Copula function family with
parameter βj, and Cj(F1, F2; βi) is one single Archimedean

Copula model, ∑3
j�1mjCj(F1, F2; βi) is the expression of the

M-Copula model. The main difference between MLE and
pseudo-MLE is that the marginal distribution will be replaced
with the empirical distribution function (Genest, 1987), and the
expression of empirical distribution is as follows:

F̂j(x) � 1
n
∑n

i�11(Xij ≤ t). (15)

So the joint density function with the empirical distribution is:

hM(m1,m2,m3; β1, β2, β3) � z2H
zF1zF2

� ∑3
j�1

mjcj(F̂1, F̂2; βj). (16)

Sample (F1i, F2i)(i � 1, 2, . . . , n), the likelihood function is:

L(m1,m2,m3; β1, β2, β3) � ∏n
i�1

⎛⎝∑3
j�1

mjcj(F̂1i, F̂2i; βj)⎞⎠. (17)

The log likelihood function is:

ln L(m1,m2,m3; β1, β2, β3) � ∑n
i�1
⎛⎝∑3

j�1
mjcj(F̂1i, F̂2i; βj)⎞⎠. (18)

Solving the maximum point of the log-likelihood function, the
pseudo-maximum likelihood estimates of mj and βj can be
obtained:

m̂1, m̂2, m̂3; β̂1, β̂2, β̂3 � argmax ln L(m1,m2,m3; β1, β2, β3). (19)

Goodness-of-Fit Test
The pattern of the correlations between the multidimensional
random variables can be described by the Copula model. The
many types of Copula models reflect the different correlation
patterns. To select the most appropriate Copula model for this
study, we first selected the optimal model based on the Akaike
information criterion (AIC), the Bayesian information criterion
(BIC), and the root mean squared error (RMSE) values. Then, we
used the Kolmogorov-Smirnov test (K-S test) to determine
whether the optimal Copula model reflected the correct
correlation structure between the variables.

The AIC is a judgment method based on the measurement of
information, and it is suitable for testing the Copula models
obtained using the MLE method. The BIC is more sensitive to
models that are overestimated.

AIC � N log⎡⎣ 1
N

∑N
k�1

(xestk − xemp
k )2⎤⎦ + 2n. (20)

BIC � N log⎡⎣1
N

∑N
k�1

(xestk − xemp
k )2⎤⎦ + n logN . (21)

We used the RMSE to describe the error between the
predictive Copula model and the empirical Copula model, as
follows:

RMSE �
��������������∑N

k�1(xestk − xemp
k )2

N

√
, (22)

where xestk represents the predicted estimated values, xemp
k

represents the empirical values, N is the capacity of the entire
sample, and n is the number of parameters in the model.

FIGURE 1 | Flowchart of this research.
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The K-S test (Christian and Bruno, 2008) can be used to test
whether a sample obeys a specified distribution. We constructed
the statistics of the K-S test according to the fact that the
derivative of the Copula function obeys a uniform distribution
within (0, 1). The original assumption H0 was that a partial
derivative of the selected Copula model obeys a uniform
distribution within (0, 1).

Dmax � ��
n

√
max{|Fn(xi−1) − F(xi)||Fn(xi) − F(xi)|}, (23)

where Fn(x) is one of the partial derivatives of the Copula
function; and F(x) is a uniform distribution within (0, 1).

Given a testing level α and a sample capacity n, the fractional
table was used to find the critical value Dn,α. If Dmax >Dn,α, then
H0 is rejected; otherwise, H0 is accepted.

Conditional Probability Distribution and Return Period
We further studied the joint distribution of the two random
variables under different influencing factors (Zhang and Singh,
2007b). The conditional probability distribution was calculated
using Eq. 23, and the periodic variations in the variables were
described using the return period concept, which represents the
number of time intervals per occurrence averaged over a certain

FIGURE 2 | Topographical map of the Bazimen landslide, showing the locations of the monitoring points.

FIGURE 3 | Bazimen landslide accumulated displacement, reservoir water level, and rainfall monitoring curve.
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hydrological variable greater than or equal to a specified value
(Eq. 24).

F(y∣∣∣∣X � x) � C(V ≤ v|U � u) � zC(u, v)
zu

. (24)

T(y∣∣∣∣X � x) � 1

1 − F(y∣∣∣∣X � x) � 1
1 − (zC(u, v)/zu) . (25)

Building the Correlation Model
According to the field monitoring curves for the displacement of
the Bazimen landslide and the reservoir’s water level and rainfall,
we found that the reservoir’s water level, rainfall, and monthly
landslide displacement increment exhibited different trends with
time. First, the annual cycle of the reservoir water-level
fluctuations and the rainfall exhibit a certain periodicity
because of the existence of a rainy season in this region.
Second, the monthly displacement increment of the reservoir
landslide’s deformation exhibited a weak periodicity under the
effects of rainfall and reservoir water-level changes. To reveal the
influences of the rainfall and reservoir water-level changes on the
landslide deformation, in this study, we used the Copula model to
assess the correlations between each influencing factor and the
incremental monthly displacement of the landslide. The work
flow of the correlation analysis of the landslide deformation and
the influencing factors based on the Copula model is shown in
Figure 1. It has two parts: model selection and model application
and correlation analysis.

The specific implementation process is as follows. First, we
selected the appropriate influencing factors to construct the
Copula model, selected the optimal model based on the results
of the goodness-of-fit test, established the joint probability
density distribution functions for the landslide’s monthly
displacement increment and influencing factors, and analyzed
the overall and tail correlations between the influencing factors
and the landslide’s monthly displacement increment. We
constructed the conditional probability distribution model of

the M-Copula function, and then calculated the conditional
distribution of the displacement increment under different
conditions. Accordingly, we obtained the return period of the
displacement increment under the corresponding conditions.
Finally, we extracted the thresholds of the rainfall and
reservoir water-level changes in the reservoir area. This entire
process plays an active role in the prevention and mitigation of
hydrodynamic landslides in the TGRA.

CASE STUDY: BAZIMEN LANDSLIDE

Data Source and Description
The Bazimen landslide is located on the right bank of the
Xiangxi River in the TGRA (Figure 2). The slope is oriented
north-south, and the landslide is spread in a winnowing fan
shape at the foot of the slope. Its elevation is 139–280 m, and it
is high in the west and low in the east. It slopes to the east, and
the slope of the landslide is 10–30°, which is ladder-like and
undulating. The part of the landslide above the water’s surface
is 380 m long, 100–500 m wide, and 10–35 m thick, and it has a
volume of about 2 × 106 m3.

Since the Three Gorges Reservoir Area officially began storing
water in 2009, the Bazimen landslide has experienced significant

FIGURE 4 | Correspondence between the monthly displacement increment of the landslide and the reservoir water-level changes and rainfall at point ZG110.

TABLE 1 | Explanation of all the factors and variables.

Explanation of all the factors
and variables

x1− Reservoir water level drops in 1 month
x2− Reservoir water level drops in 2 months
x1+ Reservoir water level rises in 1 month
x2+ Reservoir water level rises in 2 months
x3 Rainfall in 1 month
x4 Rainfall in 2 month
y1 Monthly displacement increment of ZG110
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deformation with an increasing trend. The growth is
characteristic of a typical step-type hydrodynamic landslide
(Figure 3). The causes of the landslide’s formation and
development are the topography, geology, geologic structure,
other engineering geological conditions, rainfall, earthquakes,
and reservoir water-level changes. The Bazimen landslide is
strongly influenced by the dispatching of the Three Gorges
Reservoir, and its cumulative displacement monitoring data
have a strong correlation with reservoir water-level changes
and the rainfall conditions (Figure 3).

On the basis of this understanding, we developed a model to
analyze the landslide’s deformation triggers and displacement-
related structures using the rainfall and reservoir water-level
changes as the basic triggering factors. The Bazimen landslide
has multiple monitoring points, among which ZG110 and ZG111
have been monitored for the longest time and are located in the
region of the landslide with the largest deformation. The
monitoring data for points ZG110 and ZG111 are
representative and most accurately represent the development
and changes in the landslide displacement. In this study, we

TABLE 2 | Parameter estimation for the Gumbel, Clayton, and Frank Copula models.

Gumbel (α) Clayton (θ) Frank (γ)

Y1 vs. x1+ 1.168 0.337 1.322
Y1 vs x1− 1.236 0.759 1.487
Y1 vs. x2+ 1.324 0.647 2.314
Y1 vs. x2− 1.507 0.596 2.330
Y1 vs. x3 1.085 0.170 0.709
Y1 vs. x3 1.015 0.030 0.135

TABLE 3 | Parameter estimation for the M-Copula model.

M-Copula Weight Copula parameters

WGum WCla WFra Gumbel (α) Clayton (θ) Frank (γ)

Y1 vs. x1+ 0.386 0.280 0.335 1.998 1.507 4.190
Y1 vs. x1− 0.360 0.259 0.381 1.943 1.789 3.123
Y1 vs. x2+ 0.373 0.249 0.378 1.925 1.671 2.330
Y1 vs. x2− 0.354 0.286 0.359 1.764 1.327 3.302
Y1 vs. x3 0.212 0.421 0.365 1.996 1.483 0.490
Y1 vs. x4 0.342 0.249 0.407 1.975 1.263 0.623

TABLE 4 | AIC/BIC values of the Gumbel, Clayton, Frank, and M-Copula models.

AIC BIC

Gumbel Clayton Frank M-Copula Gumbel Clayton Frank M-Copula

Y1 vs. x1+ −287.79 −277.25 −283.57 −292.41 −285.02 −274.48 −280.80 −289.64
Y1 vs. x1− −312.21 −305.08 −299.77 −333.82 −303.78 −298.11 −300.49 −341.04
Y1 vs. x2+ −291.34 −275.05 −283.99 −328.76 −288.57 −272.28 −281.22 −335.99
Y1 vs. x2− −385.04 −359.27 −351.39 −416.10 −410.23 −378.62 −366.50 −423.33
Y1 vs. x3 −252.21 −231.90 −244.75 −254.70 −249.44 −229.13 −241.98 −261.93
Y1 vs. x4 −304.47 −303.69 −304.17 −305.92 −301.70 −300.92 −301.40 −273.15

TABLE 5 | RMSE values of the Gumbel, Clayton, Frank, and M-Copula models.

RMSE

Gumbel Clayton Frank M-copula

Y1 vs. x1+ 0.292 0.306 0.298 0.293
Y1 vs. x1− 0.243 0.236 0.255 0.231
Y1 vs. x2+ 0.288 0.309 0.297 0.236
Y1 vs. x2− 0.189 0.177 0.173 0.163
Y1 vs. x3 0.304 0.307 0.305 0.290
Y1 vs. x4 0.272 0.273 0.273 0.269
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selected the monitoring data for point ZG110 for use in the
research and analysis. As on December 31, 2018, the cumulative
horizontal displacement and cumulative displacement direction
of monitoring point ZG110 were 1525.73 mm and 117°,
respectively.

Selection of the Influencing Factors
The curves illustrating the relationship between the landslide’s
monthly displacement increment, the reservoir’s water-level
changes, and the rainfall at monitoring point ZG110 on the
Bazimen landslide are shown in Figure 4. As can be seen, at
the end of each year when the reservoir’s water level dropped, the
landslide deformation rate was extremely high and underwent
periodic changes. In addition, the influence of changes in the
reservoir’s water level on the landslide deformation was
significant.

The effects of the rainfall-and water-level fluctuations on the
landslide deformation were as follows. First, the weakening of the
landslide’s rocks caused by the rainfall infiltration and the
reservoir water infiltration led to the deterioration of the
mechanical properties of the landslide and resulted in the
deformation of the landslide (Yange et al., 2015). Second, the
rainfall infiltration and reservoir water-level fluctuations caused
changes in the pressure of the seepage water within the landslide
body, which led to the deformation of the landslide (Han et al.,
2015). Third, the periodic changes and time effects of the rainfall
and reservoir water-level fluctuations also had significant impacts
on the landslide deformation (Han et al., 2018). In general,
because of the low permeability coefficient of the soil slope,
the rainfall infiltration is relatively slow. The influence of long-
term rainfall should be fully considered when selecting the
influencing factor. We selected the rainfall in the reservoir
area in the current month and two months as the influencing
factor. The impact of reservoir water is usually a slow process.
Therefore, based on the selection of the current monthly change
of the current reservoir water level, we also used the two-month
cumulative change of the reservoir water level.

Model Evaluation and Optimization
In this study, we selected the Gumbel, Clayton, and Frank Copula
functions from the Archimedean Copula family and the
M-copula function that linearly combines the three Copula
functions as candidates.

First, it was necessary to select the Copula function that best
reflects the trends and correlations in the raw data. The first step is
the parameter estimation of the model. The Gumbel, Clayton, and
Frank Copula models contained one unknown parameter each,
and the M-Copula had three coefficients and three function
parameters for a total of six parameters to be estimated. Many

studies (Motamedi and Liang, 2014; Li et al., 2018; Wang et al.,
2020) have used full maximum likelihood estimation (Nelsen,
2000) or the two-step maximum likelihood estimation (Genest
et al., 1995) to estimate the model parameters. Both methods
required a prior assumption of the type of marginal distribution,
which directly affected the structure of the parameter estimation if
the marginal distribution was incorrectly selected. In this study, we
used the semi-parametric estimation method proposed by Genest
(Genest, 1987) and Kim (Kim et al., 2007), that is, the pseudo-MLE
method, to estimate the parameters of the Copula model. The
parameter estimates are presented inTables 2, 3. In all of the tables
and figures that appear in this paper, the explanation of all the
factors and variables are shown as follows (Table 1).

The second step is to select the Copula model with the best
fit for the four Copula models according to the AIC and BIC
(Wang and Liu, 2006). The calculation results presented in
Tables 3, 4 and 5 show that the M-Copula model had the best
fit for the data source and thus was chosen for use in the
following correlation study.

We used the K-S test to verify whether the partial derivatives of
the M-Copula model obeyed a (0, 1) uniform distribution as a
way to check whether the M-Copula model reflected the structure
of the correlation between the variables well.

The original hypothesis was that the first-order partial
derivatives of the M-Copula model would obey a uniform
distribution within (0, 1). We tested the M-Copula function
by constructing a K-S test statistic for the M-Copula model.
As shown in Table 6, the p-value of the K-S test of the
M-Copula model was greater than 0.05 for all six data sets,
and the original hypothesis was accepted at the 95%
confidence level. Thus, the first-order derivatives of the
M-Copula model obeyed a uniform distribution within (0,
1), indicating that the M-Copula model reflected the
correlation structure between the variables well.

Correlation Analysis Based on the
M-Copula Model
We conducted a correlation analysis of the rainfall and
reservoir water-level fluctuations and the landslide
deformation using the M-Copula model. Figure 5 shows
the spatial density distribution map and density contour
metric of the M-Copula model. In all of the figures in this
paper, the coordinate axis U represents each influencing factor
and V represents the monthly displacement increment of the
landslide. Table 7 presents the correlation metric parameters
returned by the M-Copula function. Kendall’s tau is the
Kendall correlation coefficient and was used to show the
overall correlation between two sets of random variables.

TABLE 6 | K-S test results of the M-Copula models.

Y1 vs. x1+ Y1 vs. x1− Y1 vs. x2+ Y1 vs. x2− Y1 vs. x3 Y1 vs. x4

T 0.261 0.257 0.253 0.250 0.109 0.111
P 0.063 0.068 0.075 0.082 0.110 0.103

“T” in Table 6 means the test statistics of the K-S test of the M-Copula model. “P” in Table 6 means the p-value of the K-S test of the M-Copula model.
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FIGURE 5 | (A), Spatial joint density distribution and contour plot between the 2 factors. “Reservoir water level rises in 1month” and “Monthly displacement increment of
ZG110”; (B), Spatial joint density distribution and contour plot between the 2 factors. “Reservoir water level drops in 1 month” and “Monthly displacement increment of
ZG110”; (C), Spatial joint density distribution and contour plot between the 2 factors.“Reservoir water level rises in 2 months” and “Monthly displacement increment of
ZG110”; (D), Spatial joint density distribution and contour plot between the 2 factors. “Reservoir water level drops in 2months” and “Monthly displacement increment of
ZG110”; (E), Spatial joint density distribution and contour plot between the 2 factors. “Rainfall in 1 month” and “Monthly displacement increment of ZG110”; (F), Spatial joint
density distribution and contour plot between the 2 factors. “Rainfall in 2 months” and “Monthly displacement increment of ZG110”.

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 6370419

Wang et al. Correlation Analysis of Landslide Displacement

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


We used the upper-tail and lower-tail coefficients to measure
the correlation between the two sets of random variables when
the variable became larger or smaller.

The correlation parameters calculation results showed
that the monthly displacement increment of the landslide
was weakly negatively correlated with the one-month change

FIGURE 5 | (Continued).
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in the reservoir’s water level and the two-month change in
the reservoir’s water level, and it was weakly positively
correlated with the other influencing factors. Note that
the change in the reservoir’s water level in the declining
stage was more strongly correlated with the monthly
displacement increment of the landslide. The upper-tail
correlation coefficient of each group of variables was
smaller than the lower-tail correlation coefficient, which is
also shown in Figure 6. As the figure shows, the joint
probability distribution was thicker in the lower tail and
the lower-tail correlation was higher than the upper-tail
correlation, indicating that the deformation of the
landslide was likely to be smaller when the reservoir
water-level fluctuations or rainfall were smaller.

Conditional Probability and Return Period of
the Landslide Deformation
The conditional probability distribution diagrams and the return
period diagrams of the random variables are shown in Figures 6,
7, respectively.

When the amount by which the reservoir’s water level changes
was given, the conditional probability of the monthly
displacement increment of the landslide gradually increased as
the monthly displacement increment increased. When the
amount of rainfall was given, the conditional probability of the
monthly displacement increment gradually increased as the
monthly displacement increment increased. In terms of the
monthly displacement increment, the greater the change in the
reservoir’s water or the amount of rainfall, the smaller the
probability value.

The return period of the monthly displacement increment of
the landslide generally was characterized by a small return period
when the change in the reservoir’s water level was large and the
monthly displacement increment was small. The return period
was small when the amount of rainfall was large and the monthly
displacement increment was small, and vice versa. When the
reservoir water-level change or the rainfall was given, the return
period became progressively larger as the monthly displacement
increment increased. When the monthly displacement increment
was given, it decreased as the reservoir-level change or rainfall
level increased.

TABLE 7 | Relevant parameters of the M-Copula Model.

Kendall’s tau Upper tail Lower tail

Y1 vs. x1+ −0.120a 0.180a 0.205a

Y1 vs. x1− −0.202 0.178a 0.326a

Y1 vs. x2+ 0.085a 0.167a 0.212a

Y1 vs. x2− −0.197 0.171a 0.221a

Y1 vs. x3 0.078a 0.225a 0.265a

Y1 vs. x4 0.015a 0.147a 0.198a

aMeans that the test is subject to 95% confidence level.

FIGURE 6 | Conditional probability density distributions for the M-Copula model. (A) y1 vs. x1+; (B) y1 vs. x1−; (C) y1 vs. x2+; (D) y1 vs. x2−; (E) y1 vs. x3; and (F)
y1 vs. x4.
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We arranged the Bazimen landslide displacement monitoring
data in order of magnitude to create a new displacement
sequence. The upper quartile of the displacement sequence of
the monthly displacement increment of monitoring point ZG110
was 22.42 mm. If the monthly displacement increment was
greater than 22.42 mm, we determined that the landslide had a
large deformation in this month, and if it was less than 22.42 mm,
we considered it to have a small deformation.

On the basis of this division, we reviewed the probability
distribution and the return period of the monthly displacement
increment for the selected −10 and 20 mmonthly reservoir water-
level changes, the −20 and 20 m two-month reservoir water-level
changes, the 100 and 300 mmmonthly rainfall levels, and the 200
and 500 mm two-month cumulative rainfall levels.

As shown in Figure 8A, the probability of a large landslide
deformation in amonth when the reservoir level dropped by 10 m
was the highest (0.965) under various conditions. The
probabilities for other changes in the reservoir’s water level are
shown in Table 8. Large landslide deformation was most likely to
occur when the reservoir’s water level fluctuated significantly, and
the probability of a large landslide deformation occurring in a
month when the reservoir’s water level dropped was 0.965.

We obtained the following analysis results: When the reservoir’s
water level fluctuated significantly, the landslide was likely to
experience deformation. In this case, the probability of a large
landslide deformation occurring in a month in which the
reservoir’s water level dropped was higher than the probability of
it occurring in a month in which the reservoir’s water level rose.
When the reservoir’s water level remained unchanged, the probability
of large landslide deformation occurring was significantly smaller
than the probability of reservoir water storage or flooding. A
reasonable explanation for this phenomenon was that most of the

Bazimen landslides were below 145m, and a rapid decrease in the
reservoir’s water level and the poor permeability of the landslide’s
geotechnical body caused the groundwater level within the slope to
lag behind the reservoir’s water level. This resulted in a positive
difference between the groundwater level and the reservoir’s water
level. The outward infiltration of the groundwater from the landslide
body caused the osmotic pressure to be directed toward the outside of
the slope body. As a result, a significant deformation of the slope body
was likely to occur during a sudden drop in the reservoir’s water level.

As shown in Figure 8B, under different rainfall conditions in
the reservoir area, the probability of a large landslide deformation
occurring was the highest (0.900) when the cumulative rainfall for
two months was 500 mm. The probabilities for the other rainfall
conditions are shown in Table 9. This analysis led us to the
conclusion that the greater the cumulative rainfall for one month
or twomonths in the reservoir area, the more likely it was that the
landslide would experience a significant deformation. This
phenomenon may have been due to the fact that rainfall that
infiltrated the slope increased the weight of the landslide and
created pore penetration pressure. Thus, the slip zone soil also
was softened by the water, which in turn would reduce its shear
strength and cause a significant deformation.

By comparing the degrees of the influences of the reservoir
water-level fluctuations and the rainfall on the landslide
displacement in the reservoir, it was evident that changes in
the reservoir’s water level, especially when the reservoir’s water
level dropped, were more likely to cause large amounts of
landslide deformation compared with rainfall for both the
one- and two-month conditions.

We analyzed the pattern of the monthly displacement increment
return period of the Bazimen landslide under specific conditions. As
is shown in Figures 8C,E, the return period of the large landslide

FIGURE 7 | Conditional return period diagram for the M-Copula model. (A) y1 vs. x1+; (B) y1 vs. x1−; (C) y1 vs. x2+; (D) y1 vs. x2−; (E) y1 vs. x3; and (F) y1 vs. x4.
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deformation (≥22.42mm) when the reservoir’s water level fluctuated
greatly (up or down) was much smaller than the return period when
the reservoir’s water level remained unchanged or fluctuated less.
Note that the return period for large landslide deformations was
smaller when the reservoir’s water level decreased than when the
reservoir’s water level increased. This result indicated that the
probability of large landslide deformations was greatly increased in
the case of sudden decreases in the reservoir’s water level.

As themonthly displacement increment of the landslide increased
from 22.42mm to amaximum of 72.44mm, the return period of the
monthly displacement increment of the landslide increased by less
than three months in the case of large fluctuations in the reservoir’s
water level. When the reservoir’s water level remained basically
unchanged, the return period increased by nearly 10 years. This
result indicated that the landslide was more likely to undergo
deformation destabilization and cause serious geological hazards
when large fluctuations in the reservoir’s water level occurred.

As is shown in Figures 8D,F, the return period of large landslide
deformation (≥22.42mm) was smaller when there was heavy rainfall
in the reservoir area than when there was less rainfall. In particular,
the return period of extremely large landslide deformation events
(close to 75mm)wasmuch smaller for heavy rainfall than for smaller
rainfall, with almost an order of magnitude difference. This indicated
that the probability of large landslide deformation increased
considerably under the heavy-rainfall scenario. As the monthly
displacement increment of the landslide increased from 22.42mm
to a maximum of 72.44mm, the return period of the monthly
displacement increment of the landslide increased by only about
sevenmonths in the case of heavy rainfall. In the case of light rainfall,
however, it increased by nearly four years. This result indicated that in
the case of heavy rainfall, the landslide was also more prone to
deformation destabilization and caused serious geological disasters.

Table 10 shows the VaRs, TVaRs and their corresponding
displacement increments of all the influencing factors based

FIGURE 8 | Probability distribution and return period plots of the monthly displacement increments for the M-Copula model. (A) conditional probabilities under
different reservoir level changes; (B) conditional probability distributions under different rainfall conditions; (C) return periods under different reservoir level changes; (D)
locally amplified (C); (E) return periods under different rainfall conditions; and (F) locally amplified (D).
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on the calculations using Eqs 8Eqs 9. On the whole, the
displacement increment corresponding to the VaRs and
TVaRs of rainfall is smaller than the displacement
increment corresponding to the VaRs and TVaRs of
reservoir level change, indicating that the response of
landslide deformation to reservoir level change is higher
than the response to rainfall. Moreover, the increment of
displacement corresponding to VaRs and TVaRs when the
reservoir level is falling is greater than that when it is rising. It
can be assumed that landslide deformation responds more to a
fall than to a rise in reservoir water level. When the four
influencing factors reached or exceeded their respective VaR,
the possibility of a large amount of landslide deformation
occurring was greater. At that moment, it would be necessary
to pay more attention to the landslide deformation and
corresponding landslide geohazard emergency measures
should be taken.

Case Validation: Baishuihe Landslide
The Baishuihe landslide is another typical landslide in the Three
Gorges Reservoir area, located on the south bank of the Yangtze
River in Zigui County, and its deformation development is mainly
influenced by a combination of factors such as reservoir water
level changes and rainfall. Monitoring data from the Baishuihe
landslide from 2009 to 2018 were selected to verify the
effectiveness of the proposed pseudo MLE-M-Copula approach.
First, the monitoring data of monthly displacement increment,
reservoir level changes and rainfall at monitoring point ZG118
were tested for normality using A-D test, J-B test and KS test. The
p values of all variables were less than 0.05, indicating that none of
the variables obeyed normal distribution and there is tail
correlation between two variables. The M-Copula model
proposed in this paper was used to fit the data, and the best fit
was obtained on all candidate models based on three evaluation
indicators: AIC, BIC and RMSE. The Kendall’s τ and the tail
correlation coefficients between each influencing factor and the
monthly displacement increment were then calculated (Table 11),
and it can be concluded that the monthly displacement increment
is weakly negatively correlated with the reservoir level change (rise
or fall) and weakly positively correlated with rainfall, which is
basically the same as that of the Bazimen landslide. And the
decrease in reservoir level has a stronger correlation with the
incremental displacement. In addition, the upper tail correlation
coefficient of variables is greater than the lower tail correlation
coefficient. Unlike the Bazhimen landslide, the upper tail
correlation of the displacement increment of the Baishuihe

landslide with the influencing factors is higher than the lower
tail correlation, indicating that when the reservoir water level
changes or the rainfall is greater, the landslide is more likely to
have large deformation. Finally, the VaRs and TVaRs of
displacement increments and each influencing factor were
calculated (Table 12), the results were roughly the same as the
Bazhimen landslide, but the displacement increments were more
responsive to rainfall. In summary, there are good reasons to
believe that the M-Copula model based on pseudo-MLE proposed
in this paper can effectively and accurately evaluate the correlation
between the influencing factors and deformation of hydrodynamic
landslides in the TGRA.

DISCUSSION

In this paper, we proposed a new M-Copula method based on
pseudo-MLE to systematically investigate the correlation between
landslide influencing factors and deformation of the Bazimen
landslide in the TGRA. The method offered several advantages.
First, the Copula method is based on nonlinear theory and can be
used to completely characterize the correlation structure between
multidimensional random variables. Second, the hybrid M-Copula
method combined the advantages of three different Archimedean
Copula functions to provide a more comprehensive and accurate
description of the complex correlations. In addition, the pseudo-MLE
method used to estimate the parameters of the model was able to
avoid the adverse effects on the analysis results caused by the
incorrect selection of the marginal distribution. Third, the
introduction of conditional probability distributions and return
periods allowed for a more accurate description of the effect of
one variable on landslide deformation when one variable was fixed.

This method also had limitations. First, the selection of
influencing factors was largely dependent on empirical and
qualitative analysis, and lacked concrete and computational
support. Second, the study examined only the correlation
between the monthly displacement increments of single
monitoring point data and the influencing factor, and
failed to consider the spatial characteristics of the
landslide. Third, data from several monitoring points at
different locations should be added to analyze the
correlation structure between the three-dimensional spatial
characteristics of the landslide and the landslide deformation,
given that this study did not consider the changes in landslide
displacement under the joint action of multiple influencing
factors.

TABLE 8 | Probability of landslide deformation under different reservoir level change conditions.

Reservoir water-level change
conditions

Probability of large
deformation

Probability of small
deformation

10 m decline in 1 month 0.965 0.035
Unchanged in 1 month 0.281 0.719
20 m increase in 1 month 0.952 0.048
20 m decline in 2 months 0.954 0.046
Unchanged in 2 months 0.312 0.688
20 m increase in 2 months 0.934 0.066
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CONCLUSION

In this research, a Mixed-Copula method based on pseudo-
maximum likelihood estimation is proposed to monitor and
study the correlation between landslide displacements and
their various influencing factors (including rainfall, reservoir
water level changes). Monitoring data collected from 2009 to
2018 from the Bazimen landslide in the Three Gorges Reservoir
area were used to develop probabilistic statistical models between
landslide deformation and its influencing factors using
Archimedeans Copula and Mixed Copula models, respectively,
and to conduct numerical analysis.

The M-Copula model was firstly developed using a semi-
parametric estimation method (pseudo MLE) based on the
monitoring data and compared with parametric and non-
parametric estimation methods. In order to select the best-fit
model on the monitoring data and to confirm its validity and
accuracy, the M-Copula model was then compared with the
Frank, Gumbel and Clayton copula models on the monitoring
data. Three evaluation metrics, AIC, BIC and RMSE, were
chosen to assess the goodness-of-fit, with the M-Copula
model achieving the best results. These models were tested
for statistical hypotheses using the A-D test, J-B test and KS-
test. Through correlation analysis, including overall

TABLE 9 | Probability of landslide deformation under different rainfall conditions.

Rainfall conditions Probability of large
deformation

Probability of small
deformation

100 mm in 1 month 0.665 0.335
300 mm in 1 month 0.899 0.101
200 mm in 2 months 0.718 0.282
500 mm in 2 months 0.900 0.100

TABLE 10 | VaRs and TVaRs of influencing factors.

Influencing factors VaR and corresponding
displacement increments

TVaR and corresponding
displacement increments

Reservoir water level change in 1 month +19.10 mm (14.59 mm) +19.86 mm (18.65 mm)
−11.50 mm (14.94 mm) −13.18 mm (20.39 mm)

Reservoir water level change in 2 months +23.81 mm (14.98 mm) +26.44 mm (14.95 mm)
−18.44 mm (20.13 mm) −19.57 mm (21.50 mm)

Rainfall in 1 month 101.25 mm (10.94 mm) 169.20 mm (11.52 mm)
Rainfall in 2 months 401.38 mm (13.04 mm) 457.92 mm (18.71 mm)

Note: “+” means the reservoir water level is rising; “-” means the reservoir water level is falling.

TABLE 11 | Relevant parameters of the M-Copula Model.

Kendall’s tau Upper tail Lower tail

Y1 vs. x1+ 0.013a 0.493a 0.293a

Y1 vs. x1− −0.018a 0.440a 0.020a

Y1 vs. x2+ −0.121a 0.394a 0.296a

Y1 vs. x2− 0.100a 0.511a 0.250a

Y1 vs. x3 0.067a 0.457a 0.267a

Y1 vs. x4 0.163 0.434a 0.229a

ameans that the test is subject to 95% confidence level.

TABLE 12 | VaRs and TVaRs of influencing factors.

Influencing factors VaR and corresponding
displacement increments

TVaR and corresponding
displacement increments

Reservoir water level change in 1 month +16.38 mm (17.35 mm) +18.84 mm (17.96 mm)
−11.37 mm (17.91 mm) −13.89 mm (18.95 mm)

Reservoir water level change in 2 months +15.95 mm (18.96 mm) +23.18 mm (22.60 mm)
−14.54 mm (17.92 mm) −17.95 mm (17.91 mm)

Rainfall in 1 month 171.58 mm (17.69 mm) 209.06 mm (18.87 mm)
Rainfall in 2 months 277.38 mm (12.38 mm) 341.90 mm (17.75 mm)

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 63704115

Wang et al. Correlation Analysis of Landslide Displacement

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


correlation analysis and tail correlation analysis, it was found
that the tail correlation was greater than the overall
correlation and that the lower tail correlation was greater
than the upper tail correlation. This result indicated that the
possibility of a decrease in the displacement increment was
significantly enhanced when there was a large decrease in the
reservoir’s water level or the amount of rainfall in the
reservoir area. VaRs and TVaRs were used to calculate the
threshold values for each influencing factor and its
corresponding landslide displacement.

The results of the computational study validate the ability
of the pseudo MLE-M-Copula model to analyze landslide
deformation correlations and it can be well applied to
other landslides in the same reservoir area. According to
the results of the correlation calculations (tail correlation,
conditional probability and return period, VaR and TVaR),
there is a significant correlation between the landslide
deformation, i.e., the landslide displacement increment, and
the sudden drop of the reservoir water level, heavy rainfall.
Therefore, the prevention of landslide hazards can be
predicted by enhancing the monitoring of reservoir level
changes and rainfall.
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